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Abstract Lung cancer presents the highest cause of death among patients around the world, in
addition of being one of the smallest survival rates after diagnosis. In this paper, we exploit a
deep learning technique jointly with the genetic algorithm to classify lung nodules in whether
malignant or benign, without computing the shape and texture features. The methodology was
tested on computed tomography (CT) images from the Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI), with the best sensitivity of 94.66%, spec-
ificity of 95.14%, accuracy of 94.78% and area under the ROC curve of 0.949.

Keywords Medical image .Lungnodulesdiagnosis .Deep learning.Geneticalgorithm.Particle
swarm optimization

1 Introduction

Lung cancer is the number one cause of cancer deaths presenting an estimated value of 1.8 million
new cases a year [40]. The vast majority of lung cancer cases, about 85%, are due to long-term
tobacco smoking [18]. In Brazil, it is estimated an average of 28,220 cases of lung cancer in 2016,
where 17,330 males and 10,890 females [21]. Early diagnosis can improve the effectiveness of
treatment and increase the patients chance of survival, with a 10-year survival of almost 90% [12, 28].

A lung nodule is defined as a focal opacity whose largest diameter is between 3 mm and
3 cm in length [15]. Lung nodules are commonly found on computed tomography (CT) scan,
as shown in Fig. 1, which is used in the analysis of several lesion types, including lung lesions
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as small as 1 mm in diameter [9]. Notwithstanding, the detection of lung nodules on CT
images is still a challenging task and passive error, considering that the densities of the nodules
may be similar to that of the other lung structures. Furthermore, the nodules may be
characterized by low contrast and small sizes in complex anatomic regions, and they could
be close or joined to blood vessels or lung border [29].

To minimize such errors, a large amount of researches has been conducted to improve computer-
aided diagnosis (CADx) [6, 19, 38]. The basic concept of CADx is to provide for a second objective
opinion for the assistance of medical image interpretation and diagnosis [4]. A traditional CADx
commonly involves several image processing steps and then performs a classification step.

Recently, deep learning techniques have been introduced to the medical image analysis field
with promising results on various applications [32, 39, 43]. Deep learning allows automatically
uncovering multiple levels of features from the training images, without a complicated pipeline of
image processing and classification steps [19]. In the context of CADx, deep learning-based CADx
has two advantages over the traditional ones. Firstly, feature interaction and hierarchy can be
exploited jointly within the intrinsic deep architecture of a neural network. Second, the three steps
of feature extraction, selection and classification can be realizedwithin the optimization of the same
deep architecture, making easier the fining [4].

Thereby, this paper proposes a deep learning model of the convolutional neural network in
conjunction with the genetic algorithm to classify lung nodules in whether malignant or benign
on CT images. As for contributions to the computer science field, we can mention: 1) divide
the nodule in subregions to incorporate local information using Otsu algorithm and particle
swarm optimization, 2) combine multiple convolutional neural networks fed by the nodule and
its subregions simultaneously, sharing the same fully-connected layer and 3) use the genetic
algorithm in order to optimize the network parameters such as number of filters in the
convolutional layers and number of neurons in the fully-connected layer.

The paper is organized as follows. Section 2 presents the related works. Section 3 presents
the proposed methodology for the classification of lung nodules in whether malignant or
benign. Section 4 presents and discusses the results. Finally, the Section 5 presents final
remarks about this paper.

2 Related works

The earlier lung cancer is detected the higher the survival rate [28]. Accordingly, in the
literature, several researches are frequently developed aiming at increasing the accuracy

Fig. 1 Nodule annotated by
radiologist
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of lung cancer diagnosis using CADx systems [3, 4, 7]. Normally, these CADx systems
use as classifiers, the artificial neural network (ANN) and support vector machine
(SVM). Recently, deep learning techniques have been introduced to the CADx systems.
Thereof, the researches were listed here in three groups: ANN classifiers, SVM classi-
fiers and deep learning techniques.

