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Abstract Pathfinding is becoming more and more common in autonomous vehicle naviga-
tion, robot localization, and other computer vision applications. In this paper, a novel approach
to mapping and localization is presented that extracts visual landmarks from a robot dataset
acquired by a Kinect sensor. The visual landmarks are detected and recognized using the
improved scale-invariant feature transform (I-SIFT) method. The methodology is based on
detecting stable and invariant landmarks in consecutive (red-green-blue depth) RGB-D frames
of the robot dataset. These landmarks are then used to determine the robot path, and a map is
constructed by using the visual landmarks. A number of experiments were performed on
various datasets in an indoor environment. The proposed method performs efficient landmark
detection in various environments, which includes changes in rotation and illumination. The
experimental results show that the proposed method can solve the simultaneous localization
and mapping (SLAM) problem using stable visual landmarks, but with less computation time.

Keywords SLAM . Localization . Landmarks . Video processing

1 Introduction

Localization and mapping are becoming more important for the field of pathfinding in various
challenging environments where the goal is to obtain the camera trajectory and a map from
sensor data. Simultaneous localization and mapping (SLAM) began with the robotics com-
munity in mid-1986 with the development of a concrete representation of uncertainty in feature
location by Smith and Durrant-Whyte. A major practical finding was introduced to deal with
errors, and it was done with a combination of sensor readings (a laser scanner or sonar) and
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information about the control input (e.g., steering angle) and the measured robot state (e.g.,
counting wheel rotations). Later, the existence of a correlation between feature location errors
and errors in motion, which affects all feature locations, was proven by Cheesman, Chatila,
and Crowley. And the errors in feature location acquired by agents were correlated with one
another. The correlation exists because an error in localization will have a universal effect on
the perceived location of all features. The motivation behind solving the SLAM problem is to
understand and utilize the relationship among errors in feature locations and robot pose.

A number of algorithms have been proposed for SLAM in the fields of robotics [10, 13, 21,
34, 42] and computer vision [1, 25, 28, 33, 38]. Most of the existing algorithms are based on
sonar sensors or two-dimensional (2D) and 3D laser scanners [9, 20, 23, 26, 31]. Recently,
visual sensors have become an important aspect of SLAM research, because an image is
considered a rich source of information when gathering details of the environment. The goal of
visual SLAM is to track a set of points obtained through successive video frames, and to
determine the 3D position. On the other hand, robot pose is calculated using the estimated 3D
points that have been observed during the movement of the robot. A wide range of sensor
modalities was proposed in the past, including monocular cameras [15, 16, 36, 38], stereo
systems [5, 17], and the recently developed Kinect sensor [11, 32, 35].

Most of the earlier approaches focused on artificial landmarks, and some approaches are
based on detecting and tracking simple features using Harris corners without considering
location data [22, 41]. These approaches suffer from the functioning problem in beacon-free
environments. However, high computational overhead is needed to maintain the reliability and
association of the detected features in cluttered and viewpoint-changed environments. Most of
the traditional sensors, such sonar and infrared (IR) sensors, suffer from resolution and
accuracy problems. To address these problems, vision-based systems are employed in a variety
of robotic applications, including SLAM, object recognition, and obstacle avoidance [2, 8, 18,
27]. A vision sensor is used to select the appropriate reference points that enable the
reconstruction of a 3D object, and it can be used in navigation to estimate the pose of a robot
with respect to prominent landmark cues [3, 12].

A number of techniques have been proposed to recognize landmarks and to detect points of
interest in a scene. Many feature-based algorithms have been proposed to track corner features
that enable the creation of 3D structures, but the corners could not be tracked once they are lost.
Although these techniques are robust to viewpoint change and lighting conditions, these algo-
rithms are too slow to implement in real-time pathfinding applications. Other feature-based
algorithms have been proposed to obtain the points of interest for objects or scenes [14, 29].

In this paper, a visual SLAM algorithm is proposed from detection of viewpoint-invariant
landmarks in video frames of indoor environments. The recent scale-invariant feature trans-
form (SIFT) algorithm [19, 30] allows detecting a 3D location that can be used as a landmark
to identify a change in position from robot movement. The proposed method detects and
recognizes the landmarks in consecutive frames from feature matching using a self-organizing
map (SOM) [40], which is an unsupervised neural network method to map n-dimensional
input space to a lower-dimensional output map. The SOM is an efficient tool for analyzing a
dataset and extracting useful features, and is applied to divide the feature space into subspaces
by clustering similar features together. SIFT landmarks are invariant to image translation,
scaling, and rotation, and partially invariant to illumination. The robot pose is estimated with
these landmark positions and is used for a mapping algorithm to generate a hypothesis about
the robot pose and landmark positions. The overall process requires complex and long
computations in the SIFT algorithm; thus, this paper introduces a new method for efficient
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detection of viewpoint-invariant landmarks, along with robot mapping and localization,
requiring less computation and providing high accuracy. The landmarks are detected in less
time, and a database is maintained to keep distinctive invariant features. In the proposed work,
the system is equipped with the Kinect sensor (an RGB-D camera); thus, 3D positions of
landmarks can be obtained from a scene. In consecutive images, feature matching is done
using winner pixel calculation for the captured video dataset. Hence, a 3D map can be built by
using the landmark cues, and the movement of the sensor can be localized simultaneously in
three dimensions. The landmark feature database is mapped to the 3D environment and is
constantly updated with changes in time and with respect to changes in environment condi-
tions. The detected landmarks will serve as the basis for performing high-level tasks, such as
mobile robot navigation and path estimation. The advantages of using SIFT for SLAM is that
the invariant landmarks can be obtained using feature matching. The vision information
provides the cues for pathfinding by detecting obstacles that are invariant to change in
viewpoint. In this work, improved SIFT with SOM feature-matching is used for landmark
extraction that provides results that are rotation-invariant, scale-invariant, and illumination-
and blurring-invariant.

