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Abstract Remote photoplethysmography (rPPG) can achieve contactless human vital signs
monitoring, but its signal quality is limited by the remote operation nature. In practical
applications, improving the rPPG signal quality becomes an essential task. As a remote
imaging technique, rPPG utilizes a camera to capture a video of a skin area, especially the
facial area, then focuses on a particular sub-area as the region of interest (ROI). In this paper,
we investigated a novel adaptive ROI (AROI) approach for improving the rPPG signal
quality. In this approach, block-based spatial-temporal division is performed on a captured
face video. Based on these segmented video pipelines, the spatial-temporal quality distribu-
tion of the rPPG signals is estimated using a signal-to-noise ratio (SNR) feature. Afterwards,
AROIs are calculated through mean-shift clustering and adaptive thresholding in SNR maps.
As the AROI can be dynamically adjusted according to the spatial-temporal quality distri-
bution of rPPG signals on the face, the quality of the final recovered rPPG signal is
improved. The performance of the proposed AROI approach was evaluated with both still
and moving subjects. Compared to conventional ROI methods for rPPG, the proposed AROI
obtained a higher accuracy in heart rate measurement. And the state-of-the-art motion-
resistant rPPG techniques can be effectively enhanced through being integrated with the
AROI.

Keywords Mean-shift . Photoplethysmography (PPG) . Region of interest (ROI) . Remote
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1 Introduction

Photoplethysmography (PPG) is a low-cost, non-invasive technique to measure the cardio-
vascular blood volume pulse (BVP). PPG has widespread clinical applications, such as pulse
oximeters, vascular diagnostics, and cuff-less blood pressure measurement [1]. The conven-
tional contact PPG (cPPG) needs dedicated light sources and contact probes to detect the
reflection/transmission light intensity variation from the tissue due to BVP. Recently, the
remote PPG (rPPG) technique has attracted much attention, because it can implement the
PPG function using only a digital camera, without contact probes and dedicated light sources.
Fig. 1 illustrates the working principles of cPPG and rPPG.

In rPPG, the cardiac pulsation information can be accessed remotely using a digital camera
and ambient light [31]. Ambient light is used as the light source for rPPG, and a digital camera
acts as a photoelectric converter. In actual use, the digital camera captures videos of skin areas,
especially human faces as shown in Fig. 1(b). The principle of rPPG is based on the fact that
hemoglobin in blood absorbs light, with the quantum absorbed being proportional to hemo-
globin concentration in the blood vessel. Since hemoglobin concentration varies quasi-
periodically with BVP, the amount of light absorbed by the skin is modulated by BVP
underneath the skin surface with cardiac cycles, appearing as a slight color variation of the
skin. Although this slight color variation of the skin due to BVP is invisible to human eyes, it
can be detected using a digital camera [33]. To obtain the rPPG signal, a region of interest
(ROI) is selected in the video frames to convert the three-dimensional video signal to a one-
dimensional PPG signal through spatially averaging pixel values in the ROI frame by frame.
An rPPG signal can be recovered through bandpass-filtering the temporal variation of the
averaged pixel value in ROI.

Evolution from cPPG to rPPG has brought new challenges. Firstly, the signal-to-noise ratio
(SNR) of the estimated rPPG signal from video sequence is much lower than that of the cPPG
signal. cPPG utilizes contact probes and dedicated light sources to enhance the PPG signal
quality. However, rPPG can only utilize ambient light as the light source, which is treated as a
noise source for cPPG [14]. Moreover, the customized monocolor photodetector for cPPG is
replaced by the complementary metal-oxide semiconductor (CMOS) sensor in a digital camera
for rPPG. During the rPPG measurement, there is a certain distance between the camera and

Fig. 1 Illustration of the working principle of PPG. a cPPG. b rPPG
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the subject. All of these changes between cPPG and rPPG increase the difficulty of estimating
a high-quality signal for rPPG. Secondly, the motion artifacts problem is much more serious
for rPPG as compared to cPPG. Ambient light is not distributed with a spatially homogeneous
intensity in daily environments. The CMOS sensor and optics of a digital camera also do not
have a uniform response in the whole field of view. When measuring a moving subject, the
size and position of the ROI for rPPG need to be adjusted in accordance with the subject’s
motions. Hence, the radiant flux on the ROI will change, as also the response of the digital
camera on the ROI. These changes will distort the rPPG signal, because the skin color
variation loading BVP information is very weak as compared with global shading effects.
This kind of distortion is called motion artifacts [25]. Low SNR and motion artifacts severely
impair the rPPG signal quality. To tackle these problems, several approaches have been
proposed to enhance the rPPG signal quality, such as independent component analysis
(ICA), wavelet filter, adaptive bandpass filer (ABF), and motion compensation through face
tracking [5, 10, 25]. Different facial skin regions provide rPPG signals of different quality, and
the quality distribution of rPPG signals on the face is also affected by motion and illumination.
If the varying quality distribution of rPPG signals on the face can be estimated, the rPPG signal
can be extracted only from facial regions containing good quality rPPG signals. Thus, the
eventual rPPG signal quality can be improved. Based on this intuition, an adaptive ROI
(AROI) approach is investigated to improve the rPPG signal quality, in which the captured
video is divided into block-based pipelines in the spatial and temporal domains for generating
spatial-temporal rPPG signal quality-maps on the whole facial area. The quality-maps can
describe the quality distribution of rPPG signals on the face. Then AROIs are extracted
through segmenting the spatial-temporal quality-maps. Since AROIs are able to adaptively
select facial regions containing good-quality rPPG signals, signal quality of the final rPPG
wave estimated using AROIs is improved.