In the artificial neural network-based researches, Chen et al. [3] proposed a method-
ology based on shape features such as size, margins, contour, among others, resulting the
accuracy of 92.2%. Elizabeth et al. [13] proposed a methodology based in a combination
of shape and texture features such as area, eccentricity, smoothness, among others, and
radial basis function, achieving an accuracy of 94.4%, sensitivity of 92.3% and speci-
ficity of 94.9%. Dandil et al. [7] proposed a methodology based on texture features such
as entropy, contrast, correlation, among others, and principal component analysis (PCA),
with the accuracy of 90.6%, sensitivity of 92.3% and specificity of 89.4%. In their part,
Gupta and Tiwari [14] proposed a methodology based on texture features using curvelet
transform, resulting the accuracy of 90%, sensitivity of 86.6% and specificity of 93.3%.
The methodology developed by Kuruvilla and Gunavathi [25] used texture features such
as mean, skewness, kurtosis, among others. The authors achieved an accuracy of 93.3%,
sensitivity of 91.4% and specificity of 100%.

In the support vector machine-based researches, Nascimento et al. [31] proposed a
methodology based on texture features using shannon and simpson indexes and linear
discriminant analysis (LDA), with the accuracy of 92.78%, sensitivity of 85.6% and
specificity of 97.8%. Krewer et al. [23] proposed a methodology based in a combination
of shape and texture features such as, longest diameter, length, Law features, among
other, using correlation-based feature subset selection, resulting the accuracy of 87.8%,
sensitivity of 85.7% and specificity of 89.4%. Orozco et al. [33] proposed a methodol-
ogy based on texture features such as, angular second moment, contrast, correlation,
among others, using best first and k-means, obtaining an accuracy of 84%, sensitivity of
83.3% and specificity of 84.8%. In their part, Huang et al. [20] proposed a methodology
using texture features based on fractional Brownian motion model, with the accuracy of
83.1%. The methodology proposed by Parveen and Kavitha [35] used texture features
such as, contrast, energy, homogeneity, among others, with the sensitivity of 91.38%
and specificity of 89.5%.

In the deep learning-based researches, Hua et al. [19] proposed a methodology based on
two techniques, deep belief network (DBN) and convolutional neural network (CNN), com-
paring to explicit feature computing such as SIFT and fractal analysis. The best results were
achieved using DBN, with sensitivity of 73.4% and specificity of 82.2%. Kumar et al. [24]
proposed a methodology based on autoencoder (AE), resulting the accuracy of 75%. In their
part, Cheng et al. [4] proposed a deep learning-based CADx using stacked denoising
autoencoder (SDAE), comparing to the lung CADx system, denoted as CURVE [38], with
the best accuracy of 95.6%, sensitivity of 92.4% and specificity of 98.9% using SDAE. The
methodology developed by Sun et al. [39] used three techniques, CNN, DBN and SDAE,
achieving the best accuracy of 81.1% using DBN.

The aforementioned researchers present good results. However, some researches use small
samples, low complexity databases, individual nodule analysis and classifiers with parameters and
architecture chosen manually. Thus, we explore the effectiveness of deep learning combined with
genetic algorithm, optimizing the network parameters, in order to improve the performance of the
model, applying in large samples, using local information of subregions of nodule.
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3 Material and methods

The proposed methodology is divided into four steps as described in Fig. 2. In summary, the
first step details the materials used as images of CT scans in the LIDC-IDRI database and the
nodules segmentation. In the second step, nodules preprocessing is performed. Finally, the
diagnostic is completed using the evolutionary convolutional neural network following of the
results evaluation.

3.1 Materials

The image database used in this research is the LIDC-IDRI [1], which is available online
as a result of an association between the Lung Image Database Consortium and the
Image Database Resource Initiative, including 1018 CT scans along with annotations
from up-to four radiologists. Nonetheless, two factors have had negative impact over 185
CT scans so that they were inappropriate to be used for this methodology. Firstly, only
scans including nodules with a diameter larger than 3 mm were annotated with diagnostic
information. The second factor included the divergence of information found in the
annotations file of a scan versus the information present in the DICOM header of the
same scan [6, 8]. For that reason, the annotation is invalidated. The proposed method-
ology was applied to 833 CT scans.

