
Seven-layer deep neural network based on sparse
autoencoder for voxelwise detection of cerebral microbleed

Yu-Dong Zhang1,2,3 & Yin Zhang4 & Xiao-Xia Hou3 &

Hong Chen3 & Shui-Hua Wang1,5

Received: 16 December 2016 /Revised: 20 February 2017 /Accepted: 24 February 2017 /
Published online: 13 March 2017
# Springer Science+Business Media New York 2017

Abstract In order to detect the cerebral microbleed (CMB) voxels within brain, we
used susceptibility weighted imaging to scan the subjects. Then, we used
undersampling to solve the accuracy paradox caused from the imbalanced data
between CMB voxels and non-CMB voxels. we developed a seven-layer deep neural
network (DNN), which includes one input layer, four sparse autoencoder layers, one
softmax layer, and one output layer. Our simulation showed this method achieved a
sensitivity of 95.13%, a specificity of 93.33%, and an accuracy of 94.23%. The result
is better than three state-of-the-art approaches.
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1 Introduction

Cerebral microbleed (CMB) [49] is small foci of chronic blood products in normal
brain tissues. They are closely related with glomerular filtration [35], dementia [55],
cortical superficial siderosis [26], and ageing [16]. They are important recognized
entity with the rapid development of magnetic resonance imaging (MRI) especially the
susceptibility weighted imaging (SWI). The hemosiderin within CMB foci is
superparamagnetic, which causes significant local inhomogeneity in the magnetic field
around CMB, leading fast decay of MRI signal. Hence, CMB appear hypointensity in
the scanned image.

Traditional interpretation depends on the MARS (microbleed anatomical rating scale) [22]
that draws up stringent rules to classify CMB into two types: Bdefinite^ and Bpossible^ [3].
Nevertheless, the manual interpretation are not reliable due to the high intra-observer and inter-
observer variability. Visual screening is prone to either confuse with CMB mimics or miss
small CMBs [46].

In the last decade, computer scientists tried to solve this problem based on computer vision
and image processing techniques. Fazlollahi (2015) [20] combined multi-scale mechanism and
Laplacian of Gaussian approach. They abbreviated it as MSLoG. They also used random
forest (abbreviated as RF) classifiers. Seghier (2011) [54] proposed a microbleed detection via
automated segmentation (MIDAS) technique. Barnes (2011) [4] relied on a statistical
thresholding algorithm to detect the hypointensity. They then used support vector machine
(SVM) classifier to separate true CMB from others. Bian (2013) [6] employed a 2D fast RST
to detect putative CMBs. Afterwards, false results were removed using features of geometry.
Kuijf (2012) [27] presented a radial symmetry transform (RST) method. Charidimou (2012)
[8] discussed the principles, methodologies, and rational of CMB and its mapping in vascular
dementia. Bai (2013) [2] detected CMBs in super-acute ischemic stroke patients treated with
intravenous thrombolysis. Roy (2015) [52] proposed a novel multiple radial symmetry
transform (MRST) and RF method. Chen (2016) [9] used leaky rectified linear unit (LReLU).
Hou (2016) [24] proposed a four-layer deep neural network (DNN) method.

Nevertheless, the detection accuracy of above methods are still quite low. For example:
Bai’s method [2] combined multi-modality imaging, but they did not use computer vision
approach to increase the identification performance. Roy’s method [52] obtained a sensitivity
of 85.7%, which is quite higher than human interpretation, but it did not explore the power of
computer vision fully. Chen’s method [9] validated that LReLU performed better than other
activation functions, but that study lacks theoretical analysis. Hou’s method [24] showed DNN
has better result, but the structure of their DNN is shallow, which did not explore the
powerfulness of DNN.

Recently, the Bdeep learning^ technique [19] has been proposed for machine learning. It
gained burning interests and achieved remarkable achievements. The AlphaGo [10] just used
deep learning to beat the world champion in five-game match. It is the 1st time that a computer
machine beats a 9-dan professional [56]. Besides, deep learning has been successfully applied
in system identification [51], human activity recognition [50], video tracking [60], facial
retouching detection [5], etc.

