
Bidirectionally aligned sparse representation for single
image super-resolution

Chao Xie1,2 & Weili Zeng3 & Shengqin Jiang1,2 &

Xiaobo Lu1,2

Received: 30 September 2016 /Revised: 16 February 2017 /Accepted: 4 April 2017 /
Published online: 19 April 2017
# Springer Science+Business Media New York 2017

Abstract It has been demonstrated that the sparse representation based framework is one of
the most popular and promising ways to handle the single image super-resolution (SISR) issue.
However, due to the complexity of image degradation and inevitable existence of noise, the
coding coefficients produced by imposing sparse prior only are not precise enough for faithful
reconstructions. In order to overcome it, we present an improved SISR reconstruction method
based on the proposed bidirectionally aligned sparse representation (BASR) model. In our
model, the bidirectional similarities are first modeled and constructed to form a complementary
pair of regularization terms. The raw sparse coefficients are additionally aligned to this pair of
standards to restrain sparse coding noise and therefore result in better recoveries. On the basis
of fast iterative shrinkage-thresholding algorithm, a well-designed mathematic implementation
is introduced for solving the proposed BASR model efficiently. Thorough experimental results
indicate that the proposed method performs effectively and efficiently, and outperforms many
recently published baselines in terms of both objective evaluation and visual fidelity.
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1 Introduction

Image super-resolution (SR) is by far a flourishing branch of image processing, concerning the
particular issue of image resolution enhancement. When given one or more low-resolution
(LR) observation(s) of the same scene, SR is capable of reconstructing a visually pleasing
high-resolution (HR) output (i.e., containing more image details) [30], which might be a
crucial preprocessing procedure in a wide range of digital imaging applications, such as
medical diagnosis, remote sensing, and vehicle license plate recognition [53], to name but
a few. Thus this technique provides us with a much economical and promising way to
transcend the inherent limitations of LR optical imaging systems in place of utilizing
sensor manufacturing technology, making it one of the most appealing research areas for
image processing experts.

Numerous SR algorithms have been proposed over the last three decades or so. Judging
from the domain employed, SR can be directly divided into two families: frequency domain
approaches and spatial domain approaches. The initial research on SR [5, 24, 25, 42] belongs
to the former. Although frequency domain approaches are theoretically and computationally
simple, they can only be applied to pure translational model and are extremely susceptible to
model errors according to the definition, which severely limits their prevalence [33]. For this
reason, more and more researchers started to reconsider SR issue in spatial domain. Similarly,
the proposed diverse spatial domain approaches can be roughly classified into two categories
again in terms of the number of LR inputs required, i.e., multiple images SR and single image
SR. For the multiple inputs case, a variety of approaches have been developed from different
points of view, such as iteration back projection (IBP) based methods [18, 36], projection onto
convex sets (POCS) based methods [1, 37], maximum a posteriori (MAP) estimation based
methods [23, 43], regularization based methods [20, 26, 31, 32, 52, 54, 58], etc. However, it
has been pointed out that the performance of this kind of methods all degrades dramatically
under three circumstances where (a) the amount of LR inputs is inadequate; (b) the estimate of
motion is imprecise; or (c) the scale factor increases [2, 21, 27, 45, 46].

The aforementioned limitations can be broken through by the way of exploring the other
type of SR issue, i.e., single image SR (SISR). Clearly, SISR is the extreme case of SR when
there is only one LR observation. Due to the ultra-insufficiency of input information, most of
the proposed methods are built on the basic concept of Freeman et al. [22] assuming that the
high frequency details lost in a LR image can be predicted or hallucinated by learning the co-
occurrence relationship between LR patches and their corresponding HR patches extracted
from a training image set, so they can be called the example or learning based methods. One
group of them is neighbor embedding (NE) based methods [10, 29] which were first explored
by Chang et al. These methods are based on the assumption in machine learning that small
patches in LR and HR images form two manifolds lying in two distinct feature spaces but with
similar local geometric structures. Thus, the SR output can be estimated by weighted summa-
tion of the K nearest HR neighbors found in the corresponding HR training database. However,
the heavy running time of this method was ignored despite the fact that it is very important to
real applications. Timofte et al. [39–41] incorporated the concept of learning and calculating a
set of sparse dictionaries [55] (projection matrices) beforehand into the basic framework of NE
to accelerate its computing process.

7884 Multimed Tools Appl (2018) 77:7883–7907



Another group of learning based methods, which is most relevant to this paper, is derived
from the theory of sparse representation that most natural images are sparse or compressible
actually when represented in the proper basis [7]. The representative work of sparse represen-
tation based SISR was proposed by Yang et al. [49, 50]. In their papers, a universal pair of HR
dictionary and its corresponding LR dictionary is learned first by extracting raw patches
randomly from some training images, and then sparse coding process is applied to the
overlapping patches sampled in the input LR image with a raster-scan order to get the sparse
coefficients. Finally, the SR output is recovered by averaging all the overlapping HR patches
produced by the product of HR dictionary and coefficients. This scheme is proved to lead to a
state-of-the-art result at that time, whereas it is very time-consuming to obtain two large
dictionaries by randomly sampling. Hence, Zeyde et al. [55] put forward an improved method
in which dimensionality reduction method is applied to the raw patches first to accelerate the
subsequent dictionary learning process. To employ the priors of the training patches,
clustering techniques were also introduced into the framework of sparse representation
based SISR. For instance, Yang et al. [51] and Dong et al. [12] both utilize K-means
algorithm to cluster the training raw patches into dozens of groups from which the
multiple dictionaries can be learned. The superiority of their multiple dictionaries to
the universal dictionary is experimentally validated.

Even though dictionary learning is an important procedure of sparse representation based
SISR and the aforementioned progress actually has been made by studying on it, some more
recent work [13, 14, 28, 34, 35, 47, 48] indicates that the accuracy of the sparse coefficients
produced in the sparse coding process are more helpful to the performance of SISR. However,
due to the complexity of the model of image degeneration, it still remains a challenging work
to recover the ideal coefficients as precise as possible. Several pioneering studies on this aspect
have already been made, for example, Peleg et al. [34] suggested utilizing a statistical
prediction model in which a more accurate set of HR coefficients is predicted from their
corresponding LR ones via the minimum mean-square error estimator. Moreover, Dong
et al. [14] proposed a nonlocally centralized sparse representation (NCSR) model where
the calculated coefficients are additionally centralized to a set of good estimates obtained
by exploiting the nonlocal similarity within the observed image. By doing so, the two
models both get improved greatly and the latter has even provided the leading SISR
performance to date.