Every single nodule larger than 3 mm annotated by the radiologists is taken into
account and extracted, which leads to up-to 4 annotations per nodule in some cases. The
diagnostic information for each nodule presents ratings between 1 and 5. In this research,
rating 1 and 2 were considered as benign nodule, rating 3 as indeterminate nodule and
rating 4 and 5 as malignant nodule. In the cases with more than one annotation per
nodule, the diagnosis was calculated by computing the histogram to benign, malignant
and indeterminate classes. The final diagnosis is attributed to the class with the highest
absolute frequency. If there is not only a class with the highest absolute frequency, the
nodule is not considered. A total of 3243 nodules (1413 malignant and 1830 benign)
were obtained.

Fig. 2 Proposed methodology
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3.2 Preprocessing

Prior to the nodule classification step, three preprocessing have been performed. The first step
consists of the application of the Otsu algorithm [34] based on particle swarm optimization
(PSO) [11]. The goal of this step is to divide each nodule into two subregions with maximum
inter-class variance. The nodule and its subregions were analyzed simultaneously for the
classification in whether malignant or benign. This process is illustrated in Fig. 3, generating,
therefore, three databases.

The PSO algorithm is an evolutionary technique based on swarm intelligence [11]. Each
particle in the swarm is a potential solution for a targeted problem. In this research, the first
particle is initialized with the two centroids of the subregions generated by the Otsu algorithm.
These centroids represent the particle positions (xi). The remaining particles are initialized with
two numbers, ranging between the minimum and maximum Hounsfield unit (HU) in the
nodule. At each iteration, the particles traverses toward its new best position by altering
another parameter called velocity (vi). The updating equations are as follows.

vi ¼ w:vi þ C1:r1: Pbest− xið Þð Þ þ C2:r2: Gbest− xið Þð Þ ð1Þ

xi ¼ xi þ vi ð2Þ
where, w is the inertia weight which controls the impact of previous history of velocities on the
current velocity, C1 is the cognitive parameter which pulls each particle towards local best
position, C2 is the social parameter which pulls the particle towards global best position, Pbest
is the best position of particle, Gbest is the best position in the whole swarm and r1, r2 are two
independent random numbers between 0 and 1.

The fitness of each particle is evaluated minimizing the intra-class variance between the
subregions of the nodule. The subregions are generated clustering all the voxels in the nodule
to the particle positions which the Euclidean distance is minimal. The process is repeated until
the number of iterations is reached. Once terminated, the particle positions represented by
Gbest are the optimal centroids to the final subregions. The PSO algorithm parameters are
assigned based on Table 1.

The second preprocessing consists of using each two-dimensional CT slice as individual
sample. Since CT scans are three-dimensional images presenting a high slice thickness variation

Fig. 3 Subregions of the nodule generated by Otsu algorithm and PSO
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(0.6-5 mm), three-dimensional features may sometimes be inaccurate due to low resolution on the
z axis [4, 19]. Moreover, it increases the amount of samples in the three databases. Resulting in
21,631 slices of the nodule for each database (13,321 malignant and 8310 benign).

The third preprocessing is the resizing of all nodules and subregions’ slices (regions of
interest - ROIs) in 28 × 28 dimension. This process is due to fully-connected layer on top of the
CNN architecture, which needs fixed input neurons. Slices with smaller dimensions, Fig. 4a,
were extracted and put into background images of 28 × 28. Slices with larger dimensions,
Fig. 4b, were rescaled by setting the higher axis in the dimension 28 and reducing the less axis
proportionally, finally, they were extracted and put into background images of 28 × 28.

3.3 Classification

Convolutional neural networks (CNN) are a biologically-inspired trainable architecture that
can learn multi-level hierarchies of features [27, 30]. The network extracts implicitly features
of visual patterns presented as input and classifies patterns from the extracted features. Typical
CNN usually consist of convolutional layers, pooling layers, neuron layers and fully-
connected layers [22]. Fig. 5 shows the architecture of a basic CNN.

Convolutional layers, as shown in Fig. 6, have trainable filters that are applied across the entire
input, generating feature maps [26]. Each filter detects a particular feature that occurs in any part of
the input [27]. Once a feature has been detected, its exact location becomes irrelevant.