In this study, we aimed to use the deep learning technique to realize the CMB detection. We
chose to use the sparse autoencoder (SAE) and softmax classifier. The structure of remainder is
organized as follows: Section 2 gives the details of subjects. Section 3 presents the method-
ology. Section 4 offers the results and discussions. Finally, Section 5 concludes the paper.
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2 Subjects

Ten cerebral autosomal-dominant arteriopathy with subcortical infarcts and
Leukoencephalopathy (shorted as CADASIL) patients and ten healthy controls (HCs)
were enrolled. We reconstructed the 3D volumetric image by Syngo MR B17 soft-
ware. The size of each subject is the same as 364x448x48.

Three neuroradiologists with over twenty years of experiences carried out manual
detection of CMBs. The labelled Bpossible^ and Bdefinite^ were all regarded as CMB
voxels, and others were regarded as non-CMB voxels. CMB voxels are shown within
the red curve in Fig. 1. The exclusion criteria contains two rules: (1) blood vessels
were discarded by tracking through neighboring slices; (2) lesions larger than 10 mm
were not considered.

2.1 Dataset generation

Sliding neighborhood processing (SNP) technique was employed to generate the input and
target datasets from the 20 volumetric 3D brain images. We process on each slice of each
subject. As we know, the neighborhood of a pixel p is a matrix, we vectorize this matrix to
form a input sample x, then the status of the central pixel is defined as its target value y.
Mathematically,

(a) SI = 12 (b) SI = 15 (c) SI = 18 

(d) SI = 21 (e) SI = 24 (f) SI = 27

Fig. 1 Slice of cerebral microbleed, SI represents slice index (The SWIs were scanned by 3 T SIEMENS Verio
scanner with station of MRC 40810. Slice number = 48, sequence = swi3d1r, flip angle =15 degree, The bit
depth = 12, resolution = [0.5 × 0.5 × 2]mm3, slice thickness = 2 mm, echo time = 20 ms, repetition time = 28 ms,
bandwidth =120 Hx/px)
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x pð Þ ¼ V N pð Þf g ð1Þ

y pð Þ ¼ 1 p is CMB voxel
0 p is non‐CMB voxel

�
ð2Þ

where N represents the neighborhood and V represents the vectorization operation. The final
input dataset X and target dataset Y are formed by processing all voxels in set A.

X ¼ x pð Þjp∈Af g ð3Þ

Y ¼ y pð Þjp∈Af g ð4Þ
Here A represents the voxels of all slices of all subjects except the border.
In this study, we choose the window size of 61 × 61 pixels, namely, the voxels of

30-pixel borders are discarded as shown in Fig. 2. The window moves towards right
and down so as to cover the set A. Finally, we generated 68,847 CMB voxels and
113,165,073 non-CMB voxels.

2.2 Accuracy paradox

The imbalanced data will cause severe problem to the classification [30, 41, 43], since
now the non-CMB voxels are 1644 times of CMB voxels. The classifier is prone to
be trained nonsense as output 1 always. This will give the performance in Table 1.
The sensitivity is 0%, the specificity is 100.00%, and the accuracy is 99.93%. This
suggests us the specificity and accuracy are not a good indicator in this study.
Therefore, we will focus more weight on the sensitivity measure.

This imbalanced data problem arise from the area of foci of microbleed is ex-
tremely small compared to healthy tissues. This causes the Baccuracy paradox [59]^ as
shown in Table 1. Many methods can solve or mitigate the imbalanced data problem,
such as cost function based techniques [25] and sampling based approaches [15, 21].

Fig. 2 The relationship of
window size and border width
(Green represents the border area,
red rectangle represents the
window, red dot represents the
central voxel, blue area represents
the set A in this slice)
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In this study, we use the undersampling technique [1] to reduce the 113,165,073 to
68,854 samples.

3 Methodology

Artificial intelligence has developed four phases in medicine. Originally, expert system or
knowledge-based systems write hard-code knowledge or rules in their programs. Later,
traditional machine learning approaches used handcrafted features: (1) the physical features,
for example, the cortical thickness, the area of some specific brain tissue; (2) the mathematical
features, for example, wavelet transform [37], wavelet entropy [33], contourlet transform [23],
fractional Fourier transform [7, 28, 57], gray-level co-occurrence matrix [45], eigenvector [47],
and etc.