The research presented in this paper is a novel way to develop a SLAM application using
the Kinect sensor. In this research, the work is focused on SLAM using the Kinect sensor,
where landmarks are detected using feature matching in consecutive images. The relationships
among the Kinect, landmarks, SOM, and SLAM are presented here to clearly explain the
proposed problem and the algorithm. Due to the motion-sensing and vision capability of the
Kinect sensor, it can acquire a large motion dataset for experimental purposes. The vision
datasets gathered by the Kinect are used to obtain landmark information from the scenes at
different time instances. However, due to the large amount of dataset information, the
landmark database is reduced using an improved SOM feature-reduction method. This results
in fast matching of features from different scene information at different time instances. The
robot pose is estimated, and the 3D positions are further used to determine SLAM in real time
using the Kinect sensor. The application is focused on the development of the SLAM
application using the vision sensor. This improved method is novel, in comparison with
ordinary SIFT. In addition, the proposed method is better in terms of computation cost, which
guarantees landmark detection for real-time processing. The first SIFT stage is used as a base
to compute the dataset keypoint feature vector, whereas later stages of the SIFT method are
improved using the SOM method. The feature keypoints initially extracted are later passed to
the SOM for determination of improved landmarks. The feature sets are reduced using the
SOM method, and only stable landmarks are detected and passed to the next stage.

In Section 2, an overview of the depth-sensing process and the calibration method for the
Kinect is explained. The proposed method for landmark detection, along with localization and
mapping in RGB frames, is described in Section 3. Experimental results using different
datasets in the indoor home environment, and a discussion on the findings, are presented in
Section 4. The paper concludes with some remarks in Section 5.

2 Overview of the depth sensing process and calibration method
for the Kinect RGB-D camera

The Kinect sensor has the ability to grab RGB images and infrared images of 640 × 480 pixels
at 30 frames per second (fps). It has an angular field of view that ranges 57 degrees
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horizontally and 43 degrees vertically. The depth-sensing technology consists of emitting an
IR pattern and simultaneously capturing an IR image with an attached complementary metal-
oxide semiconductor camera (Fig. 1). The steps of the depth sensing process are detailed as
follows. (1) The PrimeSense chip sends a signal to the IR emitter depth sensor, which is
mounted as a camera on the Kinect. In actuality, it is an IR projector that has a single
transparency with a fixed pattern to project a complex pattern of light dots onto an object.
(2) The PrimeSense chip also sends a signal to the IR/Depth sensor to initialize the depth
sensor. (3) Electromagnetic radiation is emitted onto objects in front of the camera. The
infrared light projected on the objects is invisible, because the wavelengths of the radiation
are longer than the wavelengths of visible light. (4) The depth information obtained from the
reflected light is captured by the depth sensor, and the invisible dotted data are used to
determine an object’s distance from the sensor. The resulting dotted data are converted into
depth data for further display operations. (5) The coded depth light is returned to the
PrimeSense chip. The information is then processed to reconstruct a three-dimensional model
of the object using the dot information of the IR light pattern. (6) The processed depth stream is
ready to display an output depth image. The depth stream contains the number of depth
frames; the pixels in each frame represent the distance information in millimeters.

The intrinsic parameters of the depth and RGB camera, as well as the pose difference
between the two cameras of the Kinect, should be known for accurate 3D map–building based
on the 2D depth images. The calibration parameters define the relation between the image
measurements (x, y, d′) and object coordinates (X, Y, Z) of each point. The camera’s intrinsic
calibration parameters is used to generate a point cloud from each disparity image. The
calibration parameters of the infrared camera do not directly correspond to the disparity images

Fig. 1 Details of the depth sensing process: PrimeSense chip processing with an IR emitter and an IR/Depth
sensor to form a depth image as output
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due to the bandwidth limitation of the universal serial bus (USB) connection. The size of the
disparity images computed by the PrimeSense chip processor is smaller than the actual size of
the infrared sensor. The infrared images are streamed at a reduced size of 640 × 480 pixels,
corresponding to each disparity image. A pixel-by-pixel correspondence is performed over the
reduced infrared images and the disparity images.

In the proposed method, the intrinsic calibration parameters for both RGB and IR/Depth
cameras were estimated using the mobile robot programming toolkit (MRPT) [4] library. As a
result of this calibration, the focal lengths (fx/fy), the optical center (cx/cy), and distortion
parameters are obtained for both RGB and IR/Depth cameras. Fig. 2 shows the experiments
performed for calibration to obtain the intrinsic parameters. The parameters obtained for the
various sequences are summarized in Table 1.

