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Abstract In this paper, we introduce new sets of 2D and 3D rotation, scaling and translation
invariants based on orthogonal radial Racah moments. We also provide theoretical mathemat-
ics to derive them. Thus, this work proposes in the first case a new 2D radial Racah moments
based on polar representation of an object by one-dimensional orthogonal discrete Racah
polynomials on non-uniform lattice, and a circular function. In the second case, we present
new 3D radial Racah moments using a spherical representation of volumetric image by one-
dimensional orthogonal discrete Racah polynomials and a spherical function. Further 2D and
3D invariants are extracted from the proposed 2D and 3D radial Racah moments respectively
will appear in the third case. To validate the proposed approach, we have resolved three
problems. The 2D/ 3D image reconstruction, the invariance of 2D/3D rotation, scaling and
translation, and the pattern recognition. The result of experiments show that the Racah
moments have done better than the Krawtchouk moments, with and without noise. Simulta-
neously, the mentioned reconstruction converges rapidly to the original image using 2D and
3D radial Racah moments, and the test 2D/3D images are clearly recognized from a set of
images that are available in COIL-20 database for 2D image, and PSB database for 3D image.

Keywords 2D/3D discrete orthogonal radial Racah moments . Radial Racah polynomials .

2D/3D image reconstruction . 2D/3D scaling, rotation and translation moment invariants,
2D/3D pattern recognition

1 Introduction

The 3D image recognition and 3D pattern classification play essential roles and interesting part
of image processing, engineering and computer vision. In general, 3D image recognition or
classification is obtained by looking for descriptors representing the 3D object without taking
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into account certain transformations and/or deformations. 3D moment invariants were demon-
strated to be very great means for pattern representation and it has often been proved that 3D
moment invariants act out efficiently in 3D object recognition [3, 4, 8, 14]. Up to now, different
kinds of 3D moment invariants to spherical transformations of the 3D object have been
suggested. Among all transformations TRS (translation, scaling and rotation) that have been
analyzed in this context, rotation plays a crucial role. 3D image rotation is found almost in all
our applications, though the imaging system is well established and the experiment has been
developed in a laboratory. On the other hand, rotation is unimportant to deal with mathemat-
ically, for these causes, researches have been interested on invariants to rotation since the
beginning. With the quick improvement of mathematics and sensor, 3D image processing,
arises engineering and practice thanks to its more precise and flexible descriptions of 3D
images. Without doubt, developing rotation invariants for 3D images has become an interesting
topic in the computer vision community. However, 2D rotations easier to handle than 3D, since
it has three independent parameters. That is perhaps why there has not been enough research
papers on 3D rotational invariants. Indeed, Sadjadi [17] use the ternary quadratics extensively
theory to extract three scaling, rotation and translation (SRT) moment invariants. More orthog-
onal moment invariants to rotation and translation in 3D space were extracted by geo [10] using
and proving the results of Sadjadi and Hall. The tensor theory has been used by Cyganski and
Orr [2] and Reiss [16] to derive 3D rotation invariants. A geometric primitives have been used
by Xu and Li [22] to extract the 2D and 3D invariants like distance, area, and volume.
The normalization approach was employed by Galvez and Canton [9]. Later, a complex
moments [9, 13, 21] has been proved to extract 3D rotation invariants. Suk and Flusser
[7, 19] suggested an automatic algorithm to produce 3D rotation invariant from 3D
geometric moments to any orders. Despite being the most known 3D shape descriptors,
moments are not the only patterns giving 3D rotation invariance. For instance, Kakarala
[11] employed the bispectrum popular in statistics for pattern computation. Comparing
two images, Kazhdan [12] employed a similar phase correlation based on spherical
harmonics. In this specific example, it was employed for registration, but it can also
be employed for recognition. Fehr [5] describing an image composed of patches by using
the power spectrum and bispectrum calculated from a tensor function. In [6], the same
researcher used local binary object features and in [18] he employed harmonic local
histograms of oriented gradients. Compared to traditional geometric or complex mo-
ments, the most important advantage of orthogonal moments is their outstanding numer-
ical stability, limited types of values, and the recurrent existing relations for their
computation. Therefore, many authors have tried to extract the 2D invariants from
discrete orthogonal moments. Yet, the extraction of 3D moments becomes more difficult
than in 2D. The favorable numerical properties are still preserve by 3D orthogonal
moments. There are polynomials orthogonal inside a cube and others that are orthogonal
on the sphere. In the same way, the polynomials defined on a cube are less convenient
than the sphere for extracting rotation invariants. This method was employed by
Canterakis [1] using 3D continuous orthogonal Zernike moments. Sun [20] employed a
Pathological Brain Detection based on wavelet entropy and Hu moment invariants.
Chenggang Yan et al. [23–27] present the efficient Parallel Framework for HEVC
Motion Estimation on Many-core Processors. In this paper, we suggest a new set of
2D and 3D translation, scaling and rotation invariants based on discrete orthogonal radial
Racah moments as well as a theoretical mathematics to derive them. This paper intro-
duces, in a first case, a new 2D radial Racah moments using polar representation of an

