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Abstract Convolutional neural networks have achieved great success in many computer
vision tasks. However, it is still challenging for action recognition in videos due to the intrin-
sically complicated space-time correlation and computational difficult of videos. Existing
methods usually neglect the fusion of long term spatio-temporal information. In this paper,
we propose a novel hybrid spatio-temporal convolutional network for action recognition.
Specifically, we integrate three different type of streams into the network: (1) the image
stream utilizes still images to learn the appearance information; (2) the optical stream
captures the motion information from optical flow frames; (3) the dynamic image stream
explores the appearance information and motion information simultaneously from gener-
ated dynamic images. Finally, a weighted fusion strategy at the softmax layer is utilized to
make the class decision. With the help of these three streams, we can take full advantage
of the spatio-temporal information of the videos. Extensive experiments on two popular
human action recognition datasets demonstrate the superiority of our proposed method
when compared with several state-of-the-art approaches.
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1 Introduction

With the tremendous growth of video capturing devices and storage space, video data have
increased explosively. Meantime, human action recognition in videos has attracted much
attention in the computer vision community due to the wide applications in video surveil-
lance, multimedia analysis, human-computer interaction and healthcare. Although many
efforts have been devoted into this domain, it is still challenging for action recognition
because of the following two main reasons: (1) the low quality of video such as low res-
olution, camera motion and cluttered background; (2) the large intra-class variances due
to the different motion speeds, intensity of illumination, and viewpoints. The crucial step
for dealing with these obstacles is to design robust feature extraction method. As far as we
known, there are mainly two categories of video feature representation in action recognition,
hand-crafted features and deep-learned ones.

In the first category, the researchers use the hand-crafted local features including Cuboids [6],
Space Time Interest Points [17], improved Dense Trajectories [31] and so on. The extrac-
tion of these features often consists of two steps: key points detection and feature extraction.
However, the dimension of these local features is relative high and it thus increases the com-
putational complexity. Besides, these hand-crafted local features may lack discriminative
capacity for action recognition and are not optimal for visual representation.

In the second category, the researchers develop various deep neural network architec-
tures to extract features, which have achieved great success in visual recognition recently.
Based on the type of network architectures, we can further divide these works into three
types. The first type of architecture uses 2D convolutional neural networks [2, 8, 13, 25,
32]. These architectures can utilize the power of pre-trained model on image recognition,
but lose the capability for capturing spatio-temporal information simultaneously. The sec-
ond type of architecture uses 3D convolutional neural networks [4, 11, 29]. They extend
the 2D convolutional filters to 3D and apply them into the action tubes to capture spatio-
temporal information simultaneously. Although this architecture exactly suits the video data
structure for modeling spatio-temporal information, the initialization of parameters in net-
work can not utilize the existing models which are pre-trained on large scale labelled image
datasets. The third type of architecture is a hybrid [7, 38] of convolutional neural networks
and recurrent neural networks since the recurrent neural networks can model the temporal
information better. But the procedure for joint training is complex and the optimal solution
is hard to be obtained.

In this paper, we proposed a novel hybrid spatio-temporal convolutional network by
combining dynamic image stream with spatial and temporal streams to take full advantage
of spatio-temporal information. In order to understand the information these three streams
contain, we give an example of RGB image, optical flow image and dynamic image in
Fig. 1. Our work is mainly inspired by Two-Stream networks [25], although the combina-
tion of spatial stream and temporal stream can fuse the appearance and motion information
to obtain better performance, we find that it still has limit in temporal modeling because the
spatial stream only trained on single still frames and the temporal stream which used optical
flow loses much appearance details. To better incorporate the appearance information and
the motion information, we introduce a novel dynamic image stream into the whole archi-
tecture. By using a ranking machine [2] to encode temporal evolution of frames in video,
dynamic image can preserve details of objects as well as the motion information in a relative
long time period simultaneously.
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This paper has three main contributions:

(1) An improved dynamic image network is proposed and evaluated to show that dynamic
images can capture spatio-temporal information simultaneously.

(2) We propose a novel hybrid spatio-temporal convolutional network by combining
dynamic image stream with spatial stream and temporal stream to explore spatio-
temporal information.