However, in light of the discovery [57] that similarities exist not only among columns but
also among rows if a cluster of similar image patches is arranged in matrix form, we believe
that the capacity of NCSR model is limited as it considers the column similarity only while
ignores that among rows. Thus, in this paper we propose an enhanced SISR model based on
bidirectionally aligned sparse representation (BASR). In our model, a pair of regularization
terms is created first by exploiting both the column and row similarities (i.e., bidirectional
similarities). Then, after sparse coding process, the roughly calculated sparse coefficients are
simultaneously aligned to the pair of terms in order to compensate the errors caused by image
noise and degradation, and consequently increase the accuracy of the sparse coefficients and
SISR performance. Furthermore, for a more rapid convergence, the fast iterative shrinkage-
thresholding algorithm (FISTA) [3] is adopted in this paper instead of employing the conven-
tional iterative thresholding algorithm (ITA) [11]. Extensive experiments have demonstrated
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that our proposed BASR model outperforms its recent counterparts in terms of both visual
quality and numerical evaluations.

The rest of this paper is organized as follows: In section 2, we formalize the sparse
representation based SISR problem. Section 3 presents the proposed BASR model for SISR
issue and its implementation in detail. Experimental results and analysis are given in Section 4,
while Section 5 concludes the whole paper.

2 Problem formulation

The goal of SISR can be regarded as recovering the potential HR image as precise as possible
from just only one LR input. For a comprehensive analysis, the first step is to set up a suitable
single image degradation model which relates the original HR image to the observed and
degraded LR image.

Assume that X is an ideal HR image, while Y is the corresponding LR image of X in the
same scenario. Then both of them are lexicographically rearranged into vector form, i.e., X ∈
RN, Y ∈ RM, where N > M, r2=N/M, and r is the scale factor. The degradation can be typically
described as [38]

Y ¼ SBX þ V ¼ HX þ V ð1Þ
where S : RN→ RM is the down-sampling operator, B : RN→ RN is the blurring operator, V ∈
RM is the additive noise, and H : RN→ RM is the degradation operator which can be viewed as
a composite operator of both S and B.

Clearly, the fundamental constraint of SISR is that the recovered image should
approximately reproduce the LR observation after imposing the same degradation on
it. Nevertheless, since too much information is discarded during the high-to-low acqui-
sition process, the linear eq. (1) is seriously underdetermined, i.e., infinitely many
solutions may be suitable for (1). In order to obtain an appropriate solution, the
researchers in [17, 49, 50] set up the initial framework of sparse representation based
SISR, which incorporates the sparsity prior and the local-to-global reconstruction con-
cept to the basic constraint. To be specific, suppose that the operator Ri : R

N→ Rn is used
to extract the i-th patch of size

ffiffiffi
n

p � ffiffiffi
n

p
from an N length image and vectorize it, thus the

i-th patch of X can be readily expressed as xi = RiX. With the corresponding observed LR
patch yi, each patch xi can be sparsely represented by the formula xi ¼ Dαy;i, where αy , i

is its sparse coefficient (representation) that can be calculated by a sparse coding
operation with respect to a known and proper dictionary D

αy;i ¼ argmin
αi

yi−HDαik k22
n

þ λ αik k1
� ð2Þ

where λ is a trade-off to make a balance between the two terms. Note that the l1-norm
term is a regularization term representing the sparsity prior and it has already been
changed from l0-norm to l1-norm as long as the coefficients are sufficiently sparse due to
non-convex character of l0-norm [8, 9, 16].
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Usually, we work with overlapped patches to suppress the boundary artifacts. Under the

circumstances of maximal overlaps, a total number of Q ¼ ffiffiffiffi
N

p
−

ffiffiffi
n

p þ 1
� �

2 patches can be

represented. After imposing a global constraint on these patches, the optimal reconstruction of
the whole HR image X can be straightforwardly computed by averaging all the obtained local
patches according to [17]

X ¼ D∘αY ¼Δ ∑
Q

i¼1
Ri

TRi

� �−1

∑
Q

i¼1
Ri

TDαy;i

� �
ð3Þ

where αY represents the concatenation of all sparse coefficients, and a shorthand notation B∘^
is defined here for a briefer expression in the following parts.

Eqs. (2) and (3) can be reformulated together into a more unified formation to stand for the
sparse coding process and local-to-global reconstruction simultaneously

αY ¼ argmin
α

Y−HD∘αk k22 þ λ αk k1
n o

ð4Þ

where the first term corresponds to the data fidelity constraint, and the second one corresponds
to the sparsity prior constraint.

In summary, under the basic framework of sparse representation, the ill-posed SISR
problem is further regularized by the sparse prior of patches in addition to the local and global
data fidelity constraint, resulting in a proper and stable solution.

3 Proposed BASR model for SISR

In this section, we are going to present an enhanced model, namely BASR, which is designed
for handling the SISR issue under the particular circumstances where no external databases is
allowed for prior or dictionary learning. The presentation of BASR model begins with the
modeling of bidirectional similarities that is the theoretical support of subsequent content.
Once it is finished, the key process, sparse coefficient alignment, is able to be established in
both directions. Afterward, the way of dictionary learning and detailed implementation are
specified sequentially.

3.1 Modeling of bidirectional similarities

In this paper, the proposed bidirectional similarities consist of the row similarity and
column similarity. To construct the bidirectional similarities, the first step is to
establish the similarity data matrix [57]. For each path xi, we search for its P closest
counterparts (include itself) from the whole HR image X, in the sense of Euclidean
distance metric. By concatenating the patch and its counterparts together, we can
obtain a matrix Si ∈ Rn × P, namely the similarity data matrix of the i-th patch. As we
mentioned before, patch similarity can be found not only among the columns of
similarity data matrix but also among the rows of it. Therefore, the next step is to
exploit the column similarity and row similarity, respectively, by virtue of the simi-
larity data matrix.
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As for column similarity, it was first put forward in the non-local means (NLM) algorithm
[6] and applied to the application of image denoising. But, different from the original NLM
algorithm that actually means a weighted average of all similar patches; we determine to use
every column of Si as dictionary atoms to approximately represent the corresponding patch.
This process can be formulated as

βi ¼ argmin
βi

xi−Siβik k22 þ η1 βik k22
n o

ð5Þ

where βi is called the column similarity coefficient of the i-th patch, and η1 is its
regularization parameter.