In the last decade, representation learning (RL) aimed to learn features from data. Its goal is
to discover low-dimensional features, which can capture the structure of the input high-
dimensional brain images. Several years ago, the deep learning was proposed to learn simple
and abstract features by multiple layers. The four phases are depicted in a Venn diagram shown
in Fig. 3. Especially, the latest deep learning techniques have shown successful application in a
massive of fields. Li (2016) [31] used deep neural network in underwater image descattering.
Morabito (2017) [44] employed deep learning representation to detect early-stage Creutzfeldt-
Jakob disease. Tabar (2017) [58] used deep learning approach to classify EEG motor imagery
signals. All these methods have shown the superiority of deep learning to traditional schools of
artificial intelligence.

Currently, there are too types of mature deep learning techniques. One is the convolutional
neural network (CNN). The other is the autoencoder. The CNN was inspired by animal visual
cortex, but the overfitting may happen when applying complicated full-connected layers [32].
The autoencoder is famous for its learning generativemodels of data. Besides, it is easy to create
its model and to train it. In this study, we choose the sparse auto-encoder and softmax classifier.

3.1 Autoencoder

Autoencoder is a symmetrical neural network that learns the features in an unsuper-
vised manner. The autoencoder is successfully applied in image reconstruction [42],

Table 1 A nonsense classifier
with higher accuracy Measure Result

Behavior Output 1 always
Sensitivity 0%
Specificity 100.00%
Accuracy 99.93%

Ar�ficial
Intelligence

Machine
Learning

Representa�on
Learning

Deep
Learning

Fig. 3 Four phases of artificial
intelligence
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image super-resolution [63], prediction [53], etc. The structure of AE is shown in
Fig. 4, where the encoder part is with weight E = [e(1), e(2), …, e(m)] and bias
B1 = [b1(1), b1(2), … b1(m)], the decoder part is with weight D = [d(1), d(2), …,
d(m)] and bias B2 = [b2(1), b2(2), … b2(m)]. The encoder and decoder parts combined
and make the output data Y = [y1, y2, …, yn] to be equal to input vector X = [x1, x2,
…, xn]. Suppose the activation function is logistic sigmoid form, we have

ai ¼ sigm e ið Þ � xþ b1 ið Þð Þ ð5Þ

where A = [a1, a2,…, am] is the output of hidden layer. Then, the decoding ofA is carried out as

yi ¼ sigm d ið Þ � ai þ b2 ið Þð Þ ð6Þ

3.2 Sparse autoencoder

To minimize the error between the input vector X and output Y, we can yield the objective
function as

J E;D;B1;B2ð Þ ¼ 1

2
Y−Xk k2 ð7Þ

From eq. (5)(6), we can deduce Y can be expressed as

Y ¼ h X jE;D;B1;B2ð Þ ð8Þ
Hence, eq. (7) can be revised as

J E;D;B1;B2ð Þ ¼ 1

2
h X jE;D;B1;B2ð Þ−Xk k2 ð9Þ

To avoid over-complete mapping or learn a trivial mapping, we add one regularization term
on the weight and one regularization term of a sparse constraint:

X A Y

Input

Hidden

Output

E D

Encoder Decoder

Fig. 4 Structure of an
autoencoder (X the input vector, Y
output vector, E the weight matrix
of encoder part, D the weight
matrix of decoder part, A the
output of hidden neuron)
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J E;D;B1;B2ð Þ ¼ 1

2
h X jE;D;B1;B2ð Þ−Xk k2 þ α∑

j
K ρ; ρ j

� �
þ β E Dk k22 ð10Þ

where α is the weight of sparse penalty, and β the regularization factor controlling the degree
of weight decay. K() is the Kullback-Leibler divergence defined as

K a; bð Þ ¼ a� log
a
b
þ 1−að Þ � log

1−a
1−b

ð11Þ

The symbol ρ represents the desired probability of being activated, and ρj the average
activation probability of j-th hidden neuron. The training procedure is performed by scaled
conjugate gradient descent (SCGD) method.