(3) Our approach obtains state-of-the-art performance on HMDB51 dataset (70.4 %) and
comparable performance on UCF101 dataset (94.1 %).

The rest of this paper is organized as follows. In Section 2, some related networks are intro-
duced and discussed. Section 3 provides the proposed approach, including network archi-
tectures, training and testing details. The experimental results are presented and discussed
in Section 4. We draw the conclusions in Section 5 finally.

2 Related work

Researchers have devoted much efforts to design discriminative feature representations
and effective classifiers in action recognition for decades. Many local image features have
been generalized to videos such as 3D SIFT [21], extended SURF [37], 3D HOG [14].
These local features extracted around the detected interest points represent the 3D volumes.
Recently the improved Dense Trajectories [31] has shown to be successful on a number
of challenging datasets. Specifically, the information is encoded by HOG, HOF and MBH
along with the trajectory to represent the action in video. However, these local features are
designed specifically and hard to be generalized to other scenarios. Besides, they also lack
enough high-level semantic information. To deal with these issues, Actons [48] and Action
Banks [20] was proposed. In order to utilize the relations between action categories, Yang
et al. [45] proposed a novel method based on multi-task learning framework with super-
category. Alfaro et al. [1] proposed a novel scheme to quantify relative intra and inter-class
similarities among local temporal patterns. For the action recognition on RGBD datasets,
several methods have been proposed such as multi-modal multi-part learning framework
[22], discriminative multi-instance multi-task learning framework (MIMTL) [43], bilinear
heterogeneous information machine [15], and latent max-margin multi-task learning frame-
work [44]. There are also some interesting works related to surveillance system, such as
video structural description (VSD) [39–42] which represents and organizes the content in
videos, and correspondence structure learning [24] for person re-identification and so on.

Fig. 1 Examples of RGB image, optical flow image and dynamic image. a: The RGB image contains scenes
and objects information. b, c: The optical flow (x, y directions) reflect the motion information. d: The
dynamic image contains appearance and motion information both
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These hand-crafted methods are highly depended on expert knowledge to design and can
not be trained in an efficient end-to-end way.

The great success of deep convolutional neural networks has attracted researchers to uti-
lize deep features for action recognition. Ji et al. [11] extended 2D convolutional filters to
3D to apply them to the video tubes directly. The C3D model [29] used 3D convolutions and
3D pooling to explore spatio-temporal information simultaneously. These 3D models can
not utilize the existing models which are pre-trained on large scale labelled image datasets.
Some works use recurrent neural network to model the temporal evolution such as LRCN
[7] and hybrid of CNN and LSTM framework [38]. But the complex joint training procedure
and much parameters make it hard to obtain optimal soluiton. When the attention mech-
anism is introduced in action recognition, a simple soft attention mechanism [23], Video
LSTM model [18] and two stream hierarchical attention model [36] are proposed. But these
methods need specifically designed regularizer to guide the attention mechanism. In order
to overcome the problem of limited temporal modeling, Feichtenhofer et al. [8] proposed
several spatiotemporal fusion methods of video snippets. There are also excellent works
[4, 47] for accelerating the speed of action recognition while preserving acceptable perfor-
mance. Among these deep-learned methods, the most representative work is Two-Stream
ConvNets [25] which uses two individually trained and complementary streams, i.e., spa-
tial stream and temporal stream. This method firstly obtained comparable performance with
hand-crafted features and we design our model based on it in this paper.

Recently, researchers have devoted much efforts to the temporal modeling due to the
temporal evolution information is more discriminative for action recognition. The Temporal
Segment Networks [34] segments the video into several clips and does sparse sampling in
each clip to model the long term temporal information. Their experimental results show
that themodel can focus onuseful informationon thewhole video.Bilen et al. [2] proposed a novel
compact representation of videos: dynamic images. The dynamic images are generated by
encoding the order of each frame in the video to capture the dynamics evolution.