In (5), l2-norm of the coefficient is designed as the regularization term, which is
involved for the purpose of alleviating the singularity in calculation and avoiding the
trivial solution. As you may see, the formula is actually in the same form of classic
Tikhonov regularization, which is also known as ridge regression in statistics. Its explicit
solution can be easily given by

βi ¼ ST
i Si þ η1I

� �−1
ST
i xi ð6Þ

where I represents the identical matrix.
When turning to exploit row similarity, we are motivated by the concept of

piecewise autoregressive (AR) model. As a classic but powerful method in statistics,
AR model has been successfully employed in some other image processing applica-
tions, such as image interpolation [56] and image denoising [57]. The key point in it
is that if a natural image is tailored into small local parts, each part can be viewed as
one stationary process. In other words, it suggests that natural images are piecewise
stationary and able to be modeled by a set of AR models.

Therefore, in this work we assume that the central pixel of each patch can be linearly
represented by its neighboring pixels with the coefficient calculated by an AR model.
Moreover, the patches that belong to the same similarity data matrix should have identical
AR coefficient as they share the same similarity. Let C be the operator to extract the central
pixels from the similarity data matrix (i.e., the central row of it). Similar to column similarity,
this progress can also be modeled as

γi ¼ argmin
γi

CSið ÞT−ST
i γi

�� ��2
2
þ η2 γik k22

n o
ð7Þ

where αi is called the i-th row similarity coefficient, and the closed-form solution is
given by

γi ¼ SiST
i þ η2I

� �−1
Si CSið ÞT ð8Þ

With column and row coefficients, the similarities in both directions can be calculated as

Siβif gQi¼1 and ST
i γi

	 �Q
i¼1, respectively. Be aware that each calculated row similarity is

composed of the central pixels of the corresponding similar patches, so it is incorrectly ordered
with what we have requested. Therefore, we need to spread it out in the whole HR image first,
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and then rearrange it in the same order as α. After doing so, the rearranged column and row
similarities are denoted as φi’ and ψi’, respectively, which are the proposed bidirectional
similarities in this paper. By taking advantage of the bidirectional similarities, it allows us to
structure a much more accurate sparse representation model, which will be introduced
specifically in the following subsection.

3.2 Bidirectional sparse coefficient alignment

As mentioned before, it has been found that the accuracy of sparse coefficients is of great
significance to sparse representation based SISR. Nevertheless, model (4) which uses the
sparse prior only may not lead to a precise enough output due to the complexity of image
degradation. And it can be expected that a performance enhancement would be acquired
by suppressing the sparse coding error caused by degradation and noise. Thus, in this
subsection we propose an enhanced model, in which the roughly computed sparse
coefficients are simultaneously aligned to the bidirectional similarities proposed
previously.

Before the construction of our model, an important procedure we need to do is to change
the values of bidirectional similarities from pixel domain to sparse coefficient domain through
a sparse coding process. As will be introduced in the next subsection, all the sub-dictionaries
adopted in this paper are orthogonal, so the coding process is simplified to only multiplying the
pixel values by the transpose of the corresponding sub-dictionary. Given the sub-dictionary

Dtiof the i-th patch, this process is formulated as φi ¼ DT
tiφ

0
i and ψi ¼ DT

tiψ
0
i. By incorporat-

ing this pair of similarities into the basic model (4) as additional regularization terms, we get
the objective function of our proposed BASR model

α ¼ argmin
α

Y−HD∘αk k22 þ λ αk k1
n

þμ1 α−φk kpp þ μ2 α−ψk kpp
o

ð9Þ

where φ and ψ are the concatenation of all φi and ψi respectively, representing the bidirec-
tional similarities of α, respectively.

As you can see, in our BASR model, the output sparse coefficients are not only of the
characteristic of sparsity, but also bidirectionally aligned so that the errors caused by
degradation and noise can be efficiently suppressed. Furthermore, similar to [13], a more
comprehensive analysis of sparse coding error is conducted and provided here in order to
illustrate its statistical property, and consequently determine the type of norm to be used
in (9). Specially, the test images Lena is chosen as an HR sample from which its four
degraded versions are able to generate by applying the degradations specified in subsec-
tion 4.1. That is to say, here, we take into consideration all the four SISR scenarios.
Using the given sub-dictionaries, it is straightforward to calculate the difference between
the ideal and estimated sparse coefficients, namely the sparse coding error, by solving
(4). Be aware that, to be fully convincing, the parameters used here are set to be identical
with what will be adopted in the experimental section. Eventually, the probability density
functions (PDFs) of sparse coding error under the four scenarios are plotted in
Fig. 1(a)-(d) with respect to the 5th, 10th, 15th, 20th sub-dictionary, respectively. As
shown in Fig. 1, the estimated PDFs are unable to conform to the Gaussian distributions,
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but they all can fit in well with the Laplace distributions. Therefore, l1-norm should be
picked to model the sparse coding error (i.e., p = 1), motivated by the analysis
conducted.

3.3 Dictionary learning and adaptive selection

Clearly, two key procedures left undone are dictionary learning and adaptive selection
of one dictionary for each local patch. Conventional way of dictionary learning aims
at learning a universal and over-complete dictionary to code different varieties of local
structures [49, 50, 55]. However, recently it has been proved that sparse coding
process under this kind of dictionaries is inherently time-consuming and potentially
unstable [19]. Thus we turn to the help of another promising strategy, namely
adaptive sparse domain selection (ASDS) [12].

Originally, ASDS needs an extra database of raw image patches to train on, whereas
in this paper we are considering a more practical situation where no external information
is available. To overcome this, an alternative training database is constructed for ASDS

Fig. 1 PDFs of sparse coding errors of image Lena in (a) scenario 1, (b) scenario 2, (c) scenario 3 and (d)
scenario 4
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by sampling patches from the currently estimated HR image and its down-scaled
versions instead. With training database, the specific produces goes as follows: firstly,
the training patches are gathered and partitioned into K clusters via K-means clustering.
After applying PCA to each cluster, we can totally obtain K orthogonal and compact sub-

dictionaries which compose the final dictionary of this paper, denoted by Dif gKi¼1. Then,
for an input patch xi to be coded, the sub-dictionary Dtibelonging to the nearest cluster is
selected from the overall dictionary, and the sparse coding process is greatly simplified to

matrix multiplication of the form: αi ¼ DT
ti xi. Since each given patch can be better

represented by the adaptively selected sub-dictionary, the whole recovered image is more
accurate than just using a universal dictionary. Moreover, this learning and coding
strategy implicitly enforces the coefficient of the given patch with respect to the other
sub-dictionaries equal to zero. That is to say, our model guarantees the local sparsity of
coefficients spontaneously, thus the regularization term in (9) enforcing local sparsity can
be omitted. The objective function finally becomes

α ¼ argmin
α

Y−HD∘αk k22
n

þμ1 α−φk k1 þ μ2 α−ψk k1
� ð10Þ

3.4 Summary and mathematic implementation

It can be seen that the proposed BASR model (10) is a hybrid optimization problem with the
co-occurrence of l2-norm and l1-norm, which makes it become non-convex and have no
closed-form solution. Therefore, in our implementation, the proposed model is designed to
be iteratively solved in a patchwise manner. Without loss of generality, this model can be
rewritten into a patchwise form

αif gQi¼1 ¼ argmin
αi

yi−HDtiαik k22
n

þ μ1 αi−φik k1þμ2 αi−ψik k1
�
; for i ¼ 1; 2;…;Q ð11Þ

On the basis of fast iterative shrinkage-thresholding algorithm (FISTA) [3], a local-to-
global and coarse-to-fine solving course is able to be concisely expressed as follows: (for more
details about the whole process, please refer to Appendix A).