The contributions of this paper are as follows: (1) An SNR map is utilized to describe the
quality distribution of rPPG signals on the face, without a reference cPPG. (2) An AROI
approach for the rPPG is implemented using mean-shift clustering and adaptive thresholding in
SNR maps. A better performance in heart rate (HR) measurement can be achieved, compared
with conventional ROI methods for the rPPG. (3) The state-of-the-art motion-resistant rPPG
techniques can be effectively enhanced through integration with the proposed AROI.

The rest of the paper is organized as follows. Related work about rPPG estimation is briefly
reviewed in Section 2. In Section 3, the SNR map for AROI calculation on the face is
introduced. The proposed AROI approach for rPPG is explained in Section 4. In order to
verify the proposed AROI approach, experimental assessment details are presented in
Section 5 and our experimental results are given in Section 6. Finally, a conclusion is drawn
in Section 7.

2 Related work

In previous works, there have been some worthwhile approaches toward improving the rPPG
estimation process. These approaches can be mainly classified into three categories: chromi-
nance-based, adaptive bandpass filter (ABF)-based, and ROI-based.

The chrominance-based approach utilizes the wavelength dependent characteristic of the
rPPG signal magnitude due to the light absorption of hemoglobin [7]. A regular digital camera
sensor consists of red, green, and blue (RGB) color channels. rPPG obtains the strongest pulse
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signal in the green light, and weaker pulse signals in red and blue light. Though with different
amplitudes, all the three rPPG signals in different color channels contain similar artifacts. An
appropriate linear combination of rPPG signals from different color channels can enhance the
final rPPG signal while reducing artifacts, simultaneously. The representative chrominance-
based methods are ICA [25], principal component analysis (PCA) [16], the skin tone-based
method [12], and the adaptive green/red difference [10].

The ABF-based methods focus on refining rPPG signals based on frequency charac-
teristics in transform domains. The wavelet transform has been successfully applied in
the field of biometrics due to its effective spatial-temporal representation of images and
signals [17]. Wavelets especially can be constructed with special abilities, such as
rotation-invariance and singular detection in the high-frequency sub-bands [35].
Bousefsaf et al. [5] utilized the continuous wavelet transform to denoise and refine the
peaks of rPPG signals. After a skin mask-based pre-processing, the rPPG signal in the
wavelet domain has a maximum corresponding to the HR on the frequency axis,
occupying the dominant energy. Then, the wavelet transform coefficients are filtered
using a wavelet energy curve to reduce noises. Tarassenko et al. [28] employed an auto-
regressive model to perform the spectral analysis. A pole cancellation algorithm is
proposed to find the pole corresponding to the HR and cancel out aliased frequency
components caused by artificial light flicker, simultaneously.

The ROI-based approach aims to select a good ROI on the skin area in the captured video
frames for the rPPG signal estimation. Hence, the selected ROI can provide a higher quality
rPPG signal as compared with the whole skin region such as the whole face. In the conven-
tional ROI-based methods, all pixels within an ROI are averaged to generate the rPPG signal.
However, different skin regions carry rPPG signals with different quality, due to the difference
in hair density, epidermis thickness, capillary density, facial features, etc. To achieve high-
quality rPPG signal estimation, only the regions that can provide relatively clear rPPG signals
should be selected as the ROI, while regions containing low-quality rPPG signals should be
discarded. Poh et al. [25] chose the whole face detected by the cascade classifier as the ROI. As
the forehead and cheeks regions can provide stronger rPPG signals as compared with other
regions on the face, they are chosen as the ROI instead of the whole face [21, 31]. Skin
detection is utilized to mask skin regions and discard non-skin regions on the face frame by
frame, since non-skin regions rarely contain rPPG information [5, 20]. Thus, the dynamic skin
mask can be treated as a dynamic ROI for rPPG.