3 Proposed method for landmark detection and localization

In this research, a new pathfinding approach is presented to obtain an obstacle-free path in the
indoor environment by using stable landmarks. A Kinect sensor is attached to a four-wheeled
mobile vehicle, which is used to capture a dataset for use by robots in an indoor environment.
The consecutive RGB-D frames in the video dataset are then matched to estimate stable
landmarks between pairs of RGB frames. Experiments were conducted under variable condi-
tions (rotation, scaling, noise, affine, and so forth) to estimate the paths using stable landmarks
with fewer computations. To better understand the proposed visual SLAM method, SOM-
based stable landmark estimation to reduce the dimensions of the matched features in the
consecutive frames is explained first, and then the SLAMmethod with landmarks to determine
a path with improved matched landmarks is discussed.

SOM is a neural network that is used for visualization and abstraction of high-dimensional
data through competitive unsupervised methods. In the proposed method, the robot’s dataset is
post-processed for offline image processing to generate a landmark database. A large dataset of
landmarks detected from the frames of the video sequence needs to be reduced in order to
enhance computation performance. The main advantages of using the SOM are computational
efficiency and the intuitive way the results are presented to the user. A SOM is a prominent
tool for data exploration, having capabilities for automated organization of digital libraries (for
example, feature datasets in video frames). The motivation behind using a SOM is its data
exploration capability to reduce the large dataset of features detected in this application. The
overall clustering performance of the SOM is better, compared to other clustering methods
such as the hard k-means algorithm (HKM) and the fuzzy k-means algorithm (FKM), and it
also performs well for detection of noisy documents and topology preservation, thus making it

(a) Detected corners for a 7 x 9 chessboard. (b) Re-projected corners for the 7 x 9 chessboard.

Fig. 2 Checkerboard used for calibration: a detected corners for a 7 × 9 chessboard, and b re-projected corners
for the 7 × 9 chessboard
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more suitable for some applications, such as navigation of document collection, multi-
document summarization, etc.

In the proposed method, the RGB-D Kinect frames are used to obtain features from
consecutive frames of the captured video dataset. In each RGB frame, the high-dimensional
feature descriptor sets are extracted from the SIFT method, which are then used as input for the
SOM. The whole algorithm is shown in steps in Fig. 3. Let RGBI and RGBI+1 denote the
consecutive frames in the video captured by the Kinect sensor. The points of interest are
detected to generate SIFT descriptors, and then these consecutive frames are used to perform
matching in consecutive frames in the video using the SOM method. Consecutive frame
matching is performed for the creation of a landmark database, which is then used to estimate
the robot pose and path. The neurons in the SOM network are arranged in a rectangular,
hexagonal, or circular topological grid structure. In order to estimate distinctive landmarks, a
SOM is applied to nonlinear projection of a multivariate feature set into a low-sized feature
space. The projection and clustering of input feature space are performed with competitive
learning and the preservation of input feature information in a low-sized output neuron grid.

The performance of a Kohonen self-organizing map is compared to other clustering
methods, namely, the HKM and FKM algorithms. For comparison, four different normal
distributed datasets were used; two or three dimensions and 1000 or 10,000 vectors were used
per cluster. In the 2D case, the mean vector for the first cluster was m1 = [0.3, 0.3], and for the
second cluster, it was m2 = [0.7, 0.7]. In the 3D case, the mean vector for the first cluster was
m1 = [0.3, 0.3, 0.3], and for the second cluster, it was m2 = [0.627, 0.627, 0.627].

The value of m is determined to be the mean of all the patterns within the vector. It can also
be a random value that ranges between the values of the input data vectors. In the SOM
method, the mean vector is a random value between 0 and 1. The weight values are assigned
randomly according to the size of the input feature vector. In 1D SOM, weight vectors of
processing elements correspond to cluster mean vectors, whereas in a 2D map, one or several
weight vectors correspond to one cluster. The process of clustering is done via estimation of a
density function of the data, which is accomplished by finding the winner element in each of
the input vectors. The position of the weight vectors of the processing elements in the SOM are
distributed according to the density function of the input vectors. The mean vector is computed
by searching the nearest weight vectors and computing the local mean of the neighborhood of
the weight vector.

The performance of different algorithms was compared with respect to quantization error
and its deviation. The comparison results with mean value and deviation values are given in
Table 2, which shows that the best results are obtained in the SOM clustering method. It can be
noted from Table 2 that the value of the quantization error in FKM is smaller than the error in
HKM, at first; but later, a decrease in error for FKM was slower than HKM. When the number
of clusters was increased to eight from six, the error value from FKM increased because every

Table 1 Intrinsic parameters of the RGB and IR/Depth cameras of the Kinect sensor, including focal length (fx/
fy) and optical center (cx/cy)

Checkboard size (7 × 9) Camera fx fy cx cy

Dataset 1 Infrared/Depth 556.70 533.59 −285.32 163.77
RGB 542.21 595.10 413.64 224.60

Dataset 2 Infrared/Depth 285.48 298.72 515.45 241.30
RGB 647.44 655.94 381.85 275.21
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feature vector affects the evaluation of the cluster mean vectors. On the other hand, the error
value in HKM is smaller, compared to the error value in FKM, but deviations are noticeably
larger. HKM is very sensitive to first values of cluster mean vectors evaluated by random
number generator. In a real dataset, the cluster centers move close to each other, and two
different cluster centers can move to the same place in feature space. The best results are
obtained in SOM clustering with the smallest quantization error and its deviation (Table 2) for
all the different cluster values. In all cases, the SOMwas able to converge to (almost) the same
solution every time, and performed best, compared to HKM and FKM.