3.3 Softmax classifier

The softmax classifier is put as the last layer in the deep neural network, aiming to
classifying the learned features from sparse autoencoders beforehand. Remember that
a logistic regression is a binary classifier with definition as:

h xjθð Þ ¼ 1

1þ exp −θTx
� � ð12Þ

where θ represents the model parameters.
In contrast, the softmax classifier use softmax as the activation function and it can be

regarded as a multinomial logistic regression with output has k values as:

h xjθð Þ ¼
p y ¼ 1jx; θð Þ
p y ¼ 2jx; θð Þ

:::
p y ¼ kjx; θð Þ

2
664

3
775 ¼ 1

∑
j
exp θTj x

� �
exp θT1 x

� �
exp θT2 x

� �
:::

exp θTk x
� �

2
664

3
775 ð13Þ

The values of parameters θ can be obtained by iterative optimization algorithm on
the loss function, which used cross entropy in this study. The softmax classifier can
be regarded as the multinomial logistic regression [64].

Encoder

Decoder

Input Code

Encoder

Decoder

Code So�max Output

1st SAE Layer

4th SAE Layer

Input
Layer

Encoder

Decoder

Code

2nd SAE Layer

Encoder

Decoder

Code

3rd SAE Layer

So�max
Layer

Output
Layer

Fig. 5 Pipeline of our deep neural network structure
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3.4 Deep neural network structure

The SAE was stacked to extract brain image features gradually. The feature code of each
hidden layer was transmitted to next layer, as shown in Fig. 5.

The structure of the proposed deep neural network (DNN) was established in Fig. 5. Here
we create a seven-layer DNN, consisting of one input layer, four SAE layers, one softmax
layer, and one output layer. The four SAE layers share the same structure, but their sizes are
different. The size of each layer was selected by experience:

& The input layer has 61*61 = 3721 neurons;
& The first SAE layer has 1500 hidden neurons;
& The second SAE layer has 900 hidden neurons;
& The third SAE layer has 500 hidden neurons;
& The fourth SAE layer has 100 hidden neurons;
& The softmax has one neuron indicates CMB voxel or non-CMB voxel;
& The output layer is directly linked to the softmax layer.

In total, we create a seven-layer DNN with structure of 3721–1500–900-500-100-1-
1. Remember weights and biases are assigned to only the SAE and softmax layers,
they are not assigned to the input and output layer. For statistical analysis, 10-fold
cross validation [65] was used, and the average out-of-sample error was reported. The
SAE is reported to have better performance than support vector machine (SVM) [17]
and its variants: the fuzzy SVM [61], generalized eigenvalue proximal SVM [34], and
twin SVM [62].

4 Results and discussions

The program was developed in-house via the Neural Network Toolbox in Matlab R2016a. We
used the functions of the built-in Bautoencoder^ class. The programs were run on the IBM
laptop with 3.2GHz i5–3470 CPU, 4GB RAM, and Windows 10 operating system.

(a) Nine CMB voxels (b) Nine non-CMB voxels

Fig. 6 Generated 61 × 61 neighborhoods of central voxels
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4.1 Sliding neighborhood

The sliding neighborhood technique extracts the neighborhood of central voxel as the input of
each sample, and the status of that central voxel as the target. Figure 6 shows nine examples of
CMB voxels and nine examples of non-CMB voxels. We can observe that the 61 × 61
neighborhood is large enough for the human interpretation, thus, the window size is
reasonable.

4.2 10-fold segmentation

We divide the 137,701 samples into 10 folds at random. The detailed results are
shown in Table 2. Here the sum of samples in each fold is equal to 137,701, for all
10 runs. This segmentation meets the requirement of stratification, i.e., the class
distribution at each fold are almost the same. Take the first row as an example, it
means the first fold contains 13,771 samples (6885 CMB samples and 6886 non-CMB
samples), the second fold contains 13,770 samples (6885 CMB samples and the same-
size non-CMB samples), the third fold also contains 13,770 samples with each class
of 6885, the fourth fold contains 13,770 samples (6884 CMB samples and 6886 non
CMB-samples), and the fifth to tenth fold contains 13,770, 13,771, 13,770, 13,770,
13,770, 13,769 samples, respectively.