In most of the ROI-based methods for rPPG, the ROI selection focuses on pre-defined
regions that have good potential to provide high-quality signals, such as the forehead, the
cheeks, and the skin region masked by skin detection. However, an effective method to
quantitatively assess the quality of rPPG signals on different facial regions for the ROI
selection is still lacking. If the rPPG signal quality distribution on the face can be
estimated, a good ROI is possible to be adaptively selected for high-quality rPPG signal
estimation.

3 SNR map

The critical step for determining an AROI in the proposed approach is to estimate the spatial-
temporal quality distribution of rPPG signals on the face. The SNR map is utilized to
implement such a task.
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3.1 SNR of a PPG signal

Agood PPG signal is quasi-periodical, which should have a clear dominant peak and harmonics
in its spectrum as shown in Fig. 2(a)-(b). When the PPG signal is distorted, the dominant peak
and harmonics will be weakened with a flattened spectrum as shown in Fig. 2(c)-(d).

Based on the frequency characteristics of the PPG signal as shown in Fig. 2, a custom SNR
for assessing quality of rPPG signals is defined as

SNR ¼ S f HRð Þ
∑ f sampling=2

f¼0 S fð Þ−S f HRð Þ
ð1Þ

where, S(f) is the spectral density function of the rPPG signal, S(fHR) is the spectral density at
the HR frequency fHR, and fsampling is the sampling rate of the rPPG signal. Similar SNR
definitions have been proposed for measuring rPPG signal quality in [12, 20]. In actual use,
there is no reference cPPG signal to provide reference fHR for assessing the rPPG signal
quality. Therefore, fHR is estimated from the whole facial region first. In order to obtain a
reliable HR estimation for reference, the adaptive green/red difference technique is utilized to
enhance the rPPG estimation on the face [10]. Thus, a stable estimation of fHR can be provided
in the frequency domain.

3.2 SNR map on the face

The whole facial region is divided into non-overlapped blocks. The rPPG signal can be
accessed from each block region. SNR for each rPPG signal measured from each block-
based video pipeline is calculated using the estimated fHR from the whole face. SNR values

Fig. 2 Normal and distorted cPPG waveforms (detrended and normalized) and their normalized spectra. a A
normal cPPG waveform. b The normalized spectrum of the normal cPPG waveform. c A distorted cPPG
waveform. d The normalized spectrum of the distorted cPPG waveform
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corresponding to all blocks form an SNR map, which can reflect the rPPG signal quality
distribution on the face. High SNR represents good quality block-ROIs, and low SNR
represents noisy block-ROIs.

Fig. 3 demonstrates SNRmaps of three subjects with different skin colors, of skin color type
I-II, type III-IV, and type V-VI respectively, according to Fitzpatrick’s chromatic scale [11].

4 Methodology

Based on the estimated quality-maps of rPPG signals using SNR, the flow chart of the proposed
AROI method for rPPG signal estimation is illustrated in Fig. 4. Firstly, a face video is captured
using a digital camera. During the video recording, timestamps of every frame in the video are
recorded for interpolation of the estimated rPPG signals, because low-end digital cameras do
not have stable frame-rates [27]. In order to reduce motion artifacts in rPPG signals, face
tracking is performed using the Kanade − Lucas − Tomasi (KLT) algorithm [22, 29]. After the
motion matrix describing the face motion is obtained, the face image can be stabilized and
resized into a uniform resolution, as shown in Fig. 4(a) and.

4(b). Then each frame in the face video is divided into non-overlapped square blocks of
N × N pixels. A typical block size is 8 × 8 pixels. After the spatial block-division, the face
video is divided with overlap on the temporal axis with a time-interval of T seconds and an
overlap of T/2 s. A typical time-interval of T is 8 s. Thus, the face video is segmented into
block-based video pipelines, and each pipeline has a volume size of N × N-pixel × T-second,
as shown in Fig. 4(c). Then SNR of the rPPG wave is calculated in each video pipeline. For a
long face video, a sequence of SNR maps is thus obtained. And each SNR map can describe
the quality distribution of rPPG signals on the face within a time-interval, as shown in

Fig. 3 Face images and the corresponding SNRmaps of subjects with different skin colors. a Face image of type
I-II skin color. b Face image of type III-IV skin color. c Face image of type V-VI skin color. d SNRmap of type I-
II skin color. e SNR map of type III-IV skin color. f SNR map of type V-VI skin color. The skin color is classified
according to Fitzpatrick’s chromatic scale
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Fig. 4(d). Mean-shift clustering is performed in each SNR map to cluster facial regions based
on SNR values. After the clustering, adaptive thresholding is utilized to select clusters with
relatively higher mean SNR values to generate an AROI, because they have a higher chance of
carrying high-quality rPPG information, as shown in Fig. 4(e). In this way, a sequence of
AROIs is obtained through mean-shift clustering and adaptive thresholding, as shown in
Fig. 4(f). Finally, the estimated rPPG signal is obtained by averaging pixel values of the face
frames masked by AROIs, and discontinuities in an rPPG signal caused by AROI transitions
are removed using an overlap-add operation, as shown in Fig. 4(g).