α lþ1ð Þ
i

n oQ

i¼1
¼ ρ αtmp

i ; L
� � ¼ ρ DT

tiRiX tmp; L

 �

¼ ρ DT
tiRi⋅h X lð Þ;X l−1ð Þ


 �
; L


 �
; for i

¼ 1; 2;…;Q ð12Þ
Notation L is a scalar involved here to control the magnitude of step-size and its value

can be determined by employing a backtracking step-size rule, function ρ is cast as the
shrinkage operator which is defined in Appendix A. Moreover, to accelerate the iteration,
the temporary variable before shrinkage operation in (12) ought not to be computed by
considering the result obtained in the previous iteration only (i.e., X (l)), but rather
calculated by utilizing a very special linear combination of the previous two results
(i.e., X (l) and X (l −1)), which is conveyed by function h. In summary, the detailed
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description of the implementation in this paper is outlined in Algorithm 1, while the
block diagram of proposed BASR method is illustrated in Fig. 2.

As we can see in Algorithm 1, a nested iteration consisting of inner and outer loops is
employed. The reason is that the main computational burden exits in the procedures of
dictionary learning and similarity modeling, and the variables involved in these parts do not
change drastically while iteration proceeds. Therefore, these procedures can be put in the outer
loop and only need to be executed every I2 iterations in order to save computation cost. In
addition, the step (i) and (iv) in the inner loop is additionally requested computation cost of
FISTA. When compared to other steps, the two are both computationally negligible, thus the
algorithm above remains almost the same computational burden but with a faster convergence

7892 Multimed Tools Appl (2018) 77:7883–7907



rate. The theoretical convergence of FISTA has been well proved, please refer to [3, 11] for
details.

4 Experimental results and analysis

In this section, a series of experiments on natural images have been designed and conducted to
verify the effectiveness and robustness of our proposed BASR method in comparison with
eight recent state-of-the-art counterparts, including SCSR [50], SLSR [55], SPSR [34], ASDS
[12], NCSR [14], ANR [39], A+ [40] and SRCNN [15].

4.1 Experimental settings

First of all, thirteen different types of genetic images (refer to Table 1) are accepted as test
benchmarks, among which the first ten were presented in [12] while the rest three appeared in
[34]. Then, the degradation model (1) needs to be applied to these test samples for generating
the LR images that will be used as inputs in the following experiments. But be aware that two
prevalent but different types of degradation configurations were used among the aforemen-
tioned eight methods: the first type tends to use the bicubic filter to blur the original image first
and then down-sample it with a prespecified decimation factor in both horizontal and vertical
directions; by contrast the second chose to employ a Gaussian filter instead, followed by the
same down-sampling process. It can be seen that the essential difference between the two
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Fig. 2 Block diagram of proposed BASR method. Note that part B, A, and C in the above diagram actually
corrspond to the specific contents of subsetion 3.1, 3.3, and 3.2 + 3.4, respectively
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configurations is actually the choice of blur kernel. In this paper, both types of the filters
should be taken into account in order to be fully convincing. But to emphasize the performance
influence caused by different blur kernels, we decide to fix the decimation factor to be 3 (the
benchmark value) throughout our experiments so that that part of impact introduced by down-
sampling could always be the same. In addition, the additive zero-mean Gaussian noise of
standard deviation 5 could be further added to the degraded inputs for testing the robustness of
all methods to noise. Therefore, in total, four different SISR scenarios are taken into consid-
eration in this paper, which are sequentially specified as follows:

Scenario 1: HR images are blurred by the Bicubic filter, followed by down-sampling.1

Scenario 2: HR images are blurred by the Gaussian filter of size 7 × 7 and standard
deviation 1.6, followed by down-sampling.
Scenario 3: Use the LR outputs of scenario 1 but contaminated by Gaussian noise
additionally.
Scenario 4: Use the LR outputs of scenario 2 but contaminated by Gaussian noise
additionally.

1 This whole operation can be directly accomplished by using the MATLAB function Bimresize^ with the
method option Bbicubic^.

Table 1 Numerical results (PSNR and SSIM) of the reconstructed HR images in scenario 1

Images SCSR
[50]

SLSR
[55]

SPSR
[34]

ASDS
[12]

NCSR
[14]

ANR
[39]

A+
[40]

SRCNN
[15]

BASR

Bike 23.55 23.85 24.34 24.55 24.68 23.94 24.57 24.64 24.89
0.7465 0.7660 0.7894 0.7980 0.8039 0.7712 0.7982 0.7968 0.8109

Butterfly 24.79 25.89 26.61 27.16 28.04 25.82 27.06 27.83 28.75
0.8140 0.8756 0.8971 0.9026 0.9208 0.8702 0.9064 0.9084 0.9291

Hat 29.94 30.45 30.80 31.02 31.22 30.33 31.10 31.01 31.42
0.8391 0.8600 0.8648 0.8682 0.8750 0.8579 0.8735 0.8682 0.8789

Leaves 24.10 25.28 25.84 26.69 27.24 25.20 26.14 26.62 28.42
0.8173 0.8738 0.8928 0.9089 0.9205 0.8677 0.9032 0.9094 0.9375

Parrot 28.78 29.43 29.92 30.26 30.23 29.54 30.10 30.49 30.85
0.8870 0.9067 0.9134 0.9153 0.9171 0.9078 0.9170 0.9179 0.9229

Flower 27.92 28.58 28.96 29.37 29.19 28.73 29.21 29.31 29.60
0.8078 0.8336 0.8462 0.8540 0.8546 0.8381 0.8535 0.8522 0.8633

Girl 32.97 33.45 33.56 33.61 33.63 33.51 33.66 33.61 33.79
0.8133 0.8229 0.8240 0.8256 0.8295 0.8260 0.8296 0.8294 0.8326