6584 Multimed Tools Appl (2018) 77:6583–6604



object by a one-dimensional discrete Racah polynomials and a polar function. In the
second case, we present a new 3D radial Racah moments using a spherical representation
of volumetric image by a one-dimensional discrete Racah polynomials as well as a
spherical function. Moreover, 2D and 3D rotational invariants are extracted from the
suggested 2D and 3D radial Racah moments respectively. We show that the transforma-
tion of Racah moments under rotation may be inferred in an indirect way without clear
investigation of this transformation. Therefore, it is clear in the article that the transla-
tion, scaling and rotation invariants from Racah moments and from Krawtchouk mo-
ments have the same forms in 2D and 3D space. This is an outstanding outcome because
it permits to cat down rotation invariant extraction from Racah moments to that from
Krawtchouk moments in 2D and 3D space, which are not difficult to improve, still taking
advantage from the image reconstruction of Racah moments. The transition from 2D to 3D
is difficult and need a careful study because the 3D rotation has three degrees of freedom
opposed to 2D rotation that has only one parameter. Therefore, any 3D images and
structures linked to rotation are richer than in 2D. What distinguishes between the 3D
problem and the 2D is that rotation in 3D is not commutative. The generalization from 2D
to 3D should be investigated carefully and not done automatically. Such studies may find
out a similarity with 2D and may come up with different outcomes. The core idea of the
proposed work is that the radial Racah polynomials are orthogonal in ball and are more
appropriate for extracting 2D and 3D translation, scaling and rotation invariants. To prove
the suggested method, three issues are resolved mainly 2D/3D image reconstruction, 2D/
3D translation, scaling and rotation invariance and pattern recognition. The result of the
experiment prove that the Racah moments have done better than the Krawtchouk moments
in terms of 2D/3D image reconstruction capability. At the same time, the reconstructed 2D/
3D image converges quickly to the original image using radial Racah moments and the test
of volumetric images are clearly recognized from a set of images that are found in a PSB
database.

The rest of the paper is organized as follows. Section 2 present an overflow on 2D/3D
Racah moment. Section 3 introduces a brief background of radial Racah moment for 2D and
3D case. Section 4 introduces the simulation results of 2D/3D invariant Racah moments.
Finally, Section 5 concludes this paper.

2 Racah moments

In this section, we present a short introduction on 2D and 3D Racah moments.

2.1 Background on 2D Racah moments

In this subsection, we introduce a short background of Racah moments before presenting the
radial Racah moments.

Racah moments Rnm of order (n, m) for an intensity image f(x,y) of size N ×M are given by
[28]

Rnm ¼ ∑
b−1

x¼a
∑
b−1

y¼a
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m y; a; bð Þ f x; yð Þ ð1Þ
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To ensure the numerical stability of weighted Racah polynomial ~u α;βð Þ
n x; a; bð Þ on non-

uniform lattice is presented as [28]

~u
α;βð Þ
n x; a; bð Þ ¼ u α;βð Þ

n x; a; bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρn xð Þ
d2n

Δs x−
1

2

� �� �s
ð2Þ

Where u α;βð Þ
n x; a; bð Þ the nth order Racah polynomial [28], which is defined by using a

Hypergeometric function as

u α;βð Þ
n x; a; bð Þ ¼ 1

Γ n−1ð Þ a−bþ αþ 1ð Þn a−bþ 1ð Þn 4F3
−n;αþ β þ nþ 1; a−x; aþ xþ 1
β þ 1; a−bþ 1;αþ aþ bþ 1

j1
� �

¼ ∑
n

i¼0
Bnixi ð3Þ

where n ≥ 0 and x = a , a + 1 , … b − 1.
and the generalized Hypergeometric function 4F3(.) is defined by

4F 3
a1; a2; a3; a4
b1; b2; b3

jz
� �

¼ ∑
∞

i¼0

a1ð Þi a2ð Þi a3ð Þi a4ð Þi
b1ð Þi b2ð Þi b3ð Þi

zi

i!
ð4Þ

and the Pochhammer symbol (y)i is given by

yð Þi ¼ y yþ 1ð Þ… yþ i−1ð Þ ¼ Γ yþ ið Þ
Γ yð Þ ð5Þ

with Γ yþ 1ð Þ ¼ y! ð6Þ
and ρn(x) the weight function

ρn xð Þ ¼ aþ xþ nð Þ! x−aþ βþ nð Þ!
a−βþ xð Þ! x−að Þ! b−x−n−1ð Þ!