4.3 Identification result

We report the 10 × 10-fold cross validation identification result of our seven-layer
deep neural network in Table 3. Taking the first run as an example, our algorithm
identifies [6406 6346 6450 5975 6749 6422 6417 6777 6804 6718] CMB voxels and
[6841 6182 6082 6565 6617 6371 6129 5977 6632 6450] non-CMB voxels correctly
over the ten folds. Summarizing both CMB voxels and non-CMB voxels, we identify
[13,247 12,528 12,532 12,540 13,366 12,793 12,546 12,754 13,436 13,168] voxels
correctly over ten folds. In ten folds, we identified correctly 65,064 CMB voxels and
63,846 non-CMB voxels at the first run.

Some latest feature extraction methods may increase the identification performance,
such as: curve structure [13, 14], Zernike moment [18], fractional dimension [11], etc.
Furthermore, some traditional classifiers, for example, extreme learning machine [36],
linear regression classifier [12], and Bayesian classifier [48] will be taken as compet-
ing classifiers in the future studies.

(R.I. Run Index, F.I. Fold Index, a + b = c represents a samples correctly
identified as CMB voxels and b samples correctly identified as non-CMB voxels. In
total, c samples are identified correctly.

4.4 Measures of classification performance

The classification performance of our method over 10 runs of 10-fold cross validation is
shown in Table 4. On average, the sensitivity is 95.13 ± 0.84%, the specificity is
93.33 ± 0.84%, and the accuracy is 94.23 ± 0.84%. The sensitivity is the most important
measure, since it can detect the CMB from healthy control. The specificity is less important,
since misclassification of healthy people can be corrected in further diagnosis.
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4.5 Comparison to state-of-the-art

Finally, we compare this 7-layer SAE-DNN method with MRST + RF [52], LReLU
[9], and 4-layer DNN [24]. The comparison results in Table 5 and Fig. 7 showed that
our method gives better results in sensitivity and accuracy. The MRST + RF [52]
method gives the highest specificity. In all, our method is better than both MRST +
RF [52] and 4-layer DNN [24] in terms of sensitivity and accuracy.

Our specificity result of 93.33% is lower than MRST + RF [52] of 99.5%.
Nevertheless, in clinical condition, the sensitivity (i.e., to identify CMB voxel) is
the most important. The low specificity (i.e., to identify non-CMB voxel) can be
second-checked by human neuroradiologists in a fast way. In the future, we shall test
convolutional neural network [38]. We shall also try to generalize our method to real-
time visual system [29].

A shortcoming of our method is that for SWI images from two scanners with
different setting, the contrast of gray-level image may differ. To solve the problem, we
may need to use Bimage enhancement [39]^ or Blight compensation [40]^ techniques.

5 Conclusions

In this study, our team proposed a new 7-layer SAE based deep neural network for
cerebral microbleed detection. The results showed that this method is promising and
gives better results than three state-of-the-art methods: MRST + RF [52], LReLU [9],
and 4-layer DNN [24].

Table 4 Classification Performance of our method (Unit: %)

R.I. Sensitivity Specificity Accuracy

1 94.51 92.73 93.62
2 94.78 92.98 93.88
3 94.98 93.17 94.08
4 95.68 93.90 94.79
5 94.52 92.73 93.62
6 94.29 92.47 93.38
7 94.21 92.34 93.28
8 95.56 93.70 94.63
9 96.72 94.88 95.80
10 96.10 94.31 95.21
Average 95.13 ± 0.84 93.33 ± 0.84 94.23 ± 0.84

(R.I. Run Index)

Table 5 Comparison of voxel-based identification (Unit: %)

Method Sensitivity Specificity Accuracy

MRST + RF [52] 85.7 99.5 ~
LReLU [9] 93.05 93.06 93.06
4-layer DNN [24] 93.40 93.05 93.23
7-layer SAR-DNN (Proposed) 95.13 93.33 94.23
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In the future, we shall enroll more subjects to increase the reliability and robustness of our
method. Besides, we shall test other advanced classifiers, such as linear regression classifier,
extreme learning machine, etc.
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