Parthenon 26.26 26.76 26.85 27.01 27.07 26.67 27.03 27.21 27.30
0.7156 0.7331 0.7380 0.7434 0.7490 0.7312 0.7459 0.7502 0.7555

Plants 31.69 32.53 32.89 33.49 33.65 32.58 33.48 33.63 34.05
0.8820 0.9027 0.9071 0.9122 0.9204 0.9046 0.9205 0.9164 0.9256

Raccoon 28.62 28.93 29.12 29.26 29.29 28.99 29.22 29.41 29.42
0.7475 0.7583 0.7622 0.7684 0.7719 0.7618 0.7684 0.7716 0.7752

Lena 30.57 31.36 31.83 32.10 32.17 31.42 32.07 32.18 32.36
0.8464 0.8720 0.8784 0.8840 0.8872 0.8741 0.8858 0.8862 0.8901

Starfish 27.34 28.04 28.70 29.13 29.08 28.07 28.52 29.09 29.48
0.8268 0.8490 0.8645 0.8739 0.8749 0.8503 0.8630 0.8734 0.8814

Zebra 25.25 26.77 26.87 27.44 27.52 26.63 27.39 27.85 28.43
0.8137 0.8583 0.8637 0.8724 0.8755 0.8565 0.8716 0.8773 0.8862

Average 27.83 28.56 28.95 29.31 29.46 28.57 29.20 29.45 29.90
0.8121 0.8394 0.8494 0.8559 0.8616 0.8398 0.8567 0.8583 0.8684

The numbers in bold indicate the best performance (i.e., the highest values)
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The other main setting of parameters involved in this paper empirically goes as follows:
P = 12, K = 50, η1 = 0.1, η2 = 0.3, I1 = 9, I2 = 40 and the local patches are extracted with
maximal overlaps, whose size is set to be 5 × 5 (i.e., n = 25). Note that, according to some
preliminary tests, we have found that the performance of our BASR method is almost
insusceptible to the aforementioned parameters within a reasonable range, whereas the weights
of regularization terms (i.e., μ1 and μ2) play a much important role. Therefore, the determi-
nation of the regularization weights deserves a deep consideration. In order to simplify the
determination, we decide to keep the weight of column similarity (i.e., μ1) equal to the value
employed in [14] unvaryingly, meanwhile search for the optimal value of the other weight (i.e.,
μ2). In doing so, we can pay more attention on the complementary effect produced by the
regularization terms of BASR model rather than get stuck in doing parameter optimization. As
a result, the weights μ1 and μ2 are set to be 0.7 and 0.1 respectively for noiseless experiments,
while under noisy condition they are equal to 1 and 0.2, respectively.

Moreover, considering that human visual system is more sensitive to the changes in
luminance than to those in chromaticity, YCbCr color space is adopted for representing color
images in place of RGB space. All of the competitive methods are applied to the luminance
component only, while the chromaticity components are simply interpolated from the input LR
image to the target HR image by bicubic interpolation. To qualitatively and quantitatively
evaluate the performance, the reconstructed images produced by various methods are
contrasted in terms of both visual quality and two wildly used numerical indicators, i.e., PSNR
and SSIM index [44]. When computing both of the numerical indicators, image borders which
were neglected in [15, 38, 55] are uniformly taken into consideration in this paper for a fair
comparison. All experiments were performed in the MATLAB R2013b environment on a PC
with Core i5 3.2GHz CPU and 4GB RAM.

4.2 Experimental results

In this subsection, all competitive methods are implemented and evaluated under the four
different SISR scenarios specified above. First, let us concentrate on the first two scenarios,
which actually correspond to noiseless cases but with two different blur kernels. For scenario
1, the numerical results are reported in Table 1. Note that for each image its upper row in the
Table shows the PSNR values (unit is dB) while the lower row provides the SSIM indexes
(dimensionless quantity), and the layout is accepted in every Table of this paper. From Table 1
we can see that, in terms of the quantitative assessment, the conventional sparse representation
based methods, SCSR and SLSR, give the lowest results all the time, while the other six
methods are all better than them more or less. This is mainly due to that some particular
progress has been made in either dictionary learning or sparse coding process. In the
meantime, it is doubtless that our proposed BASR method always provides the highest
numerical values among all competitive methods, since it not only inherits the good properties
of sparse representation based SISR framework but also benefits quite a lot from the proposed
bidirectional sparse coefficient alignment procedure. When testing environment turns to the
second scenario, the whole numerical indicators are listed in Table 2, from which a consistent
conclusion can be readily drawn that our BASR method is still superior to all the other
counterparts, including the best competitor NCSR. To be precise, it outperforms the second
best method, namely NCSR, by an average gain of 0.63 dB and 0.0086 in PSNR and SSIM
index, respectively. Moreover, by comparing the numerical results of scenario 1 and 2, we
noticed that the numerical differences of our method between the two scenarios (−0.01 dB for
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PSNR and 0.0012 for SSIM) are negligible. That is to say, our BASR model is able to provide
the equal performance when the blur operator is changed from bicubic filter to Gaussian,
showing a strong robustness to the variation on blur type. Next, to further evaluate the visual
quality obtained by all methods, two sets of visual comparisons on image Leaves and Parrot
under the first two scenarios are illustrated in Figs. 3 and 4, respectively. As shown in the
figures, the proposed BASRmethod can produce the most visually pleasing outputs in terms of
preserving more fine details and sharp edges. For instance, the stems and leaves in Fig. 3(j) are
most consistent with those belonging to the original image Leaves showed in Fig. 3(a), while
others are blurred, twisted or distorted to some degree. Meanwhile, the stripes around the eye
of image Parrot in Fig. 4(j) are the clearest and sharpest in comparison with the other methods.