α þ bþ xþ nð Þ! α þ b−x−1ð Þ!
bþ xð Þ! ð7Þ

and the square norm d2n is defined as

d2n ¼
α þ nð Þ! βþ nð Þ! b−aþ α þ βþ nð Þ!

αþ β þ 2nþ 1ð Þn! b−a−n−1ð Þ!
aþ bþ α þ nð Þ!

αþ β þ nð Þ! aþ b−β−n−1ð Þ! ð8Þ

and Δs(x) = s(x + 1) − s(x), with non-uniform lattice s(x) = x(x + 1).
with the orthogonal property of normalized orthogonal polynomial can be rewritten as

∑
b−1

x¼a
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m x; a; bð Þ ¼ δnm ð9Þ

with δnm denote the Dirac function.
The recurrence relation respect to n of Racah polynomials are defined as

An~u
α;βð Þ
n x; a; bð Þ ¼ Bn

dn−1
dn

~u
α;βð Þ
n−1 x; a; bð Þ þ Cn

dn−2
dn

~u
α;βð Þ
n−2 x; a; bð Þ ð10Þ

Where

An ¼ αþ β þ nð Þn
αþ β þ 2nð Þ αþ β þ 2n−1ð Þ

Bn ¼ x− a2þb2þ a−βð Þ2þ bþαð Þ2−2
4 þ αþβþ2n−2ð Þ αþβþ2ð Þ

8 −
β2−α2ð Þ bþα

2ð Þ2− a−β2ð Þ2
� �

2 αþβþ2nð Þ αþβþ2n−2ð Þ
Cn ¼ − αþn−1ð Þ βþn−1ð Þ

αþβþ2n−1ð Þ αþβþ2n−2ð Þ bþ aþ α−β
2

� �2
− n−1þ αþβ

2

� �h i
b−aþ αþβ

2

� �2
− n−1þ αþβ

2

� �h
2�

with n ≥ 2.
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The first orders of discrete normalizedRacah polynomials are calculated from the above equations

~u
α;βð Þ
0 x; a; bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 xð Þ
d20

Δs x−
1

2

� �� �s
ð11Þ

~u
α;βð Þ
1 x; a; bð Þ ¼ ρ1 x−1ð Þ−ρ1 xð Þ

ρ0 xð Þ xþ 1

2

� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 xð Þ
d21

Δs x−
1

2

� �� �s
ð12Þ

The weighted Racah polynomials form an orthonormal system, the reconstruct image can
be deduced by

f x; yð Þ ¼ ∑
N−1

n¼0
∑
M−1

m¼0
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m y; a; bð ÞRnm ð13Þ

For computed the 2D moments to orderMax, we can approximated the reconstructed image
in Eq. 13 by

f x; yð Þ ¼ ∑
Max−1

n¼0
∑

Max−1

m¼0
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m y; a; bð ÞRnm ð14Þ

The Fig. 1 represents the six first orders of polynomials Racah with different values of
parameters α , β , a and b.

2.2 Background on 3D Racah moments

The three-dimensional Racah moments of order n + m + l for a volumetric image function f(x,
y, z) of size N × M × L are defined as

Rnml ¼ ∑
b−1

x¼a
∑
b−1

y¼a
∑
b−1

z¼a
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m y; a; bð Þ~u

α;βð Þ
l z; a; bð Þ f x; y; zð Þ ð15Þ

Using the orthogonality property, the inverse transform of Racah moments are given by

f x; y; zð Þ ¼ ∑
N−1

n¼0
∑
M−1

m¼0
∑
L−1

l¼0
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m y; a; bð Þ~u

α;βð Þ
l z; a; bð ÞRnml ð16Þ

For computed the 2D moments to order (Max), we can approximated the reconstructed
image in Eq.16 by

f x; y; zð Þ ¼ ∑
Max−1

n¼0
∑

Max−1

m¼0
∑

Max−1

l¼0
~u

α;βð Þ
n x; a; bð Þ~u

α;βð Þ
m y; a; bð Þ~u

α;βð Þ
l z; a; bð ÞRnml ð17Þ

3 Radial Racah moment invariants

In this section, we present a brief background of radial Racah moment invariants for 2D and
3D case.
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3.1 2D radial Racah moment invariants

In this subsection, we present a brief background of 2D radial Racah moment invariants based
on the polar representation of a 2D image.