Two video clips illustrating the proposed AROI approach are provided as supplementary
materials: (1) a still subject [8]; (2) a moving subject. Detailed descriptions for each module in
the flow chart are given in the following subsections [9].

4.1 Face stabilization

Currently, object tracking can be handled well using robust sparse features and online training
[15, 23]. However, this work focuses on locating bounding boxes of objects other than motion
compensation. In order to stabilize the face for effectively estimating AROI, the local feature
matching is selected, which has been utilized for the motion artifacts suppression for rPPG
[10]. This face tracking is revised to perform face stabilization in this paper. The Viola − Jones
(VJ) face detector [32] is used to detect a rectangular facial region (width × height) in the initial
frame of a video (green rectangle in Fig. 5(a)), and afterwards a trapezoidal region (yellow
trapezoid in Fig. 5(a)) is automatically selected by ratios (0.5 × width, 0.4 × width,
0.58 × height). Speeded up robust features (SURF) points are detected in the trapezoid region
[2]. Then, the KLT algorithm is used to track SURF points, as shown in Fig. 5(b). The motion

Fig. 4 Flow chart of the proposed AROI approach for rPPG. a Face is tracked using the KLT algorithm. b Face
is stabilized through motion compensation and resized into a uniform resolution. c Each face image is divided
into non-overlapped blocks. d SNR maps are calculated using video pipelines with a volume of block-size ×
time-interval. e Mean-shift clustering is performed in SNR maps, and adaptive thresholds are determined. f
Block-wise AROIs are obtained through thresholding in SNR maps. g The final rPPG signal is obtained through
averaging pixel values within AROIs, and discontinuities are removed using the overlap-add operation
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matrix describing the face motion between consecutive frames can be calculated during
tracking. The face position in the first frame is treated as the reference position (0.6 × width,
0.9 × height). All face images in the following frames are warped into the reference face
position using motion matrices. Thus, face images can be stabilized, even if the subject is
moving.

4.2 Mean-shift clustering and thresholding in SNR maps

After a face image is stabilized in the reference face position, the face image is resized into a
uniform resolution. Thus, a uniform block-division can be performed for face videos with
different resolutions, in which each face image will be divided into non-overlapped N × N
blocks, as shown in Fig. 6(a). After the spatial block-division, the face video is divided
temporally with a time-interval of T seconds and an overlap of T/2 s. Thus, the face video is
divided into video pipelines with a volume size of N × N-pixel × T-second. Within each T
seconds, N × N rPPG signals are measured from N × N face video pipelines using a bandpass
filter. Then, a block-wise SNR map can be calculated for a T-second-long face video, in which
each point records the SNR value of the rPPG signal measured from the corresponding video
pipeline, as shown in Fig. 6(b).

Our assumption is that the rPPG signal quality can be improved, if only the block-based
facial regions with mean SNR values above a threshold are selected as ROI for estimating the
rPPG signal.

Fig. 5 Face tracking and stabilization. a Face detection and SURF points detection. b Face tracking using the
KLT algorithm. c The reference face position in the first frame (Rectangle). d Following face images are
stabilized referring to the reference face position
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Mean-shift clustering Before thresholding, mean-shift clustering is performed in the SNR
map, due to the fact that facial regions providing good-quality rPPG signals are distributed as
clusters, not sparsely. The selection of mean-shift as the clustering algorithm is because mean-
shift clustering does not require prior knowledge of the number of clusters, and does not
constrain shapes of clusters [6]. This nonparametric clustering algorithm is suitable for the
SNR map. Based on the observation that a cluster on the face should share a spatial
neighborhood and similar rPPG signal amplitudes, the kernel density estimator utilized for
mean-shift is expressed as

KhSNR;hS;hA xð Þ ¼ C

hSNRh2ShA
k

xSNR

hSNR

����

����

2
 !

k
xS

hS

����

����

2
 !

k
xA

hA

����

����

2
 !

ð2Þ

where x is the feature vector, xSNR is the SNR part, xS is the spatial part, xA is the rPPG signal
amplitude part, k(x) is the common profile used in the three domains, C is the normalization
constant, and hSNR, hS, and hA are the bandwidth parameters for the SNR part, spatial part, and

Fig. 6 Generating an AROI through mean-shift clustering and adaptive thresholding in a SNR map. a Block-
division in a face image. b The SNR map for a T-second-long face video. c Mean-shift clustering and adaptive
thresholding in the SNR map. d The AROI generated (Red blocks − AROI)
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signal amplitude part, respectively. Gaussian kernel is utilized here. Fig. 6(c) illustrates the
clustering result of Fig. 6(b).