Among these approaches, the Temporal Segment Networks [34] and Dynamic Image
Networks [2] are most close to us. They both focus on modeling a long term temporal
evolution and explore the appearance information and motion information to improve the
performance. However, Temporal Segment Networks just divides the video into several clips
and it is still hard to capture dynamic information between RGB frames in spatial stream.
While dynamic images naturally capture a relative long term dynamics due to that it is
generated by encoding a length of L (e.g. L = 20) consecutive frames and meanwhile it
conveys complementary information both with still images and optical flow images. In this
paper, we adopt dynamic image stream as the third stream and combine it with original two
streams to take full advantage of spatio-temporal information.

3 Proposed approach

In this section, we describe the proposed hybrid spatio-temporal convolutional network for
action recognition in details. Firstly, the overall frameworks is presented in Section 3.1.
Then we describe the network architectures, training details in Section 3.2. Finally, the
testing details is introduced in Section 3.3.

3.1 Hybrid spatio-temporal convolutional neural network

In this section, we propose a novel hybrid spatio-temporal convolutional network for
action recognition and the framework is illustrated in Fig. 2. This framework contains
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Fig. 2 Hybrid spatio-temporal convolutional networks: the network consists of three inputs, single RGB
image, stacked optical flow and single dynamic image. The class scores is fused at the softmax layer to
combine the motion and appearance information. Notice that each Inception block here has more than one
Inception layers

three individual and complementary streams: spatial stream, motion stream and dynamic
image stream. In the spatial stream, the RGB still images which contain the appearance
information are processed. Similarly, the optical flow images which contain motion infor-
mation are processed in the temporal stream. In the dynamic image stream, the dynamic
images which take the correlation of space-time are processed. In the following we give
a detailed description of each stream and summarize the advantages of our proposed
scheme.

Spatial stream In this stream, the frames of the whole video have same label regardless
that they are different from each other. We input the still images and obtain class scores at
the softmax layer of this stream. As we can see, still RGB images contain static appear-
ance information such as color, texture, particular scenes and objects. These information
are strongly associated with the performed action. For example, the bow always exists in
the archery action and horse always exists in the horse riding action. However, the lim-
its of using still RGB images in action recognition are obvious. The cluttered background
of video would decrease the performance and different action may have similar patterns
in RGB images. For example, smiling and laughing, as well as walking and jogging. Only
using static appearance information would result in confusion of which action is exactly
performed.

Temporal stream This stream is intended to model the motion evolution of action. Here
we use stacked optical flow fields to represent a motion pattern during a period of time
and use them as the inputs of the stream. In this stream, various stacked optical flow in a
video have same class label and they are calculated to obtain class scores at the softmax
layer. Here we give a detailed description of optical flow. Assuming the intensity of light is
basically consistent in corresponding region, optical flow is calculated via the relative move-
ment between two consecutive frames. As an example in Fig. 3, we use dt (x, y) to denote
the displacement vector at the point (x, y) in the t th frame, which reflects the movement
from current point to corresponding point in the following (t + 1)th frame. The dt (x, y)
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Fig. 3 Optical flow. a, b: Two consecutive frames with the area around a moving golf stick outlined with
a red rectangle. c: A close-up of dense optical flow in the outlined area. d, e: The horizontal and vertical
component of displacement vector fields

is composed of the horizontal vector dh
t (x, y) and vertical vector dv

t (x, y). Based on the
consistency between two consecutive frames, we obtain the equation as bellow:

I (x, y, t) = I
(
x + dh

t , y + dv
t , t + 1

)
, (1)

where I (x, y, t) represents the image function(i.e. gray value) of pixel at the location of
(x, y) at time t . The linearized version of the equation by using the first-order Taylor
approximation is illustrated as

I (x, y, t) ≈ I (x, y, t + 1) + ∇I (x, y, t + 1)T dt (x, y)

0 = I (x, y, t + 1) − I (x, y, t)︸ ︷︷ ︸
It (x,y,t+1)

+∇I (x, y, t + 1)T dt (x, y). (2)

Then we obtain the optical flow constraint (OFC) equation as bellow:

OFC(dh
t , dv

t ) : 0 = It + Ixd
h
t + Iyd

v
t , (3)

where the partial derivatives of image function (i.e. gray value) are denoted as It , Ix , and
Iy . Finally, we use this constraint and various methods to obtain the optical flow vector dh

t

and dh
t . The methods and equations are complex so we do not illustrate more details in this

paper due to we only use optical flow as one of the feature representations.
The experimental results show that the optical flow information is more discriminative

than still RGB appearance information. However, it is ambiguous because of a single optical
flow characterizes accurate motion information such as the moving violently block of the
current frame. Besides, it also can be affected by subtle motion of camera.