The rotational invariants are extracted from the radial Racah moments. Radial polar
coordinate of image intensity f(r, θs) are used to extract the radial moments by one-
dimensional polynomials by a circular function. Fig. 2 displays the region for computing the

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Plot of weighted Racah polynomials of the four first orderswith different values of parameters a a=α=10 ,β=
0, b a=α=10 ,β=5, c a=α=10 ,β= 30, d a=α=β=0, e a=α=β=10, f a=α=β=30, and b= a+N ,N=128.
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radial Racah moments for an image of size N ×N with υ and η represent the number of pixels
along the radius r and perimeter respectively.

The discrete angle θs is given by

θs ¼ 2πs
η

with s = 0,. . η − 1.
The radial Racah moments are presented as

Rnm ¼ 1

η
∑
v−1

r¼0
∑
η−1

s¼0
~u

α;βð Þ
n r; a; bð Þe−i2πsmη f r; θsð Þ ð18Þ

The transform inverse of moments are defined as

f r; θsð Þ ¼ ∑
Max−1

n¼0
∑

Max−1

m¼0
~u

α;βð Þ
n r; a; bð Þei2πsmη Rnm ð19Þ

The radial Racah polynomials ~u α;βð Þ
n r; a; bð Þ are given by

~u
α;βð Þ
n r; a; bð Þ ¼ ∑

n

i¼0
Bniri ð20Þ

~u α;βð Þ
n r; a; bð Þ is the discrete Racah polynomial of order n, which satisfies the following

orthogonal property in discrete domain

∑
N−1

r¼0
~u

α;βð Þ
n r; a; bð Þ~u

α;βð Þ
m r; a; bð Þ ¼ δnm ð21Þ

δnm denotes the Kronecker symbol.
The Cartesian coordinates (x, y) of each pixel will be obtained from the polar coordinate

relations given by

x ¼ rN
2 v−1ð Þ cos

2πs
η

� �
þ N

2

y ¼ rN
2 v−1ð Þ sin

2πs
η

� �
þ N

2

8>><
>>:

ð22Þ

with r = 0, 1,… v-1 and s = 0, 1,… η-1.

Angle θs

Fig. 2 The computation’s region of radial Racah moments
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The scale and rotation invariant property of image moments has a high significance in
image recognition. The scale invariant of radial Racah moments can be usually achieved by
image normalization method, named radial Racah moments. This subsection presents a new
approach to derive the scale and rotation invariant of radial Racah moments. Assume that the
original image is scaled with factor x and rotated with angle θ', respectively. The rotated and
scaled radial Racah moments can be defined as follows

Rrs
nm ¼ x

η
∑
v−1

r¼0
∑
η−1

s¼0
~u

α;βð Þ
n xr; a; bð Þe− j

2πm s−θ
0ð Þ

η f r; θsð Þ ð23Þ

The scaled radial Racah polynomials ~u α;βð Þ
n xr; a; bð Þcan be expressed as a series of ~u α;βð Þ

n
xr; a; bð Þ as follows:

~u
α;βð Þ
n xr; a; bð Þ ¼ ∑

n

k¼0
~u

α;βð Þ
k r; a; bð Þ ∑

n

i¼k
xiBniDik ð24Þ

The derivation process of Eq. 24 is given inAppendix 1. According to Eqs. 23 and 24, we have

Rrs
nm ¼ x

η
∑
v−1

r¼0
∑
η−1

s¼0
~u

α;βð Þ
n xr; a; bð Þe− j

2π s−θ
0ð Þm

η f r; θsð Þ

¼ e j
2πmθ

0
η

x
η

∑
v−1

r¼0
∑
η−1

s¼0
~u

α;βð Þ
n xr; a; bð Þe− j2πsmη f r; θsð Þ ¼ e j

2πmθ
0

η ∑
n

k¼0
∑
n

i¼k
xiþ1BniDikRkm

ð25Þ

Eq. 25 shows that the radial Racah moments of transformed image can be expressed as a
linear combination of the radial Racah moments of original image. Based on this relationship,
we can construct a set of scale and rotation invariants Inm which are described as follows

Inm ¼ e j
2πm
η arg R01ð Þ ∑

n

k¼0
∑
n

i¼k
R− iþ1ð Þ
00 BniDikRkm ð26Þ

3.2 3D radial Racah moment invariants

To enlarge this method directly to 3D, we will use the Euler angles for any orientations/
rotations in special orthogonal system in 3D case SO(3). With three successive rotations of
angles θ ∈ [0, 2π],φ ∈ [0, π] andψ∈ [0, 2π] around the Z , X and Z axes we can represent any
three-dimensional rotation by