Then, in consideration of the fact that in practice the LR inputs of SISR are often
contaminated by noise, thus we move on to the next two SISR scenarios for the purpose of
testing the robustness of these methods to noise. Gaussian white noise is further added to the
same LR images previously used in scenarios 1 and 2 to generate the new inputs for scenarios
3 and 4 respectively, making the task more challenging. Tables 3 and 4 and Figs 5 and 6 give
the whole numerical results and another two sets of visual displays of HR images reconstructed
by various methods. In contrast to their previous performance, it can be seen that the SPSR
method is the most sensitive to the perturbation caused by noise (especially in scenario 4),
which results in not only serious noise-caused artifacts in recovered images but also very

Table 2 Numerical results (PSNR and SSIM) of the reconstructed HR images in scenario 2

Images SCSR
[50]

SLSR
[55]

SPSR
[34]

ASDS
[12]

NCSR
[14]

ANR
[39]

A+
[40]

SRCNN
[15]

BASR

Bike 22.79 22.72 24.22 24.58 24.60 22.74 23.04 23.10 24.94
0.6920 0.6962 0.7838 0.7975 0.7997 0.6992 0.7149 0.7154 0.8099

Butterfly 23.90 23.99 26.53 27.18 28.02 23.86 24.37 24.46 28.80
0.7983 0.8340 0.8946 0.9024 0.9145 0.8286 0.8484 0.8471 0.9288

Hat 29.09 29.35 30.77 30.89 31.16 29.18 29.61 29.48 31.42
0.8188 0.8333 0.8633 0.8649 0.8696 0.8301 0.8400 0.8356 0.8774

Leaves 23.24 23.26 25.62 26.59 27.28 23.16 23.59 23.62 28.35
0.7832 0.8122 0.8875 0.9065 0.9203 0.8065 0.8287 0.8272 0.9366

Parrot 28.00 27.92 29.90 30.37 30.32 28.00 28.30 28.32 30.85
0.8689 0.8803 0.9122 0.9132 0.9132 0.8817 0.8875 0.8866 0.9219

Flower 27.28 27.28 28.87 29.28 29.38 27.33 27.60 27.63 29.64
0.7736 0.7827 0.8437 0.8491 0.8540 0.7858 0.7961 0.7945 0.8624

Girl 32.34 32.49 33.47 33.53 33.62 32.54 32.64 32.66 33.78
0.7870 0.7907 0.8216 0.8204 0.8269 0.7940 0.7966 0.7976 0.8309

Parthenon 25.85 26.01 26.84 27.00 27.13 25.96 26.18 26.23 27.35
0.6840 0.6930 0.7353 0.7435 0.7494 0.6925 0.7013 0.7030 0.7552

Plants 30.85 31.01 32.77 33.45 33.82 30.97 31.40 31.38 34.03
0.8589 0.8679 0.9048 0.9080 0.9170 0.8687 0.8789 0.8759 0.9241

Raccoon 28.07 28.08 28.98 29.24 29.22 28.15 28.25 28.38 29.42
0.7016 0.7039 0.7564 0.7661 0.7685 0.7084 0.7125 0.7159 0.7718

Lena 29.74 30.04 31.69 31.99 32.12 29.99 30.35 30.31 32.35
0.8248 0.8404 0.8753 0.8794 0.8821 0.8414 0.8488 0.8483 0.8889

Starfish 26.58 26.60 28.61 29.03 29.18 26.65 26.85 26.98 29.49
0.7906 0.7985 0.8610 0.8687 0.8717 0.8017 0.8090 0.8132 0.8802

Zebra 24.35 24.41 26.74 27.49 27.66 24.32 24.70 24.91 28.48
0.7730 0.7917 0.8594 0.8712 0.8750 0.7916 0.8018 0.8085 0.8861

Average 27.08 27.17 28.85 29.28 29.50 27.14 27.45 27.50 29.91
0.7811 0.7942 0.8461 0.8531 0.8586 0.7946 0.8050 0.8053 0.8672

The numbers in bold indicate the best performance (i.e., the highest values)
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severe declines in numerical indicators. The reason for this is that a particular set of parameters
in the SPSR model is trained to work efficiently under one certain condition. If the circum-
stances are slightly changed, all parameters need to be retrained or reassigned. In other words,
the SPSR method lacks the characteristic of robustness to noise, which is the fatal drawback of
it. Similarly, although both SCSR and SLSR methods can indisputably enhance the resolution
of LR images, they are still liable to generate noticeable jaggy artifacts along image edges,
indicating that using sparse prior only is not enough for reliable reconstructions when facing
noise. As for ANR, A+ and SRCNN, they do much better in reducing jaggy artifacts, whereas
they still magnify, rather than eliminate, the unpleasant influence of the miscellaneous outliers
to some degree. The ASDS and NCSR methods both show an outstanding capability of
recovering high frequency components and suppressing noise; nevertheless, they tend to
produce some unclear and blurred local details or even incorrect parts sometimes. For instance,
in Fig. 6(e) the shape of the left eye of Lena is kind of deformed, while a wrong white spot can

Fig. 3 Visual comparison on Leaves in scenario 1 with scale factor 3. a Original image, HR images recon-
structed by b SCSR [50], c SLSR [55], d SPSR [34], e ASDS [12], f NCSR [14], g ANR [39], h A+ [40], i
SRCNN [15] and j proposed BASR

Fig. 4 Visual comparison on Parrot in scenario 2 with scale factor 3. aOriginal image, HR images reconstructed
by b SCSR [50], c SLSR [55], d SPSR [34], e ASDS [12], f NCSR [14], g ANR [39], h A+ [40], i SRCNN [15]
and j proposed BASR
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be observed in Fig. 6(f), which all make the whole HR images reconstructed by ASDS and
NCSR look unnatural and uncomfortable. On the contrary, by taking advantage of bidirec-
tional similarities, our BASR method can produce more accurate sparse coding coefficients so
that it not only suppresses the noise efficiently but also preserves more delicate structures as
compared to any other counterparts. Thus, its corresponding HR outputs are still of the best
visual quality as we can see, showing a strong robustness against the noise.

4.3 Comparison and analysis on the rate of convergence

In this subsection, we decide to make an investigation on the convergence rate of our method.
The second scenario is selected as the typical testing environment, and be aware that not all the
competitive methods are added to the comparison this time, since some of them are not
iteratively solved. Consequently, the ASDS and NCSR methods are picked as the testing
baselines. In addition to the two methods, a variant of NCSR model, in which the FISTA
algorithm is employed to solve it in place of using its original solution, is also implemented for
the purpose of testing the effectiveness of FISTA and giving a more comprehensive illustra-
tion. The variant will be referred to as BNCSR + FISTA^ hereinafter.