Dynamic image stream This stream is an important component of our proposed work.
We utilize the appearance and long term dynamics which are encoded in dynamic images
to model the correlation of space and time. In this stream, the dynamic images are treated
as RGB images for training and testing and calculated to obtain class scores. We give an
example in Fig. 4 and clearly observe that the background is removed and the motion pattern
is shown in dynamic image.

In this section, we firstly give the formulation used to generate dynamic images. Then we
present the derivation of approximate rank pooling method due to its good balance between
efficiency and accuracy. Finally, we describe the pipeline of the generation. It should be
noticed that the process of generation is basically following the original work.
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Fig. 4 Generation of dynamic images. a, b, c: RGB frames during a period of time. d: The generated
dynamic images. We can clearly observe that the background is removed and the motion pattern is shown in
dynamic image

The core idea of dynamic image is encoding the order of frames into the video repre-
sentations. The objective function for obtaining a optimal dynamic image d is presented
bellow:

E(d) = λ

2
‖d‖2 + 2

T (T − 1)
×

∑
q>t

max{0, 1 − S(q|d) + S(t |d)}, (4)

where the first term is usual quadratic regularizer and the second term is penalty for incorrectly
ranking pairs. In here,

q > t ⇒ S(q|d) > S(t |d), (5)

and
S(i|d) = 〈d, Vi〉, i = q, t, (6)

Vi is the representation at time i which includes the information happened in past, and q, t

are time steps. Then we give the derivation of approximate rank pooling is as bellow:

∇E(0) ∝
∑
q>t

∇ max{0, 1 − S(q|d) + S(t |d)}|d=0

∝
∑
q>t

∇ max{0, 1 − 〈d, Vq〉 + 〈d, Vt 〉}|d=0

=
∑
q>t

∇〈d, Vt − Vq〉 =
∑
q>t

Vt − Vq. (7)

Then (7) can be formulated into (8),

d∗ ∝
∑
q>t

Vq − Vt =
∑
q>t

⎡
⎣ 1

q

q∑
i=1

φi − 1

t

t∑
j=1

φj

⎤
⎦ =

T∑
t=1

αtφt , (8)

where φ is the feature vector extracted from one single frame and V is the time varying
mean representations of frames. The final coefficient αt is presented as bellow:

αt = 2(T − t + 1) − (T + 1)(HT − Ht−1), (9)

where Ht = ∑t
i=1 1/i and we set H0 = 0.

For the generation process, we firstly choose T consecutive frames and perform a non-
linear transformation (e.g. square root operation) to each frame. Then we use the coefficients
calculated above to generate the initial dynamic images. Finally a minmax normalization
for each color channel is performed and final dynamic image is merged from them.

The combination of spatial stream, temporal stream and dynamic image stream can
model the whole action better by capturing appearance information and motion information.
The dynamic image stream we added play an important role as richer feature representation
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which modeling appearance and long term motion information simultaneously. It can alle-
viate the problems caused by spatial stream (e.g. the spatial stream is only trained on single
still image) and temporal stream (e.g. the temporal stream only capture relative short term
dynamics).

3.2 Network training

In this paper, we adopt the Inception Network [28] with Batch Normalization [10] as build-
ing block. The Inception Unit has three convolution subunits and one pooling subunit
meanwhile the size of 5 × 5 filter is replaced with two 3 × 3 size filters. In here adding the
Batch Normalization unit could accelerate the convergence speed. To further improve the
capability of modeling temporal information, we adopt the temporal segment skills [34] to
divide the whole input video into several clips and do spare sampling in each clip at training
stage. The fusion of these three streams are performed at the softmax layer. In here we treat
the generated dynamic images as RGB images for training and testing. To better improve
the capability of generalization, the dropout layer is added and dropout ratio used is set to
0.8 for spatial stream network, 0.7 for temporal stream network and 0.8 for dynamic image
stream network.