R ¼ RZ θð ÞRX φð Þ RZ ψð Þ ð27Þ

where RZ(θ) , RX(φ)and RZ(ψ) are given by

RZ θð Þ ¼
cos θð Þ sin θð Þ 0
−sin θð Þ cos θð Þ 0

0 0 1

0
@

1
A

RX φð Þ ¼
1 0 0
0 cos φð Þ sin φð Þ
0 −sin φð Þ cos φð Þ

0
@

1
A

RZ ψð Þ ¼
cos ψð Þ sin ψð Þ 0
−sin ψð Þ cos ψð Þ 0

0 0 1

0
@

1
A

ð28Þ
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The rotation of the volumetric images are only defined for any choice of angles with φ ≠ 0.
For φ = 0, we obtain a rotation of angle θ +ψ around the principal Z-axis which are obtained
by any mixture of values θ and ψ. This discretization is avoided by switching the values of φ
by half of the step size of our discretization.

The 3D radial Racah moments Rknml with order (k + n + m + l) for an image with intensity
f(r, θs,φt,ψu) are defined as

Rknml ¼ 1

ηþ δ þ λ
∑
v−1

r¼0
∑
η−1

s¼0
∑
δ−1

t¼0
∑
λ−1

u¼0
~u

α;βð Þ
k r; a; bð Þe− j2πsnη e− j2πtmδ e− j

2πul
λ f r; θs;φt;ψuð Þ ð29Þ

Where

θs ¼ 2πs
η

; s ¼ 0; 1;…η−1

φt ¼
πt þ 0:5

δ
; t ¼ 0; 1;…δ−1

ψu ¼
2πu
λ

; u ¼ 0; 1;…λ−1

ð30Þ

The scale and rotation invariant property of volumetric image moments has a high
significance in 3D image recognition. The scale invariant of 3D radial Racah moments can
be usually achieved by image normalization method, named radial Racah moments. This
subsection presents a new approach to derive the 3D scale and rotation invariant of radial
Racah moments. Assume that the original image is scaled with factor xand rotated with angle
θ' ,φ' and ψ' , respectively. The 3D rotated and scaled radial Racah moments can be defined as
follows

Rrs
knml ¼

x
ηþ δ þ λ

∑
v−1

r¼0
∑
η−1

s¼0
∑
δ−1

t¼0
∑
λ−1

u¼0
~u

α;βð Þ
k xr; a; bð Þ � e− j

2π s−θ
0ð Þn

η e− j
2π t−φ

0ð Þm
δ e− j

2π u−ψ
0ð Þl

λ f r; θs;φt;ψuð Þ

¼ e j
2πθ

0
n

η e j
2πφ

0
m

δ e j
2πψ

0
l

λ
x

ηþ δ þ λ
∑
v−1

r¼0
∑
η−1

s¼0
∑
δ−1

t¼0
∑
λ−1

u¼0
~u

α;βð Þ
k xr; a; bð Þ e− j2πsnη e− j

2πtm
δ e− j

2πul
λ f r; θs;φt;ψuð Þ

¼ e j
2πθ

0
n

η e j
2πφ

0
m

δ e j
2πψ

0
l

λ ∑
k

p¼0
∑
k

i¼p
xiþ1BkiDipRpnml

ð31Þ

The derivation process of Eq. 31 is given in Appendix 2.
Eq. 31 shows that the radial Racah moments of transformed image can be expressed as a

linear combination of the radial Racah moments of original image. Based on this relationship,
we can construct a set of scale and rotation invariants Iknml which are described as follows

Iknml ¼ e j
2πn
η arg R0100ð Þe j

2πm
δ arg R0010ð Þe j

2πl
λ arg R0001ð Þ ∑

k

p¼0
∑
k

i¼p
R− iþ1ð Þ
0000 BkiDipRpnml ð32Þ

3.3 The 2D and 3D pattern recognition

In this section, we present two new set of 2D and 3D radial Racah moments invariants.

3.3.1 Characteristic vectors for 2D case

These 2D radial Racah moments can then be used to form the descriptor vector of every 2D
object. Specifically, the descriptor vector is composed of 2D radial Racah moments up to order
s, where s is experimentally selected.
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The characteristic vectors V2D is represented as

V2D ¼ Inmjnþ m∈ 0; 1;…s½ �½ � ð33Þ

3.3.2 Characteristic vectors for 3D case

These 3D radial Racah moments can then be also used to form the descriptor vector of every
3D object. Specifically, the descriptor vector is composed of 3D radial Racah moments up to
order s, where s is experimentally selected.