Then, the RMSE values of the first five images (bike, butterfly, hat, leaves and parrot)
varying with the increase of iterations are plotted in Fig. 7(a)-(e), respectively. According to

Table 3 Numerical results (PSNR and SSIM) of the reconstructed HR images in scenario 3

Images SCSR
[50]

SLSR
[55]

SPSR
[34]

ASDS
[12]

NCSR
[14]

ANR
[39]

A+
[40]

SRCNN
[15]

BASR

Bike 23.37 23.69 24.10 24.22 24.44 23.75 24.33 24.35 24.53
0.7246 0.7459 0.7629 0.7667 0.7788 0.7476 0.7712 0.7671 0.7802

Butterfly 24.56 25.68 26.16 26.62 27.56 25.56 26.66 27.26 28.03
0.7872 0.8462 0.8610 0.8762 0.9032 0.8358 0.8665 0.8659 0.9076

Hat 29.24 29.76 30.02 30.21 30.59 29.59 30.13 29.99 30.65
0.7696 0.7998 0.8079 0.8298 0.8392 0.7891 0.7952 0.7876 0.8420

Leaves 23.93 25.07 25.45 26.16 27.03 24.96 25.79 26.16 27.75
0.8050 0.8553 0.8679 0.8869 0.9123 0.8470 0.8781 0.8838 0.9214

Parrot 28.23 28.90 29.21 29.74 30.00 28.93 29.33 29.58 30.10
0.8205 0.8505 0.8560 0.8861 0.8863 0.8421 0.8429 0.8418 0.8893

Flower 27.49 28.15 28.33 28.59 28.62 28.20 28.52 28.54 28.82
0.7690 0.7977 0.8056 0.8152 0.8217 0.7963 0.8056 0.8013 0.8255

Girl 31.58 32.17 32.17 32.51 32.49 32.06 31.98 31.92 32.59
0.7569 0.7736 0.7760 0.7866 0.7857 0.7685 0.7637 0.7666 0.7884

Parthenon 25.91 26.45 26.49 26.67 26.76 26.32 26.59 26.70 26.92
0.6730 0.6976 0.7048 0.7149 0.7216 0.6900 0.6981 0.7001 0.7243

Plants 30.65 31.48 31.59 32.05 32.51 31.39 31.84 31.84 32.63
0.8194 0.8491 0.8521 0.8675 0.8826 0.8430 0.8481 0.8418 0.8829

Raccoon 28.07 28.43 28.50 28.64 28.66 28.43 28.55 28.65 28.74
0.7153 0.7296 0.7298 0.7243 0.7282 0.7296 0.7311 0.7325 0.7357

Lena 29.74 30.55 30.79 31.12 31.29 30.52 30.88 30.87 31.41
0.7908 0.8232 0.8266 0.8480 0.8536 0.8177 0.8212 0.8180 0.8549

Starfish 26.94 27.64 28.07 28.40 28.65 27.61 27.94 28.37 28.68
0.7939 0.8199 0.8309 0.8415 0.8483 0.8167 0.8237 0.8321 0.8492

Zebra 25.02 26.46 26.45 27.13 27.27 26.28 26.91 27.26 27.77
0.7979 0.8400 0.8425 0.8542 0.8558 0.8351 0.8474 0.8526 0.8618

Average 28.29 28.03 28.26 28.62 28.91 27.97 28.42 28.58 29.12
0.7710 0.8022 0.8095 0.8229 0.8321 0.7968 0.8071 0.8070 0.8356

The numbers in bold indicate the best performance (i.e., the highest values)
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the graphics, the discoveries here are twofold: First, it can be observed that our method
consistently converges fastest among these methods, which demonstrates both the efficiency

Table 4 Numerical results (PSNR and SSIM) of the reconstructed HR images in scenario 4

Images SCSR
[50]

SLSR
[55]

SPSR
[34]

ASDS
[12]

NCSR
[14]

ANR
[39]

A+
[40]

SRCNN
[15]

BASR

Bike 22.65 22.61 23.24 23.54 23.77 22.61 22.88 22.91 24.01
0.6688 0.6761 0.6860 0.7219 0.7361 0.6759 0.6881 0.6874 0.7443

Butterfly 23.74 23.84 24.99 25.91 26.69 23.71 24.16 24.22 27.33
0.7696 0.8039 0.7686 0.8560 0.8837 0.7937 0.8094 0.8061 0.8873

Hat 28.50 28.83 28.15 29.51 29.95 28.61 28.90 28.77 29.96
0.7473 0.7728 0.6627 0.8091 0.8213 0.7603 0.7609 0.7548 0.8205

Leaves 23.08 23.14 24.25 25.25 26.20 23.02 23.41 23.44 26.96
0.7678 0.7938 0.7971 0.8613 0.8928 0.7852 0.8046 0.8040 0.8982

Parrot 27.52 27.53 27.45 29.03 29.45 27.54 27.76 27.75 29.46
0.8017 0.8236 0.7042 0.8687 0.8711 0.8151 0.8127 0.8104 0.8729

Flower 26.88 26.94 26.77 27.80 27.95 26.94 27.10 27.11 28.06
0.7307 0.7447 0.6965 0.7776 0.7894 0.7420 0.7459 0.7422 0.7928

Girl 31.16 31.43 29.15 31.85 31.96 31.34 31.28 31.27 32.02
0.7301 0.7401 0.6344 0.7600 0.7624 0.7353 0.7293 0.7332 0.7637

Parthenon 25.55 25.74 25.45 26.23 26.44 25.66 25.82 25.85 26.51
0.6412 0.6569 0.6107 0.6903 0.7001 0.6507 0.6534 0.6537 0.7007

Plants 29.97 30.23 28.90 31.00 31.69 30.10 30.30 30.24 31.80
0.7922 0.8123 0.7042 0.8350 0.8550 0.8045 0.8044 0.7991 0.8594

Raccoon 27.58 27.67 26.83 28.02 28.02 27.67 27.70 27.79 28.08
0.6686 0.6753 0.6299 0.6810 0.6838 0.6752 0.6743 0.6760 0.6925

Lena 29.08 29.44 28.45 30.28 30.50 29.33 29.54 29.45 30.62
0.7661 0.7898 0.6875 0.8225 0.8308 0.7836 0.7828 0.7789 0.8330

Starfish 26.22 26.31 26.50 27.49 27.74 26.31 26.45 26.53 27.81
0.7558 0.7685 0.7349 0.8057 0.8141 0.7662 0.7684 0.7706 0.8157

Zebra 24.16 24.24 25.24 26.33 26.59 24.13 24.46 24.62 27.10
0.7553 0.7736 0.7765 0.8218 0.8290 0.7696 0.7773 0.7831 0.8354

Average 26.62 26.77 26.57 27.86 28.22 26.69 26.90 26.92 28.44
0.7381 0.7563 0.6995 0.7931 0.8054 0.7506 0.7547 0.7538 0.8090

The numbers in bold indicate the best performance (i.e., the highest values)

Fig. 5 Visual comparison on Butterfly in scenario 3 with scale factor 3. a Original image, HR images
reconstructed by b SCSR [50], c SLSR [55], d SPSR [34], e ASDS [12], f NCSR [14], g ANR [39], h A+
[40], i SRCNN [15] and j proposed BASR
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and effectiveness of the proposed BASR model. Second, we still found that the original NCSR
method is inferior to its variant, NCSR + FISTA, in terms of convergence rate. The improve-
ment on the variant can only be attributed to the virtue of using FISTA algorithm, since we
exactly preserved the whole framework of NCSR (even the original parameter settings were
maintained) except for the change on solution. And because we had not fine-tuned the
parameters of NCSR + FISTA, it becomes reasonable that its curves are ladder-like and not
smooth enough.