3.3 Network testing

The network inputs have three types: RGB images xa which contain appearance informa-
tion, stack of optical flow fields xm which contain motion information, dynamic images
xd which contain appearance and motion information both. These three inputs go through
the convolutional neural network to obtain the class scores of each input. For each training
example x = {xa, xm, xd} with the label k ∈ {1, 2, ..., K}, we compute the class probability
p(k|x) = exp(zk)/

∑K
i=1 exp(zi). Here zi are unnormalized log probabilities. Then based

on these three class scores, a weighted fusion is performed

p(k|x) = wap(k|xa) + wmp(k|xm) + wdp(k|xd) (10)

to obtain the final class scores. The effect of fusing three stream is not like in the original two
stream. Because the fusion of three stream can be seemed as three combination: combination
of spatial stream and dynamic image stream, combination of temporal stream and dynamic
image stream and combination of pure spatial stream and pure temporal stream. The fusion
is illustrated in Fig. 5. In our view this fusion includes three weighted combination of two
stream and the experimental results show the superiority of our approach.

4 Experiments

In this section, we firstly introduce the existing two large and popular action recognition
datasets: UCF101 [27] dataset and HMDB51 [16] dataset in Section 4.1. The training and
testing details for each stream is presented in Section 4.2. The effect of using deeper network
is evaluated in Section 4.3. Then the combination of dynamic images with single RGB and
stacked optical flow is evaluated in Section 4.4. The results show that the dynamic images
not only capture the appearance information but also capture the motion information. In
Section 4.5 we compare our proposed approach to state-of-the-arts to show the superiority
of our approach and we also give some examples to show why our approach can improve
the performance.
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Fig. 5 Original two stream fusion v.s. Three-Stream fusion: compare with two stream fusion, our approach
utilizes dynamic images to better explore spatio-temporal information

4.1 Datasets and evaluation protocol

In order to verify the effectiveness of our proposed method, extensive experiments are
performed in the following challenging datasets. Both of them are widely used in action
recognition. We follow the standard setup and report average accuracy over splits.

UCF101 The dataset annotated 13320 videos into 101 action categories which can be
divided into sports video, human motion, human-object interaction and so on. The videos
are collected from YouTube and in each category the videos are further divided into 25
groups. In each group the background or viewpoint is similar.

HMDB51 The dataset includes 6766 videos which are divided into 51 action categories.
The videos are collected from movies, videos on Google, YouTube and so on. Due to
different sources the background is cluttered and viewpoint is variable.

We follow the evaluation protocol provided by the organizers of datasets: each of them
has three splits for training and testing, and the final accuracy is averaged across the splits.
The details of datasets are presented in Table 1 and the mean accuracy precision is defined
as bellow:

P =
∑

i=1,2,...,C

Pi/C (11)

Where Pi is the accuracy of each category and C is the number of total categories.

4.2 Experiments settings

Training stage In spatial stream, the sizes of frames extracted from the video is various
from video to video. So we follow the operation from the original two stream work and
make the smallest side of frames equal 256. Then a 224 × 224 region is randomly cropped.
Also we adopt the randomly horizontal flipping and scale jittering. At training stage, the
learning rate starts from 0.001 which is reduced by a factor of 10 every 1000 iterations and
stops at 2500 iterations. We use a pre-trained Inception network model on ImageNet [5] to
initialize the parameters of spatial network. The batch size is 32 and split segment is 3.
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Table 1 Details of datasets
UCF101 HMDB51

Action category 101 51

Action type 5 5

Total video clips 13320 6766

Video clips for training ≈ 9600 3570

Video clips for testing ≈ 3700 1530

In temporal stream, we use a stack of 10 consecutive optical flow fields as input. The
optical flow we use in this paper is TVL1 [46] optical flow, which could be computed in
OpenCV with GPU. The optical flow fields are linearly re-scaled to a [0,255] range and
stored as JPEG form to avoid to save them as float type, which would significantly save the
space of storage. The learning rate starts from 0.005 which is reduced by a factor of 10 at
12k, 18k iterations and stops at 20k iterations. The batch size is 30 and we use a modified
pre-trained Inception network model on ImageNet to initialize the parameters of temporal
network. Specifically, the channels of first layer in pre-trainedmodel is averaged and then copied
N times. Here N denotes the number of channel in the first layer for temporal network.