The characteristic vectors V3D is represented as

V3D ¼ Iknmljk þ nþ mþ l∈ 0; 1;…s½ �½ � ð34Þ

3.3.3 2D and 3D objet recognition

To perform the recognition of 2D and 3D objects to their appropriate classes. we use two
method based on Euclidean distances and distance of correlations measuring the distance from
Vquery and Vtest where V represent the characteristic vectors V2D for 2D and V3D for 3D case

deuclidean Vquery;VK
test

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

j¼0
V j
query−V

j
test

	 
2
s

ð35Þ

and

dCorrelation Vquery;VK
test

� � ¼ ∑
T

j¼0
V j
queryV

j
test ∑

r

j¼0
V j

queryV
j
test

�����

�����

−1
2

∑
r

j¼0
V j
queryV

j
test

�����

�����

−1
2

ð36Þ

where the T-dimensional feature Vqueryis represented as

Vquery ¼ V1
query;V

2
query;…VT

query

h i
ð37Þ

and the T-dimensional training vector of class K is represented as

VK
test ¼ V1

test;V
2
test;…VT

test

� � ð38Þ

3.3.4 Classification criteria

Therefore, to classify the images, one takes the minimum values for dEuclidean and the
maximum values for dCorrelation.

The recognition precision is represented as

ξ ¼ Number of correctly classified volumetric images

The number of volumetric images used in the test
� 100% ð39Þ

To prove the accuracy of the reconstruction, classification and recognition images using
radial Racah moment invariants for 2D and 3D image recognition, we will use two databases
of image. Columbia Object Image Library database (http://www.cs.columbia.
edu/CAVE/software/softlib/coil-20.php) in 2D case, and PSB database [15] in 3D case.
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We used the statistical normalization image reconstruction error to measure the performance
of the reconstruction

ε2 ¼ ∫∫∫þ∞
−∞ f x; y; zð Þ− f ̂ x; y; zð Þ� �2

dxdydz

∫∫∫þ∞
−∞ f x; y; zð Þð Þ2dxdydz

ð40Þ

As for the previous example, we present the reconstructed results and corresponding errors
in Fig. 3. It can be seen that the choice, α = a = 10, β = 5 and b = 50, gives the best
reconstructed results among all the test cases.

Figs. 3 and 4 shows the plot the reconstruction of Head image of the mean square errors
using different approaches with maximum value of M = 100. The results demonstrate the
superiority of 3D radial Racah moments over the radial Krawtchouk in terms of feature
representation capability.

Fig. 3 Comparison of reconstruction errors with different choices of parameters of volumetric Head image

Fig. 4 Comparative study of
reconstruction error of 3D radial
Krawtchouk and 3D radial Racah
moment for Head image of size
128x128x128
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4 Simulation results

In this section, we present the simulation results of 2D and 3D radial Racah moments invariant
for the invariability, recognition and classification.

4.1 Invariability for radial Racah moment

In this subsection, we will discuss the invariability for 2D and 3D case.

4.1.1 Invariability for 2D radial Racah moment

To validate the rotational invariant property of the radial Racah moments, the same image Lena
is selected Fig.6. The image is rotated by 0o, 30 o, 120 o and 230 o. The selected order of the
invariants I00, I01, I10, I11 with η = N/2 and δ = 4 N are computed for each of these images. The
results are entered in Table 1. To measure the similarity of the proposed invariants under
different image rotation, we will use the formula σ/μ(%) where σ represent the standard
deviation of radial Racah’s invariant moments for the different angle of each rotation, and μ is
the average value. The Table 1 show that the ratio σ/μ is very low and consequently the radial
Racah’s moment invariants are very stable under different types of image rotation.
Hence, the property of invariability of radial Racah moments will be used to pattern
recognition.