Furthermore, to provide more precise information, we finished the experiments on the
remaining samples. The average RMSE curve of all images is plot in Fig. 7(f). It can be seen

Fig. 7 Convergence rates of ASDS [12], NCSR [14], NCSR + FISTA and BASR methods. RMSE values on (a)
Bike, (b) Butterfly, (c) Hat, (d) Leaves, (e) Parrot and (f) Average of all test samples

Fig. 6 Visual comparison on Lena in scenario 4 with scale factor 3. a Original image, HR images reconstructed
by b SCSR [50], c SLSR [55], d SPSR [34], e ASDS [12], f NCSR [14], g ANR [39], h A+ [40], i SRCNN [15]
and j proposed BASR
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that on average ASDS and NCSR do not converge after 500 iterations (actually after 900, as
not shown in the figure), whereas our method only needs 340 ~ 380 iterations to yield a
convergence. This is also the reason that we set the number of iterations equal to 360
times. As for running time, the ASDS, NCSR and BASR methods cost about 298, 532,
319 s respectively, to reconstructed a super-resolved image from 85 × 85 to 255 × 255
pixels. Even though ASDS requires the least amount of time, this is acquired by virtue of
offline learning and never updating dictionary. If its learning process runs once, it will
cost another 10 min. By contrast, our method achieves equivalent performance on
running time as compared to ASDS, while costs much less when compared with NCSR,
showing the efficiency once again.

In conclusion, according to the conducted experiments, the FISTA algorithm can be
acknowledged as a more promising solution to BASR in the sense that it has a higher
rate of convergence, and the superiority of our method to similar ones is fully
verified.

5 Conclusion

In this paper, a bidirectionally aligned sparse representation model was proposed for the
application of single image super-resolution. Motivated by the recent discovery [57] that
image patch similarities exist not only among columns but also among rows of similarity data
matrix, the modeling of bidirectional similarities is first presented in our model. By virtue of it,
we constructed a pair of regularization terms in the form of l1-norm, to which the raw sparse
coefficients are simultaneously aligned after sparse coding process in order to make up for the
errors caused by image noise and degradation. On the basis of FISTA algorithm, a local-to-
global and coarse-to-fine solving course was developed to efficiently solve the proposed
BASR model. Extensive experiments were performed to make a complete comparison be-
tween the BASR method and other leading methods, and the results indicate that our method is
constantly superior to its counterparts in terms of both numerical assessment and visual
perception. In our future work, we will concentrate on the research on the computational
efficiency and adaptive allocation of weights of similarities and regularization in order to
achieve a further improvement.
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Appendix A: Solving BASR on the basis of FISTA

Here, we provide the main process for solving the proposed BASR model (11) on the basis of
FISTA [3] which is an effective algorithm for linear inverse problems with dense matrix data.
Even though this part is more detailed when compared with that in subsection 3.4, it is still a
sketch only. For comprehensive details, we direct you to [3, 11].
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First of all, for the sake of convenience, let us divide (11) into two functions and define
them respectively

f αið Þ¼Δ yi−HDtiαik k22; ∇ f αið Þ ¼ 2DT
ti HTHxi−HTyi
� �

g αið Þ¼Δ μ1 αi−φik k1 þ μ2 αi−ψik k1
ð13Þ

Then, according to the mathematic results derived in [3], model (11) can be approximated

by considering the following formula at the given point α lð Þ
i (i.e., the sparse coefficient in the l-

th iteration)
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It has been proved that the above formula admits a unique minimizer. By getting rid of the
constant terms, function ρ can be reformulated into a briefer from
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Notation L here is involved to control the magnitude of step-size. After taking the derivative

of (15) with respect to α lþ1ð Þ
i and making it equal to zero, we can get
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If we let the left side part of (16) form anther new function F, that is
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Then, the function ρ can be expressed as the inverse function of F
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And it can be readily formulated as
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μ2

L
φ if φ−

μ1

L
−
μ2

L
≤ α < φ þ μ1

L
−
μ2

L
α−

μ1

L
þ μ2

L
if φ þ μ1

L
−
μ2

L
≤α < ψ þ μ1

L
−
μ2

L
ψ if ψþ μ1

L
−
μ2

L
≤α < ψþ μ1

L
þ μ2

L
α −

μ1

L
−
μ2

L
if ψ þ μ1

L
þ μ2

L
≤ α

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ
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Else if φ > ψ;

ρ α; Lð Þ ¼

αþ μ1

L
þ μ2

L
if α < ψ −

μ1

L
−

μ2

L
ψ if ψ−

μ1

L
−
μ2

L
≤ α < ψ−

μ1

L
þ μ2

L
α þ μ1

L
−
μ2

L
if ψ−

μ1

L
þ μ2

L
≤α < φ−

μ1

L
þ μ2

L
φ if φ−

μ1

L
þ μ2

L
≤α < φþ μ1

L
þ μ2

L
α −

μ1

L
−
μ2

L
if φ þ μ1

L
þ μ2

L
≤ α

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

It can be noted that the above algorithm corresponds to the general process of
classic iterative thresholding algorithm (ITA) [11], which can be viewed as an
extension of the classic gradient-based method. Function ρ acts as the shrinkage
operator and processed in a pixelwise manner. Although it is well known that the
first order optimization algorithms are often the only simple and practical option to
deal with large-scale problems such as the case in this paper, it still has been found
that the sequence produced by the above algorithm converges quite slowly to the final
minimizer [4]. To accelerate the algorithm, the temporary variable before shrinkage
operation in (18) ought not to be computed by considering the result obtained in the
previous iteration only, but rather to be calculated by utilizing a very special linear
combination of the previous two results. Therefore, formula (18) can be modified as
follows:

Z ¼ X
lð Þ
þ t l−1ð Þ−1

t lð Þ X lð Þ−X l−1ð Þ

 �

ρ αtmp
i ; L

� � ¼ ρ DT
tiRi Z−

2

L
HTHZ−HTY
� �� �

; L
� �

8>><
>>: ð21Þ

Besides, anther condition ensuring convergence is to require that the step-size
controller L is set to be no less than the smallest Lipschitz constant of the gradient
of function f, and this quantity can be determined by employing a backtracking step-
size rule. In summary, a step-by-step description of the above implementation can be
given in Algorithm 1.
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