In dynamic image stream, we generate the dynamic images by following the approxi-
mate rank pooling operations from the original dynamic image networks. The window size
used for extracting dynamic images is 20 for UCF101 dataset and 10 for HMDB51 dataset.
The stride is 1 for both datasets. The setting of window size and stride are adopted from the
Discriminative Hierarchical Dynamic Image Networks [9]. For UCF101 dataset, the learn-
ing rate starts from 0.001 which is reduced by a factor of 10 every 3000 iterations and stops
at 6500 iterations. For HMDB51 dataset we use the same learning rate, iterations and batch
size as spatial stream.

Testing stage Notice that we treat dynamic images as RGB images for training and test-
ing. At testing stage we extract 25 frames from one video with equal temporal interval and
average the scores of all 25 samples to compute the final class scores in spatial stream and
dynamic image stream. As for temporal stream, we also extract 25 samples but the differ-
ence is that each sample consists of 10 consecutive fields (x, y directions of 5 consecutive
optical flow).

4.3 Exploration of deeper network for dynamic images

In the original Dynamic Image Networks [2], the researchers used CaffeNet [12] which only
has five convolutional layers and three fully connected layers and did not use any data aug-

Table 2 Evaluation of using
deeper network for dynamic
images

Method UCF101 HMDB51

Rank pooling [2] 72.2 % 40.9 %

Recursive rank pooling [9] 75.6 % 45.8 %

Hierarchical rank pooling [9] 78.8 % 47.5 %

Deeper rank pooling(our) 83.5 % 53.6 %
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Table 3 Comparison between original dynamic image network and our improved version

Original network [2] Our network

Based network architecture CaffeNet-based Inception-based with batch normalization

Data augmentation technology No Yes(multi-scale crop, flip)

Long-term modeling technology No Temporal segment technology [34]

mentation skills, so the performance is relative low. In Discriminative Hierarchical Dynamic
Image Networks [9], the researchers used VGG16 [26] network to extract frame features and
then performed hierarchical rank pooling to obtain higher order dynamic images, however,
the process of extracting dynamic images becomes much complex due to the hierarchical
operation. We use the Inception with Batch Normalization as building block due to its good
balance between accuracy and efficiency. We observe that the result for dataset UCF101
increases from 72.2 % to 83.3 % and for dataset HMDB51 increases from 40.9 % to 53.6 %.
Compared with vanilla rank pooling and hierarchical rank pooling , the experimental results
show that using deeper network with more data augmentation skills could improve the per-
formance significantly and the results are illustrated in Table 2. Table 3 shows the most
significant difference between original dynamic image network and our improved dynamic
image network.

It should be noticed that the results are compared without combination of hand-crafted
features.

4.4 Effectiveness analysis

In this section, we combine the dynamic image stream with appearance stream and temporal
stream respectively and the results are illustrated in Table 4. When we remove each of
the three streams, the performance decrease is presented in Table 5. The results show that
the motion information is crucial for action recognition, and dynamic image stream we
proposed is effective to improve the performance by capturing both appearance information
and motion information.

When we combine the spatial stream and dynamic image stream as two stream, we
observe that the result increases both on UCF101 dataset (over spatial stream 3.0 % and
over dynamic image stream 4.4 %) and on HMDB51 dataset (over spatial stream 5.9 %
and over dynamic image stream 5.3 %). This proves that the dynamic images can cap-
ture motion information to improve the performance on spatial stream. When we combine
the temporal stream with dynamic image stream, we observe the similar improvement on

Table 4 Evaluation of
combination between three
streams

Component UCF101 HMDB51

RGB image 84.9 % 53.0 %

Optical flow 89.7 % 62.1 %

Dynamic image 83.5 % 53.6 %

RGB image + dynamic image 87.9 % 58.9 %

Optical flow + dynamic image 92.4 % 66.5 %

RGB image + optical flow 94.0 % 69.4 %

RGB image + optical flow + dynamic image 94.1 % 70.4 %
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Table 5 Performance decrease
of removing each of three streams Removed component UCF101 HMDB51