Adaptive thresholding After the clustering, an adaptive thresholding based on Otsu’s
method is utilized to automatically select the clusters with relatively higher mean SNR values
on the face as the AROI [24]. It is assumed that all the clusters on the face can be classified into
two classes based on their mean SNR values (foreground and background). The two classes
are separated by minimizing the intra-class variance. The SNR threshold is determined as

t ¼ ArgMin ω1 tð Þσ2
1 tð Þ þ ω2 tð Þσ2

2 tð Þ� �

subject to 0:2 < AROIj j= WROIj j < 0:5
ð3Þ

where t is the SNR threshold, ω1(t) and ω2(t) are the class probabilities of two separated classes
respectively, σ2

1 tð Þ and σ22 tð Þ are variances of these two classes, |AROI| is the size of AROI,
|WROI| is the size of the whole ROI available (whole face). The optimization of threshold t
should be subject to AORI taking 20%–50% of the whole ROI size. Otherwise, the optimized
threshold t is unreasonable. 20% and 50% are loose experiential limits. The white borderlines
in Fig. 6(c) surround the clusters, which are determined as the AROI by the adaptive threshold
t. Fig. 6(d) illustrates the AROI in red. The process of mean-shift clustering and adaptive
thresholding is repeated in each overlapped T-second-long face video. Thus, a sequence of
AROIs is obtained.

4.3 Averaging in the AROI and overlap-add

After an AROI is obtained for a T-second-long face video, the final rPPG signal is estimated by
averaging the rPPG signals loaded in block-based video pipelines located within the AROI
given as

rPPGAROI tð Þ ¼
∑x;y∈AROIrPPG x; y; tð Þ

AROIj j ð4Þ

where rPPGAROI(t) is an rPPG signal measured using an AROI for a T-second-long face video,
rPPG(x, y, t) is the rPPG wave located at (x, y) in the AROI at time t, and |AROI| is the size of
the AROI.

Due to the continuous updating of AROIs, the change of AROI will cause discontinuities in
the rPPG signal at the transitions of consecutive AROIs, as shown in Fig. 7 (a). These
discontinuities will affect peak detection in rPPG signals, and the accuracy of HR measure-
ment will decrease. In order to remove these discontinuities due to AROI transitions, an
overlap-add operation is performed as shown in Fig. 7. As mentioned in Section 4.2, the face
video is divided overlappedly on the temporal axis with a time-interval of T seconds and an
overlap of T/2 s. The overlap of T/2 s is designed for compensating discontinuities which
occur at the start and end of a time-interval of T seconds. Each rPPG signal accessed from a T-
second-long face video masked by an AROI is multiplied with a triangle window with a length
of T seconds, as shown in Fig. 7(b). The triangle window zeros off the discontinuities caused
by AROI transitions, and the overlap-add operation can complement the final rPPG signal, as
shown in Fig. 7(c).
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5 Assessment details

Instantaneous HR measurement is utilized to test the rPPG estimation performance. A custom
HR algorithm is adopted to estimate instantaneous HR from the rPPG signal [10].

5.1 Material

There are two datasets for testing the proposed AROI approach as listed in Table 1. The test
dataset I is for testing the performance of the proposed AROI approach in measuring rPPG
signals for still subjects. The test dataset II is for testing the performance of the AROI approach
in measuring rPPG signals for moving subjects.

In the test dataset I, 21 healthy volunteers (14 males, 7 females) with different skin colors
distributed uniformly from type I to type VI (light − dark) were enrolled. Fitzpatrick’s
chromatic scale was utilized to classify different skin colors [11]. The volunteers’ age ranged
from 20 to 33. None of them had any known cardiovascular diseases. Informed consent was
obtained from each subject, and the study was approved by the Research Committee of City
University of Hong Kong. A low-cost webcam (Logitech C270) was used as the imaging
device. The webcam worked at a frame-rate of 30 fps. All videos were recorded in color space
(24-bit RGB) with a resolution of 640 × 480, and saved in uncompressed AVI format. The auto
white balance function of the webcam was turned off. During the video-recording, there were
no dedicated light sources except normal indoor fluorescent light (no windows in the room).
One 1-min-long video was recorded for each subject, who sat steadily in front of the webcam
at a distance of 80 cm. A cPPG device (HRS-06UF Heart Sensor) was attached to the subject’s
index finger to record the reference cPPG signal with a sampling rate of 300 Hz.