The pixels values were normalized between [0, 1] before the clustering process. The
number of clusters used for clustering ranged between 2 and 8. For different clusters, SOM
performance was the best in comparison with HKM and FKM and quantization error, and their
deviations were smallest in the SOM method. This resulted in the conclusion that the
placement of cluster centers was best in the SOM. The original image was compared to the

Fig. 3 Process for mapping and localization using stable landmarks and improved landmark matching between
consecutive frames

Table 2 Comparison results with mean value and deviation values for the hard k-means algorithm (HKM), the
fuzzy k-means algorithm (FKM), and the self-organizing map (SOM) method

Number of
Clusters

Hard
K-Means
(mean)

Hard K-Means
(deviation)

Fuzzy
K-Means
(mean)

Fuzzy
K-Means
(deviation)

SOM Clustering
(mean)

SOM Clustering
(deviation)

2 6461.7.2 3068.4 4987.6 0.0 4982.2 0.1
3 3871.0 2031.4 3806.0 0.9 2842.7 0.0
4 2355.2 883.8 3131.7 181.1 1640.2 0.9
5 1652.6 601.7 2673.6 189.5 1271.5 107.5
6 1195.3 185.7 2175.6 151.3 908.0 24.2
7 1026.5 359.7 2201.9 37.4 746.1 0.2
8 822.3 159.0 2323.7 27.7 653.6 12.8
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clustering result, and the SOM performed best when examined visually. In FKM, some clusters
were not natural, whereas the clusters in HKMwere unstable. The SOM performed best, and is
the reason for its use in this application.

The different experiments were performed with a SOM with different parameter settings.
The size of the SOM grid selected was a 7 X 7 neuron grid for better performance of the
feature set during the training process. The experiments were conducted for 7 X 7, 10 X 10,
and 12 X 12 grids. The best results were obtained for the 7 X 7 grid, in terms of both optimum
features and computation. In the experiments, a SOM with gain term ao = 0.02 with a linear
decrease in time, and neighborhood NE0 = 1 were chosen.

3.1 Landmark clustering with SOM

In this work, the vectors extracted from SIFT are used to compose a topological map. SIFT is
an efficient method to extract a set of keypoints in the RGB frames. It allows matching under
numerous image transformations (i.e., rotation, scale, perspective) and generates a dense set of
image features. At first, the large variety of SIFT patterns extracted from consecutive RGB
frames in landmark space increases the potential difficulty in obtaining discriminate bound-
aries for classifying patterns into landmark classes by using only one classifier. The SOM is
applied to divide the landmark space into subspaces by clustering similar landmarks together
and representing each landmark cluster as a node on an output low-dimensional topological
grid. Fig. 4 shows the clustering process and mapping of SIFT feature space onto a 2D neuron
grid map, and each node in the SOM grid is connected with weight vector wi = [w1….wn] T in
the grid map. The landmarks are defined by using the matched features obtained by the SOM
matching method. The matched features in the different RGB frames are designated as
landmarks. The positions of these matched features in different frames are defined as land-
marks, which are defined as the ground truth. If a moving object comes, then it will be treated
as a landmark. The landmarks are determined by an object’s motion in the subsequent frames
of the videos. As the proposed method is invariant to change in scale and other viewpoint
changes, its matched features can be extracted if the object positions change in the different
frames due to motion. The appearance of any moving object is considered a target, and
landmarks are extracted for the objects or person appearing.

The proposed approach operates in the SIFT feature space instead of a Kinect RGB
database; in other words, the landmark database consists of a reduced feature set and the

Fig. 4 Cluster formation of SIFT landmarks. The descriptor is mapped onto a SOM grid to detect the reduced set
of features, which results in landmarks
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feature pose with respect to a stable, distinctive, detected landmark at position (x, y). The set of
descriptor spaces in the RGB frames are represented in terms of a reduced Kohonen map, in
which the feature values are distributed over an n × n grid. When the new descriptor vector
arrives, the topological map determines the best matching neuron using the concept of a
nearest neighbor learning algorithm. Let Xi = [RGB1, RGB2, RGB3….RGBi] ϵ Vn be the set of
input feature vectors, and Wi is the weight vector for each node connected to the SOM grid.
The video datasets are captured during navigation in the indoor environment with different
viewpoints. For the clustering process, there will be one winning neuron, Ni, the neuron where
the weight vector lies closest to the input descriptor vector. The winner neuron represents the
best-matched neuron (BMU) and the corresponding pixel location is included in the landmark
database. During the learning process, the neurons that are connected to adjacent neurons and
that are close in the topological grid map will activate one another, and the neighborhood
function can be represented as

hciμ tð Þ ¼ η tð Þ:exp −
rc−rik k

2: σ tð Þð Þ2
 !