Without spatial stream 1.7 %↓ 3.9 %↓
Without temporal stream 6.2 %↓ 11.5 %↓
Without dynamic image stream 0.1 %↓ 1.0 %↓

UCF101 dataset (2.7 % over temporal stream and 8.9 % over dynamic image stream) and on
HMDB51 dataset (4.4 % over temporal stream and 12.9 % over the dynamic image stream).
This shows that the dynamic image is complementary with optical flow. Notice that we use
the weight 1 for spatial stream and 1 for dynamic image stream on UCF101 dataset when
we combine these two streams. Similarly, we set the weight of spatial stream as 1 and set
the weight of dynamic image stream as 1.2 on HMDB51 dataset. As for the combination of
temporal stream and dynamic image stream, we use the equal weight on HMDB51 dataset
and 1:0.7 on UCF101 dataset. The weight is 1:1.5 when we combine the spatial stream and
temporal stream for both datasets. From the division of the weight and the improvement on
each stream, we observe that dynamic image stream performs better on HMDB51 due to
that the background of HMDB51 is more cluttered than UCF101.

4.5 Comparison with the state-of-the-arts

As we observed in Section 4.4, the dynamic images can not only model the motion infor-
mation but also model the appearance information. And in original two stream, the spatial
stream only trained on single frame and the length L of stacked optical flow is relative small
(e.g. 10). These two shortcomings would degrade the performance for action recognition.
So we combine the dynamic image with the original two stream to propose a novel hybrid
spatio-temporal convolutional networks. The results presented in Table 6 shows that our
approach outperforms the state-of-the-art method by 1.0 % on the HMDB51 dataset. The
weight of spatial stream, temporal stream and dynamic image stream is set to 0.8, 1.0, and
0.1 on UCF101 dataset. While the weight of spatial stream, temporal stream and dynamic
image stream is set to 1.1, 2.0, and 0.7 on HMDB51 dataset. In here, we compare our

Table 6 Comparison with the
state-of-the-arts Method UCF101 HMDB51

DT+MVSV [3] 83.5 % 55.9 %

iDT+FV [31] 85.9 % 57.2 %

iDT+HSV [19] 87.9 % 61.1 %

MoFAP [33] 88.3 % 61.7 %

Two Stream [25] 88.0 % 59.4 %

TDD+FV [32] 90.3 % 63.2 %

LTC [30] 91.7 % 64.8 %

KVMF [49] 93.1 % 63.3 %

Transformation CNN [35] 92.4 % 63.4 %

Two Stream Fusion [8] 93.5 % 69.2 %

TSN [34] 94.2 % 69.4 %

Three Stream 94.1 % 70.4 %
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Fig. 6 In the first row, smoking is incorrectly classified as laughing in two streamwhile is correctly classified
in our method. In the second row, punching is incorrectly classified as kicking in two stream while is correctly
classified in our method. In the third row, standing is incorrectly classified as sitting in two stream while is
correctly classified in our method. In the fourth row, hitting is incorrectly classified as fencing in two stream
while is correctly classified in our method

approach with hand-crafted features based methods and deep features based methods both.
Specifically, we choose improved Dense Trajectories (iDT) [31], MoFAP [33] method in
hand-crafted features and Two-Stream ConvNets [25], Convolutional Fusion of Two Stream
[8], Temporal Segment Networks (TSN) [34], trajectory-pooled deep convolutional descrip-
tors (TDD) [32], long term convolution networks (LTC) [30], transformation CNN [35] and
key volume mining framework (KVMF) [49] in deep-learned features.

Besides recognition accuracies, we want to attain further insight about why our approach
can improve performance. From Fig. 6, we can observe that on spatial stream, the appear-
ance information of smoking is similar to the appearance information of laughing. So the
weight of appearance stream is relative high and it may result in this failure. However,
the dynamic image stream can strength the motion information on spatial stream, so it is
classified correctly.

5 Conclusion

In this paper, we firstly explore the deeper network for dynamic images and reveal that
the dynamic images can not only capture appearance information but also motion informa-
tion. Based on this, we proposed a novel hybrid spatio-temporal convolutional network by
combining dynamic image stream with original two stream to explore spatio-temporal infor-
mation. The fusion of three stream shows superiority compared with several state-of-the-art
methods.
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