Fig. 7 Overlap-add operation for removing discontinuities in rPPG signals due to AROI transitions. a rPPG
signals estimated using consecutive AROIs have an overlap of T/2 s. A T-second-long triangle window is
designed to zero off discontinuities at the start and end of each time-interval through multiplication. b
Consecutive rPPG signals estimated using consecutive AROIs are overlap-added. c Discontinuities due to AROI
transitions are removed in the final rPPG signal

Table 1 Datasets for experiments

Dataset Number of subjects Videos per subject Skin color Lighting condition Motion

Test dataset I 21 1 I − VI Indoor fluorescent light Still
Test dataset II 6 5 I − II Indoor daylight Moving

Multimed Tools Appl (2018) 77:6503–6529 6513



The test dataset II is taken from Pulse Rate Detection Dataset (PURE) [20]. PURE
consists of 10 persons (skin color type I − II) performing different, controlled head motions
in front of a camera. The face videos and reference cPPG signals were recorded simulta-
neously. There are six different motion setups in PURE, which are steady, talking, slow
translation, fast translation, small rotation, and medium rotation. Since the test dataset II is
utilized for testing the motion-resistance of the AROI approach, just the last five motion
setups in PURE are taken as the test dataset II, as listed in Table 2. In addition, the videos of
subjects with IDs of 2, 5, 7, and 9 were not adopted, because their reference cPPG signals
were not stable enough to provide accurate references.

5.2 Benchmark methods

To benchmark the proposed AROI method, we compared our experimental results with the
state-of-the-art ROI methods for rPPG [5, 21, 25]. In [25], the ROI is the whole facial region.
Since the ROI is fixed on the whole skin region available, we call this method the whole
fixed ROI (WFROI) method. In [21], the cheeks region is regarded as the optimal fixed ROI
on the face, which can provide an rPPG signal with the strongest amplitude on the facial
region. Since the ROI on the cheeks is fixed on a partial region of the skin available, it is
named as the partial fixed ROI (PFROI) method. In [5], a simple and fast skin-pixel
detection based on a piecewise YCbCr linear classifier is utilized to produce a skin mask
for each face image. The skin mask is updated every frame. The rPPG signal is measured
using this dynamic skin mask as a dynamic ROI. We call this method the skin mask-based
ROI method. For a stable performance of skin detection, Gaussian mixture model-based
human skin detection was utilized to replace the piecewise YCbCr linear classifier [19].
Screenshots of different ROI methods for rPPG are shown in Fig. 8.

In order to test the motion-robustness of the proposed AROI approach, three repre-
sentative motion-resistant rPPG methods were selected for a comparison. The first is the
ICA-based method, which has been widely used to reduce motion artifacts for rPPG [26,
30]. We utilized the robust ICA algorithm with maximization of the kurtosis contrast for
the implementation of the ICA-based method [34]. The second is the wavelet filtering-
based method [5]. The third is the ABF method proposed in [10], which can automat-
ically build a narrow custom bandpass filter according to the estimated HR frequency
using adaptive green/red difference. The proposed AROI approach was also integrated
with the three motion-resistant rPPG methods respectively to test whether the AROI
approach can improve the performances of different rPPG methods. The face tracking
and stabilization in Section 3.1 were applied in the implementation of all the benchmark
methods. Thus, the three motion-resistant rPPG methods were tested with the same pre-
processing.

Table 2 The types of motions in
test dataset II Motion type Setup

I Talking
II Slow translation
III Fast translation
IV Small rotation
V Medium rotation
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5.3 Statistics

We employed Bland–Altman analysis of HR measurements as the main method to verify
agreement between rPPG and cPPG [3]. We examined the agreement between methods of
measurement with multiple observations per subject [4]. In addition, Pearson’s correlation
coefficients (PCC) and the corresponding p-values were calculated to measure the linear
dependency between the rPPG and the cPPG [18]. When plotting Bland–Altman plots, the
HR measurement differences between the rPPG and the cPPG were plotted against the mean
results of the rPPG and the cPPG. The measurement bias and 95% limits of agreement
between the rPPG and the cPPG are calculated to measure the rPPG accuracy. The 95%
limits of agreement (LoA) are defined as the bias ±1.96 times the standard deviation (SD) of
the differences, consisting of an upper limit (UL) and a lower limit (LL). LoA shows how far
apart the HR measurements made by rPPG are likely to be for most individuals.

5.4 Setting of experimental parameters

In the experiments, the uniform resolution for resizing face images during face stabilization is
256 × 256 pixels. The pass band of the bandpass filter utilized for accessing rPPG signals is
0.75–3.5 Hz, covering heart rates ranging from 45 to 210 beats per minute (bpm). The green
channel in videos is utilized for calculating AROIs, because pulse information is strongest in
the green channel among RGB channels.