4.1.2 Invariability for 3D radial Racah moment

To validate the rotational invariant property of the 3D radial Racah moments,
the128x128x128 Head image (as illustrated in Fig. 7). and there rotated version

Table 1 Selected order of rotational invariants of radial Racah moments computed for Lena image with arbitrary
scale and rotation angles

I00 I01 I10 I11

λ = 0 , 8;θ’ = 0 0.107335 0.074840 0.112730 0.063419
λ = 0 , 9;θ’ = 30 0.103365 0.274847 0.102737 0.063414
λ = 1.0;θ’ = 120 0.103365 0.274849 0.102739 0.063415
λ = 1 , 2;θ’ = 230 0.103365 0.274850 0.102742 0.063418
σ/μ(%) 000E00 1,492E − 03 8,272E − 04 6,870E − 03

Table 2 The proposed extracted invariants for the Head image and its transformed versions of Fig.7

Original image #a Transformation. #b Transformation. #c Transformation. #d σ/μ

I0000 111.0408 111.0408 111.0408 111.0408 0.000000 e+00
I0001 165.1059 165.1059 165.1818 165.4288 1.492678 e−03
I0010 167.9511 167.9511 168.2228 168.2856 8.272308 e−03
I0100 206.6748 206.6748 207.5778 206.5778 1.452688 e−03
I1000 265.7835 265.7835 268.3183 261.3183 1.492612 e−03
I0011 298.9404 298.9404 300.0704 300.1704 6,876412 e−03
I0101 332.8013 332.8013 334.8113 334.8113 6.876414 e−03
I1001 371.1106 373.1106 374.4555 373.7754 6.876418 e−03
I1100 355.3106 356.3106 351.5606 352.3896 6.876445 e−03
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( λ = 0 , 8 ; θ'=90; φ'= − 180; ψ'=120), ( λ = 0 , 9 ; θ'= − 90; φ'= − 90; ψ'= − 180),
( λ = 1 , 2 ; θ'=90; φ'=90; ψ'=180) shown in Fig. 7 will be used. The selected order of
the invariants I0000, I0001, I0010, I0100, I1000, I0011, I0101, I1001 and I1100 with η = N/2,
δ = 4 N, μ = 4Nandλ = 4N are computed for each image. The results of simulation are
shown in Tables 2 taking a = α = 10 , β = 0 and b = a + N , N = 128 or Racah moment
parameter. Lastly, the ratio σ/μ can used to measure the capability of the proposed 3D
rotation invariants under different image transformation, Where σ represents the
standard deviation of radial Racah moment for the different factors of each rotation,
and μ is the equivalent mean value. The Table 2 show that the ratio σ/μ is very low
and consequently the 3D radial Racah’s moment invariants are very stable under
different types of 3D image rotation. Hence, the property of invariability of radial
Racah moments well be used to pattern recognition.

4.2 Classification

In this subsection, we will discuss the classification for 2D and 3D case.

4.2.1 Classification for 2D radial Racah moment

To validate the proposed approach for classification, we have taken the image from the
Columbia Objec t Library (COIL-20) database (h t tp : / /www.cs .co lumbia .
edu/CAVE/software/softlib/coil-20.php). The total number of images is 1440 distributed as
72 images for each object. All images of this database have the size 128 × 128. Figure 8
displays a collection of the six objects. The test set also is degraded by salt and pepper noise
with noise densities 1%, 2%, 3%, and 4%. The feature vector based on rotational Racah’s
moment invariants cited in Eq. 33 is used to classify these images and its recognition accuracy
is compared with that of radial Krawtchouk moment invariants. The results of the classification
using all features are presented in Tables 3 and 4.

Table 3 Classification Results of COILL-20 Object Database by using d1 Distance

Invariant moments Noise free Salt and pepper noise

1% 2% 3% 4%

Radial Krawtchouk 100% 89,62% 86,15% 80,47% 61,16%
Proposed method 100% 94,12% 91,22% 86,25% 63,43%

Table 4 Classification Results of COILL-20 Object Database by using d2 Distance

Invariant moments Noise free Salt and pepper noise

1% 2% 3% 4%

Radial Krawtchouk 100% 89,61% 86,25% 80,97% 61,36%
Proposed method 100% 94,12% 91,762% 85,35% 64,03%
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4.2.2 Classification for 3D radial Racah moment

To prove the proposed method for classification, we have taken the image from the
Princeton Shape Benchmark (PSB) database [15]. Being known, this database consists
of 907 3D models classified into 35 main categories and 92 subcategories. All images
of this database have the size 128 × 128 × 128. In Table 5, we find that the measure
between the query of volumetric image and same images of classes from PSB
database of the two vectors Vquery and Vtest (class) using deuclidean and dcorrelation.