ð1Þ

where η(t) is the learning rate, and it depends on the number of iterations during the training
process; η(t) gradually decreases linearly as a function of time to reduce the neighborhood
region in successive training iterations:

η tð Þ ¼ a0 1−t
.
tmax

� �
ð2Þ

where a0 and tmax denote the initial learning rate and a maximum number of iterations of the
training cycles, respectively. For each iteration, the input RGB frame is applied, and the winner
neuron is calculated based on the Euclidean distance between the input feature vector and the
node in the topological grid. The winning neuron represents the pixels in the consecutive
frames that could be a match in the current frame and can be represented by

x−Wcj j ¼ min x−Wij j ð3Þ
The nodes in the output SOM grid map will activate one another to learn from the same

RGB frames. Feature information during the learning and the weights of the nodes in the grid
map are updated by the following equation:

Wi t þ 1ð Þ ¼ Wi tð Þ þ hci tð Þ x tð Þ−Wi tð Þ½ � ð4Þ

The learning process repeats iteratively until all the input feature patterns in the RGB
frames are mapped onto the SOM topological grid, and all the frames’ feature patterns are
clustered into each node in the SOM map. The process ends when the value of t reaches tmax,
which indicates that the maximum limit of the training cycles was reached.

3.2 Localization and mapping using detected landmarks in RGB frames

In the proposed approach, the landmark vector in the first RGB frame is used as input in the
localization and mapping process to determine the path of the robot. The overall localization
procedure consists of multiple stages: stable landmark extraction in consecutive environment
views, data association, state estimation, state update, and landmark database update. For each
new robot position, stable landmarks are extracted from the new RGB frames of the
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environment, and matching is performed in the consecutive frames. A pixel is selected
randomly in the new frame, and the corresponding feature vector is supplied to the SOM to
detect the stable features. The matched landmarks in the consecutive views are then associated
with observations of landmarks seen previously. The robot position is updated in the extended
Kalman filter (EKF) using the re-observed landmarks. The newly detected landmarks are
added to the EKF as new observations, so they can be re-observed in later stages.

The robot needs to build a map without external control and without a given map; it needs
to navigate in an indoor environment with the estimation of stable landmarks in the different
views that appear in front of the camera during navigation. The map is constructed using the
matched landmarks, such as features of walls, doors, and objects that appear in the images in
consecutive views when the robot navigates. The proposed visual SLAM is based on the
improved matched features in consecutive views of the RGB frames. If a landmark is created,
some unique scene features are added to the landmark database for later recognition. For each
matched landmark in consecutive frames, pose vector LM = [row,col.,scale,orien,disp,x,y,z] is
obtained, where (row,col) denotes the calculated image coordinates in the reference camera,
(scale,orien,disp) are the scale, orientation, and disparity associated with each stable landmark,
and (x, y, z) are the 3D coordinates of the landmark with respect to the camera position. In the
proposed method, the goal is to estimate the motion of the camera solely from the visual RGB
image information. At each time instance t, the camera provides an RGB-D frame and a
corresponding depth map. Fig. 5 illustrates motion estimation using the visual information.

To build a map, visual odometry is used to estimate robot motion in consecutive frames,
and is used to calculate the approximate movement (p, q) in X and Z directions, as well as to
estimate orientation (θ). Let (x, y, z) denote the 3D coordinates of a matched landmark obtained
with the proposed SOM feature matching method, and the new 3D coordinates (x′, y′, z′) can
be obtained using the following notation:

x
0

y
0

z
0

2
4

3
5 ¼

x−pð Þcosθ− z−qð Þsinθ
y

x−pð Þsinθþ z−qð Þcosθ

2
4

3
5 ð5Þ

The camera calibration model discussed in Section 2 is used to project the 3D position to
image coordinates by the following notation:

row
0

col
0

disp
0

2
4

3
5 ¼

v0− f y
0
.
z
0

u0 þ f x
0
.
z
0

fI
.
z
0

2
6664

3
7775 ð6Þ

where (u0, v0) are the image center coordinates, I is the distance to the landmark, and f is the
focal length. The new value for scale is given by the following equation:

s
0 ¼ scale*z

.
z
0 ð7Þ

where s′ is the scale value that is inversely related to the distance of the landmark, while the
orientation of the expected landmark remains unchanged. For each matched landmark in the
consecutive views, the relative pose is determined using the 3D information and correspon-
dences in the different views in the RGB frames. This results in robust and stable landmark
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recognition in different views over different time instances. A 3D point is associated with each
landmark in the landmark database, and 2D to 3D feature correspondences are used to estimate
the robot pose over a span of time. Each new RGB frame comprises 10 to 50 stable landmarks
in the newly observed frame, which are later used for pose estimation. The accuracy of the
estimated pose depends on the newly observed view, and is denoted as an accurate estimation
if the newly detected landmarks lie within a radius of 1 m with respect to the previously
observed landmark.