6 Experimental results

In the experimental study, the performance of the proposed AROI approach was assessed for
still subjects first. Then the effect of the AROI approach in the integration with motion-
resistant rPPG methods was investigated with moving subjects. Last, time complexities of
different ROI methods were analyzed.

Fig. 8 ROIs on the face. a AROI. b Fixed ROIs (The outer blue rectangle is WFROI and the inner green
rectangles are PFROIs). c Skin mask-based ROI

Multimed Tools Appl (2018) 77:6503–6529 6515



6.1 The performance of AROI in measuring still subjects

The performance of the proposed ROI was first evaluated using the test dataset I, in which only
the videos of still subjects were collected. There are two tunable parameters for the AROI
estimation, which are the block-size and the time-interval of every block-based video pipeline.
In order to find a set of empirical values for these two parameters, the PCC values obtained by
the AROI methods with different block-sizes and time-intervals were measured on the test
dataset I, as shown in Table 3. When the block-size is small (such as 4 × 4 pixels), the rPPG
signal extracted from every block-based video pipeline is too weak for measuring SNR
effectively. Then AROI cannot be well estimated. With increase in the block-size, the
resolution of the AROI becomes low. A low-resolution AROI cannot precisely describe the
quality distribution of rPPG signals. When the time-interval is small (such as 4 s), the
frequency resolution of the rPPG signal is too coarse for a bandpass filter. If the time-
interval is long, the bandpass filter can affect the rPPG signal waveform, because the
Fourier transform cannot describe the temporal variation of the HR frequency. Hence both
the block-size and the time-interval should take a moderate value. Based on experimental
results in Table 3, the block-size for the spatial division on the face image is set as 8 × 8 pixels.
The time-interval for the temporal division of the face video is 8 s, and the overlap accordingly
is 4 s. This set of parameters was utilized in the following sub-sections.

A set of rPPG waveforms and the reference cPPG waveform measured from a sample still
subject (skin color III-IV) are given for an intuitive illustration in Fig. 9. Compared with rPPG
waveforms estimated using the WFROI, PFROI, and skin mask, the rPPG waveform estimated
using the AROI obtains the best waveform quality. Artifacts or distortions are removed by the
AROI approach.

rPPG signals were measured from all videos in the test dataset I using different ROI
methods. Then HR measurement was performed on these rPPG signals and reference cPPG
signals. The Bland–Altman plot with multiple instantaneous HR measurements per subject for
the rPPG using the AROI method is given in Fig. 10. The HR measurement bias between the
cPPG and the rPPG using the AROI method is 0.1 bpm. The 95% degree of agreement is
between −5.5 bpm and 5.7 bpm. The PCC between instantaneous HRs measured by the cPPG
and the rPPG using the AROI method is 0.9341 (p-value <0.001). The above analyses of the
HR measurement accuracy were also performed for different benchmark ROI methods for the
rPPG. The statistical results are compared in Table 4.

Table 3 PCC values of the AROI method with different block-sizes and time-intervals in HR measurement for
still subjects

Block-size
Duration

4 × 4 pixels 8 × 8 pixels 16 × 16 pixels

4 s 0.7842 0.8543 0.8394
8 s 0.8372 0.9341 0.8976
16 s 0.8323 0.9161 0.8830

The highest PCC value is shown in bold

Fig. 9 rPPG waveforms measured from the sample still subject using different ROI approaches and the
corresponding reference cPPG waveform. a The reference cPPG waveform. b The rPPG waveform measured
using the AROI. c The rPPG waveform measured using the WFROI. d The rPPG waveform measured using the
PFROI. e The rPPG waveform measured using the skin mask

b
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Compared with the benchmark ROI methods for rPPG, the proposed AROI method
achieved the best HR measurement accuracy for still subjects, as shown in Table 4. The
WFROI and PFROI obtained comparable HR measurement accuracies. The performance of
the skin mask-based ROI method is relatively worse, because the ROI transition every face
frame brought artifacts. The reason is similar to that of discontinuities as explained in
Section 4.3.

6.2 The performance of AROI in measuring moving subjects

Subjects under measurement do not always keep still in practice. The effect of the proposed
AROI approach on motion-robustness of the rPPG was tested using the test dataset II. First,
HR measurements using different motion-resistant rPPG methods were performed for different
types of motion in test dataset II. For a performance comparison among different ROI
methods, three different types of ROI methods, including WFROI, skin mask, and AROI
were integrated with the three motion-resistant rPPG methods respectively. Last, the HR
measurement performance of the AROI approach alone was investigated for different types
of motion. The HR measurement accuracies of the proposed AROI approach and three
benchmark motion-resistant rPPG methods integrated with three different ROI methods
respectively are listed in Tables 5, 6, 7, 8 and 9. For motion I, motion II, and motion III, the
AROI-aided wavelet filtering-based method obtained the best performances. For motion IV
and motion V, the AROI-aided wavelet filtering-based method and the AROI-aided ABF-
based method achieved comparable best performance. A normal HR varies slowly on the
temporal axis, which means the HR frequency has a slow temporal variation. The Fourier
transform can only analyze frequency information without the temporal decomposition.