Table 5 The Euclidean distance and correlation coefficient between request free-noise image and same images
of classes from PSB database

Original volumetric chair image of size 128×128×128 voxels

dEuclidien 0.013 3.2287 2.8736 2.8260 2.4631

dcorrelation 0.9982 0.2382 0.4341 0.3642 0.1346

dEuclidien 3.7735 1.7735 2.5620 4.0931 2.7377

dCorrelation 0.8658 0.8991 0.2390 0.7634 0.3742

dEuclidien 2.7416 2.8865 2.2697 3.9879 2.6452

DCorrelation 0.1659 0.1235 0.1291 0.4291 0.4310

6596 Multimed Tools Appl (2018) 77:6583–6604



(a)

(b)

Fig. 5 Different types of noises. a
Salt and paper noisy images (5%),
b Gaussian noisy images (mean 0,
variance: 0.1)

Table 6 Classification results of Princeton Shape Benchmark (PSB) using dEuclidien distance

3D Invariant moments Noise-free Salt and pepper noise

1% 2% 3% 4%

3D radial Krawtchouk 100% 89,61% 86,25% 80,97% 61,36%
Proposed method 100% 95,25% 92,32% 86,35% 67,03%
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The test set also is degraded by salt and pepper noise (as illustrated in Fig. 5). With noise
densities 1%, 2%, 3%, and 4% The feature vector based on 3D rotational radial Racah’s
moment invariants cited in Eq. 34 is used to classify these images and its recognition accuracy
is compared with that of 3D radial Krawtchouk moment invariants. The results of the
classification using all features are presented in Tables 6.

5 Conclusion

In this article, we propose a new set of 2D and 3D rotation invariants based on orthogonal
radial Racah moments. We have found a theoretical mathematics to derive them. Therefore,
this paper introduces, in a first case, a new 2D radial Racah moments using polar represen-
tation of an image by a one-dimensional orthogonal discrete Racah polynomials and a circular
function. In the second case, we present a new 3D radial Racah moments using a spherical
representation of volumetric image by a one-dimensional orthogonal discrete Racah polyno-
mials and a spherical function. Further 2D and 3D rotational invariants are derived from the
proposed 2D and 3D radial Racah moments respectively.

In order to prove the proposed approach, three issues are resolved mainly image recon-
struction, rotational invariance and pattern recognition. Experimental results prove that the
radial Racah moments have perform better than the radial Krawtchouk moments in terms of
volumetric image reconstruction capability simultaneously, the reconstructed volumetric image
converges quickly to the original image using 2D and 3D radial Racah moments and the test
images are correctly recognized from a set of images that are available in a PSB database.

(a)

(c)

(b)

(d)

Fig. 6 An image with various
rotations. a θ’ = 0, b θ’ = 30, c
θ’ = 120 and d θ’ = 230
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(a) (b)

(c) (d)

Fig. 7 A set of transformed pattern of the original Head image with combination of rotation. a Original
volumetric image, b ( λ = 0 , 8 ; θ'=90; φ'= − 180; ψ'=120), c ( λ = 0 , 9 ; θ'= − 90; φ'= − 90; ψ'= − 180) and d
( λ = 1 , 2 ; θ'=90; φ'=90; ψ'=180)

Fig. 8 Collection of the COIL-20 objects
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Appendix 1

From Eq. 20, the radial Racah polynomials ~u α;βð Þ
n r; a; bð Þ can be expressed as a series of

decreasing power of r as follows:

~u
α;βð Þ
0 r; a; bð Þ

~u
α;βð Þ
1 r; a; bð Þ

⋮
~u

α;βð Þ
n r; a; bð Þ

0
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1
CCCCA
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B10 B11
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0
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ð42Þ

From Eq. 20, the radial Racah polynomials ~u α;βð Þ
n r; a; bð Þ can also be expressed as a series

of decreasing power of xr as follows:
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Appendix 2

We can rewrite Eq. 32 in matrix from as

I sr0nml
I sr1nml
⋮
⋮
⋮
Isrknml

0
BBBBB@

1
CCCCCA

¼ ejnarg Rsr
0100ð Þejmarg Rsr

0010ð Þejlarg Rsr
0001ð Þ

Rsr
0000

� �−1
Rsr
0000

� �−2
⋮ Rsr

0000

� �− kþ1ð Þ

0
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1
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B00

B10 B11

⋮ ⋱
Bk0 Bk1 Bkk

0
B@

1
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D00
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0
B@

1
CA

Rsr
0nml

Rsr
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⋮
⋮
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Rsr
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0
BBBBB@

1
CCCCCA

ð44Þ
From Eq. 32 we can also get

arg Rsr
0100

� � ¼ arg R0100ð Þ þ θ
0
; arg Rsr

0010

� � ¼ arg R0010ð Þ þ φ
0
;; arg SRsr

0001

� �

¼ arg R0001ð Þ þ ψ
0
; and Rsr

0000 ¼ λ2R0100 ð45Þ
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Similarly Eq. 31 can also be written in the matrix form as
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By substituting Eqs. 46 and 45 into Eq. 44, we get
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