Let Φ denote the map, and let N denote the number of detected landmarks. Each reference
to a landmark in the map is denoted by Φn. The pose of the robot is denoted by st and is
denoted with a 3 × 1 vector [xt, yt, θt]T, where xt, yt is the robot location at discrete time t, and θt
is the heading at a particular time instance, t. The motion model is a state space model to
implement visual SLAM (vSLAM) and is given by the following notation:

stþ1 ¼ f st; utð Þ þ wt ð8Þ
where ut is the visual odometry obtained in the time instance between t and t + 1; wt is the error
that occurred due to noise. The motion model depends on the odometry information and the
kinematics information, along with the floor surface. The motion model used for vSLAM is
denoted by the following equations:

E wtð Þ ¼ 0
E wtwt

T� � ¼ g θt; ut;σT ;σRð Þ ð9Þ

σT and σR are the change in translational and rotational odometry. Another measurement
model is given by the following equation:

yt ¼ h st;∅ntð Þ þ vt ð10Þ
where∅nt denotes the observed landmark at time instance t, and vt is noise error with a change
in odometry. The error-free measurement with a change in the visual information is given by
h(st,φnt), E(vt) = 0, and E(vtvt

T) = ∑ vvis . The robot path is denoted by the sequence

Fig. 5 The robot is represented by
the triangle, and the circles
represent landmarks in the RGB
frames. The robot measures the
path using the matched landmarks
in consecutive views in the RGB
frames. The initial locations of the
landmarks are measured using the
sensor information
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st = s1,s2,…st, which is a sequence estimated from time 1 to time t. The st vector represents the
sequence of robot poses. Pose is determined using the estimation of st-1, measurements ut-1 and
yt, and landmark poses φnt. The landmark pose φnt is estimated at time t, and st and Φ are
determined using the probability distribution p(st,Φ|nt,yt,ut). The assumption is shown using
Bayesian calculus and probabilistic robotics:

p st;∅jnt; yt−1; ut� � ¼ p stjst−1; ut� �
:p st−1;∅jnt−1; yt−1; ut−1� � ð11Þ

For the visual SLAM algorithm, the following factorization is performed to estimate the
N + 1 poses and their cross-correlations:

p st;∅jnt; yt; utð Þ ¼ p stjnt; yt; ut� �
: ∏

N

i¼1
p ∅ijst; nt; ytð Þ ð12Þ

The landmark database is updated, along with updating the robot path, and then
landmark pose estimation is performed. The Kalman filter is used to update the landmark
pose, and each landmark is associated with a Kalman filter, which is used to update the
path hypothesis regularly. For instance, if there are 100 particles and 20 landmarks, the
number of Kalman filters is 2000. The Kalman filters are updated when there is a change
in the state of the system.

4 Experimental results and discussion

Experiments were conducted in 12 different types of environment in both simple and complex
indoor scenarios. Snapshots of the environments with detected landmarks in consecutive
frames at time intervals of 30 s are shown in Fig. 6. The Kinect sensor was used for acquisition
of the datasets under the various conditions. The resolution of the RGB frames for all 12
datasets was 640 × 480. The frame rate was 30 fps, and the tilt angle was 30 degrees for
acquisition of the rotation and illumination datasets. The details of the six simple datasets used
for the experiments are given below.

Bedroom (Fig. 6a): the room has a length of approximately 4 m with landmarks,
including a bed, an almirah, and a study table. The floor was flat and coated with a
wooden floor sheet.
Bedroom (rotation and illumination) (Fig. 6b): the room has a length of approximately
4 m and landmarks, including a bed, an almirah, and a study table. In this dataset, there is
a change in illumination, and the rotation angle was set to 30 degrees.
Dining Room (Fig. 6c): the room has a length of approximately 6 m and landmarks,
including a dining table, chairs, and obstacles in the path. In this dataset, there is no
change in illumination and rotation.
Dining Room (rotation and illumination) (Fig. 6d): the room has a length of approxi-
mately 6 m and landmarks, including a dining table, chairs, and obstacles in the path. In
this dataset, there is a change in illumination, and the rotation angle was set to 30 degrees.
Living Room (Fig. 6e): the room has a length of approximately 5 m and landmarks,
including a sofa, some objects, and chairs. In this dataset, there is no change in illumi-
nation and rotation.
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Living Room (rotation and illumination) (Fig. 6f): the room has a length of approximately
5 m and landmarks, including a sofa, some objects, and chairs. In this dataset, there is a
change in illumination, and the rotation angle was set to 30 degrees.

A set of six experiments for simple scenarios was done under different viewpoint conditions
(i.e., different indoor scenarios). In each of the experiments, the landmarks were detected with
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Fig. 6 The results of the viewpoint-invariant landmarks for the different datasets used in the experiments: a
shows the extracted landmarks with the proposed method in an indoor bedroom with features (bed, almirah, and
study table); b shows the extracted landmarks with the proposed method in the bedroom sequence with changes
in rotation and illumination; c to f show the set of extracted landmarks for the dining room, the dining room with
rotation and illumination, the living room, and the living room with rotation and illumination
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the proposed feature matching method. The Kinect sensor was manually controlled to move
randomly without a specific style, such as following the corners of the wall. The presented
algorithm efficiently extracted the visual landmarks using the winner calculation method. The
proposed method is invariant to object loss, scaling, and rotation, and can efficiently replicate
an automatic real-time SLAM operation.