Fig. 10 Bland − Altman plot with
multiple instantaneous HR
measurements per subject for the
comparison of cPPG and rPPG
using the AROI method. (Different
markers correspond to different
subjects)

Table 4 Performances of different ROI methods for rPPG in HR measurement for still subjects

Statistic WFROI PFROI Skin mask AROI

Bias (bpm) 0.8 0.8 1.3 0.1
LoA UL (bpm) 10.8 10.8 12.6 5.7

LL (bpm) −9.2 −9.3 −10.0 −5.5
PCC 0.8237 0.8123 0.7851 0.9341
p-value <0.001 <0.001 <0.001 <0.001

Best results are shown in bold
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Compared with the Fourier transform, the wavelet transform can decompose signals with both
frequency and location information. Hence the wavelet filtering can reduce artifacts of the
rPPG signal and maintain the temporal variation of the HR frequency within a temporal
window. Thus, the wavelet filtering-based method performs better than the ABF-based
method, and the AROI can improve the wavelet filtering-based method further. Generally,
the motion-robustness of the AROI approach alone cannot overtake the three benchmark
motion-resistant rPPG methods. However, HR measurement accuracies of all the three
benchmark methods can be improved through being integrated with the AROI approach.
And, all the best results were achieved by the AROI-aided motion-resistant rPPG methods.
This implies that the AROI approach is an effective direction to enhance the rPPG
signal quality, in addition to the chrominance-based approach and the ABF-based
approach.

6.3 Time complexity analysis

A real-time implementation is important for rPPG in health monitoring applications.
Hence, the time complexity is a critical issue to be addressed. The time consumption in
processing a 1-min-long video using every ROI method is shown in Table 10. The video
has a frame rate of 30 fps. This time complexity comparison was performed using a
laptop computer with a 4-core 2.6 GHz CPU. Even though a multi-core CPU was
utilized, the implementation is only single-threaded. The proposed AROI has a higher
time complexity compared with the state-of-the-art ROI methods. However, the AROI
still attains a real-time speed for processing a video with a typical frame rate of 30 fps,
because only 23.16 s are needed for a 1-min-long video.

7 Conclusion

rPPG is a promising technique, which can realize remote human vital signs monitoring.
On the one hand, the remote operation can be very helpful in special situations, such as
monitoring neonates, telemedicine, fitness monitors, etc. On the other hand, the rPPG
signal quality is affected by its remote imaging mode, especially when low-cost cameras
are utilized. The proposed AROI approach can improve the rPPG signal quality through
dynamically selecting skin regions loading good-quality rPPG information as ROI.
Experimental results show that the proposed AROI method achieved a better HR
measurement accuracy than the state-of-the-art ROI methods for rPPG. Besides good
performance in measuring still subjects, the proposed AROI method can also be inte-
grated with other popular motion-resistant rPPG methods to further improve their
performance, because the AROI provides a new effective approach in addition to the
chrominance-based approach and the ABF-based approach. Although only the facial
region was analyzed in this paper, the proposed AROI can also be utilized in other skin

Table 10 Time consumption of processing a 1-min-long video (30 fps) using different ROI methods

ROI method WFROI PFROI Skin AROI

Time consumption (second) 16.2 16.2 21.6 23.16
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areas, such as the palm. Since the proposed AROI approach for rPPG is able to adjust
ROI according to the spatial-temporal rPPG signal quality distribution on a skin region,
we believe that the AROI method can enhance the adaptability of rPPG in practice.

The pipeline of salient region detection can be transferred into the AROI application.
A spatially weighted region contrast is used to describe saliency of a region, like SNR
describing rPPG signal quality after mean-shifting. Then a GrabCut-like segmentation is
performed to extract the saliency mask, just like adaptive thresholding is utilized to
extract the AROI [13]. Han et al. developed stacked denoising autoencoders to model the
background. Then salient objects can be separated from the background through mea-
suring reconstruction residuals of deep autoencoders [36]. Similarly, if there are enough
training data, the deep learning architecture can be utilized to learn the AROI extraction,
with a prior that low-quality rPPG signals are concentrated around the mouth and eyes
regions. With well-developed salient region detection, the AROI extraction may get
refined. In future work, non-rigid face tracking and video segmentation with soft
boundaries will be investigated to enhance rPPG.
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