Fig. 7 shows the map obtained using the visual landmarks, where the odometry and visual
information were plotted onto the map. Referring to Fig. 7, row 1 and row 2, the map was
obtained using the detected visual landmarks in the bedroom scenario, and can efficiently
localize position using point cloud information. Similarly, row 3, row 4, row 5, and row 6
show the map obtained using the detected visual landmarks in the dining room and living room
scenarios. The mapping managed to correct some misalignments due to odometry errors. The
lower landmarks underneath the dining table were also detected and mapped during the map
building. On the other hand, some misalignment occurred in the map due to the narrow
horizontal field of view. The results prove that the proposed method is able to obtain
viewpoint-invariant landmarks in less time and can achieve real-time SLAM.

The six complex scenarios were multiple rooms in different conditions and with the
appearance of a moving object in front of the camera. The landmarks were detected for the
complex scenes to determine an obstacle-free path using the improved stable landmarks. The
details of the complex scenes used in the experiments are given below.

Multi-rooms (Fig. 8a)
Multi-rooms (rotation) (Fig. 8b)
Multi-rooms with illumination and darkness (Fig. 8c)
Multi-rooms with illumination and darkness (rotation) (Fig. 8d)
Multi-rooms with appearance of a moving vehicle (Fig. 8e)
Multi-rooms with appearance of a moving vehicle (rotation) (Fig. 8f)

Snapshots of the multiple room environments with detected landmarks in consecutive
frames are shown in Fig. 8. A number of experiments were carried out to validate the proposed
approach and to evaluate its effectiveness in an indoor scenario. The experiments were
performed using RGB-D video sequences where the landmarks are used to detect an
obstacle-free path. In order to build the map, the pose of each frame is estimated using visual
odometry. Fig. 9 shows the maps obtained for the multi-room scenarios using visual land-
marks, where odometry and visual information were plotted onto the map. Optimization was
carried out with the selection of optimum landmarks and estimates of the relative pose between
two consecutive RGB-D observations. The drift of the proposed method is sufficiently small to
determine the actual path trajectory.

The landmark extraction performance was compared with SIFT and the speed-up robust
features (SURF) matching method, and it is concluded that the proposed method generated
almost double the number of features, in comparison with SIFT and SURF. The proposed
method incorporates the winner calculation technique for increasing the number of features,
whereas some generated features were rejected in the SIFT and SURF methods during the
orientation stage.

For each RGB-D sequence, the success and failure rates were recorded with different
trajectories, together with the average length of the path covered by the sensor. The recognition
rates in the performed experiments for the proposed method are given in Table 3. Recognition
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rate indicates the percentage of correct place recognition, whereas the failure rate indicates
error in recognition of the place. The average length of the paths during navigation ranged
between 4 m and 6 m. The average number of detected stable landmarks ranged between
50 and 400 during navigation. Nevertheless, the length of exploration is not directly
related to the recognition rate, since even scenes with few distinctive landmarks and
rooms with no landmarks can eventually be matched. An interesting feature of the
proposed approach is that it can easily recognize places where there is little appearance
information, a change in viewpoint, and object loss. The average computation time of the
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Fig. 7 SLAM output using visual extracted landmarks for the bedroom, bedroom with rotation and illumination,
dining room, dining room with rotation and illumination, living room, and living room with viewpoint change
and illumination
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proposed approach is 0.05833 s, which is far less in comparison to the recent SIFT and
SURF matching techniques.

In the proposed approach, the time cost is reduced compared to SIFT and SURF. The
proposed method can be used for real-time processing with the proposed approach, and the
comparative results are given in Table 3 for the proposed method. When using the SIFT and
SURF methods, the computation time increases for feature detection and matching of features
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Fig. 8 The results of the viewpoint-invariant landmarks for the different datasets used in the experiments: a
shows the extracted landmarks with the proposed method in multi-rooms with features (i.e., objects placed in
different rooms); b shows the extracted landmarks with the proposed method in the multi-rooms sequence with a
change in rotation; c to f show the set of extracted landmarks for multi-rooms with illumination and darkness,
multi-rooms with illumination, darkness, and rotation, and multi-rooms with a vehicle appearance and for vehicle
appearance with rotation
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in consecutive frames, compared to the proposed approach. The proposed approach is
advantageous when meeting real-time processing and detecting stable landmarks, requiring
less time in comparison with SIFT and SURF. The computation costs are increased in SIFT and
SURF, but in the proposed method, the size of a descriptor vector is reduced, which reduces
the overall computation time.

For evaluation, the proposed SLAM algorithm was compared with the recent state-of-the-
art visual SLAM approaches, namely multi-resolution surfel maps (MRS-Map) [37], the RGB-
D SLAM system [6, 7], and the point cloud library (PCL) implementation of KinectFusion
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Fig. 9 SLAM output for complex videos using visually extracted landmarks for multi-rooms, the multi-rooms
sequence with rotation, multi-rooms with illumination and darkness, multi-rooms with illumination, darkness,
and rotation, and multi-rooms with a vehicle appearance, and vehicle appearance with rotation
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(KinFu) [24]. The two prominent methods given in TUM RGB-D benchmark [39] were used
to calculate the absolute trajectory error (ATE) and the relative pose error (RPE). ATE is used
to evaluate the error in the estimated trajectory by comparing it with the ground truth. Also,
RPE is used for measuring the drift of a visual odometry system (for example, drift per
second). The results of the root mean square error (RMSE) of the absolute trajectory error for
the proposed improved SLAM in comparison with the recent state-of-art approaches are given

Table 4 Results for RMSE of absolute trajectory error (ATE) for the proposed improved SLAM in comparison
with the recent state-of-the-art approaches. The results are compared with the multi-resolution surfel map [37],
RGB-D SLAM [6, 7] and KinectFusion [24] methods. The proposed method performs best, compared to the
other three methods

Datasets Used
for Evaluation

TFC RMSE ATE (in meters)

Proposed Improved
SLAM

Multi-Resolution
Surfel Map [37]

RGB-D
SLAM [6, 7]

Kinect
Fusion [24]

BR 128 0.012 0.023 0.019 0.122
BR (Rot, Illu.) 292 0.043 0.057 0.052 0.211
DR 429 0.038 0.046 0.042 0.168
DR (Rot., Illu.) 257 0.029 0.054 0.046 0.543
LR 239 0.034 0.051 0.039 0.431
LR (Rot., Illu.) 260 0.028 0.031 0.034 0.426
MR 363 0.025 0.064 0.083 0.512
MR (Rot.) 448 0.035 0.043 0.041 0.826
MR (Illu.,Dark) 487 0.039 0.052 0.065 0.924
MR (Illu., Dark, Rot.) 254 0.025 0.039 0.053 0.265
MR(MVA) 311 0.041 0.054 0.072 0.679
MR(MVA,Rot.) 221 0.021 0.039 0.057 0.143

BR Bedroom, LR Living Room, DR Dining Room, MR Multi-rooms, Rot. Rotation, Illu. llumination, MVA
Moving vehicle appearance, TFC Total Frame count in each sequence

Table 5 Results for RMSE of relative pose error (RPE) for the proposed improved SLAM in comparison with
the recent state-of-the-art approaches. The results are compared with the multi-resolution surfel map [37], RGB-D
SLAM [6, 7] and KinectFusion [24] methods. The proposed method performs best, compared to the other three
methods

Datasets Used
for Evaluation

TFC RMSE RPE (in meters)

Proposed Improved
SLAM

Multi-Resolution
Surfel Map [37]

RGB-D
SLAM [6, 7]

Kinect
Fusion [24]

BR 128 0.072 0.074 0.087 0.165
BR (Rot, Illu.) 292 0.094 0.104 0.104 0.289
DR 429 0.083 0.093 0.106 0.217
DR (Rot., Illu.) 257 0.052 0.126 0.121 0.874
LR 239 0.044 0.098 0.048 0.902
LR (Rot., Illu.) 260 0.059 0.072 0.064 0.953
MR 363 0.054 0.139 0.201 0.107
MR (Rot.) 448 0.075 0.087 0.217 0.195
MR (Illu.,Dark) 487 0.078 0.094 0.152 0.207
MR (Illu., Dark, Rot.) 254 0.043 0.085 0.132 0.301
MR(MVA) 311 0.092 0.192 0.161 0.927
MR(MVA,Rot.) 221 0.057 0.076 0.147 0.191

BR Bedroom, LR Living Room, DR Dining Room, MR Multi-rooms, Rot. Rotation, Illu. llumination, MVA
Moving vehicle appearance, TFC Total Frame count in each sequence
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in Table 4. The first and second column in Table 4 shows the datasets used and the number of
frames in each sequence. The average value for RMSE of the absolute trajectory error for the
proposed, MRS-Map, RGB-D SLAM, and KinectFusion are 0.030 m, 0.046 m, 0.050, and
0.437 m, respectively. The results of the RMSE of the relative pose error for the proposed
improved SLAM in comparison with the recent state-of-art approaches are given in Table 5. It
can be seen that the proposed SLAM gave the best results in RMSE values for ATE and RPE.

5 Conclusion

In this paper, a vision-based map-building algorithm using improved, stable landmarks from
consecutive frames is proposed. Being scale- and orientation-invariant, the SOM-optimized
improved features are good natural visual landmarks for tracking over a long period of time
from different viewpoints. Using the proposed methodology, the system is able to build the
maps efficiently without keeping correlations between landmarks. The landmarks in the
consecutive frames are classified in feature space using SOM clustering, which divides the
landmark space into subspaces, and clusters are mapped on a grid. The presented experimental
results demonstrated the effectiveness of the proposed approach at recognizing and mapping
landmarks in a dataset composed of 12 indoor scenes from a bedroom, a dining room, a living
room, multiple rooms, and multiple rooms with an appearance of a vehicle.
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