Table 1 Parameters chosen for
PSO implementation Parameter Value

Swam size 18
No. of iterations 60
Inertia weight 0.729
Cognitive parameter 2.05
Social parameter 2.05

Fig. 4 Resizing of slices of the nodule. a)slices with dimensions smaller than 28 × 28 and b)slices with
dimensions larger than 28 × 28
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Pooling layers are non-linear down-sampling layers that yield maximum or average values in
each sub-region of input image or feature maps. Pooling layers increase the robustness of
translation and reduce the number of network parameters [22]. Fig. 7 shows themax-pooling layer.

Neuron layers apply non-linear activations on input neurons. Common activations
are softmax function, sigmoid function, rectified linear unit, etc. Fully-connected
layers are responsible for classifying patterns presented to CNN, generally a multi-
layer perceptron (MLP).

Supervised training is performed using a form of stochastic gradient descent (SGD) to
minimize the discrepancy between the desired output and the current output of the network,
based on some loss function [27]. All the weights of all the filters in all the layers are updated
simultaneously with the backpropagation algorithm [16].

Such neural networks trained with backpropagation admit a large variety of specific
architectures applicable to a wide range of applications [2, 37, 42]. However, not all network
architectures can be expected to learn a given task successfully. Therefore, we propose an
evolutionary approach to this problem. Genetic algorithm (GA) [17] was used to optimize the
CNN parameters such as number of filters in the convolutional layers and number of neurons
in the MLP. The proposed network is described below.

Fig. 5 Convolutional neural network

Fig. 6 Convolutional layer
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3.3.1 Evolutionary convolutional neural network

In order to analyze the malignancy patterns of the ROIs, described in Section 3.2, we propose
three similar basic CNN sharing the same fully-connected layer. The ROIs are submitted
simultaneously to the evolutionary convolutional neural network for the classification in
whether malignant or benign. Fig. 8 shows the proposed architecture.

The individual CNN presents a convolutional layer (C1) followed by rectified linear unit
activation and a max-pooling layer (P 1), another convolutional layer (C2) followed by
rectified linear unit activation, a max-pooling layer (P 2) followed by a dropout layer to help
preventing overfitting, one of the problems that occur during neural network training. The
kernel size of C1 and C2 is 5 × 5 and the kernel size of P 1 and P 2 is 2 × 2.

All of the three CNN sharing the same fully-connected layer on the top of network. The MLP
presents an input layer followed by rectified linear unit activation and a dropout layer, a hidden
layer followed by rectified linear unit activation, at last, an output layer with softmax activation.

The GA optimizes the number of filters in C1 and C2 and the number of neurons in hidden
layer. The chromosomes are encoded as a list of three positive integers, called gene, corre-
sponding to the parameters to be optimized. GA operates according to the following algorithm:

Fig. 7 Pooling layer

Fig. 8 Evolutionary convolutional neural network
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1. The chromosomes of initial population are randomly initialized with three genes between
1 and 100. The chosen interval is to avoid a large number of neurons in hidden layer,
preventing overfitting.

2. The fitness of a chromosome is evaluated through the results obtained by the network
using the proposed parameters. The fitness is defined by Eq. 3. A greater weight is given
to the metric sensitivity, in order to get models with a high capacity to malignant nodules
correctness.

Fitness ¼ 2 Sensitivityð Þ þ Specificityþ Accuracy ð3Þ
3. The population undergoes reproduction until a termination condition is reached. Repro-

duction consists of three steps:

(a) Selection of chromosomes to reproduce. This research selected two chromosomes
using the roulette-wheel selection.

(b) Crossover operator exchanges the genes between the pair of chromosomes selected.
This research used the one-point crossover.

(c) Mutation operation replaces randomly a gene in a chromosome. This research used
the gaussian mutation.

4. The next population is determined using the elitism method. Chromosomes with highest
fitness remain and the new chromosomes are selected randomly. The algorithm starts
again from step 2 until the maximum number of epochs is reached.

At the end of evolution, the final population contains the best parameters for the
convolutional neural network with respect to the lung nodules diagnosis on CT images using
the ROIs. Fig. 9 shows the proposed hybrid model.

3.4 Results evaluation

After the network training, it is necessary to validate the results. This methodology uses
metrics commonly used in CADx systems that are widely accepted to analyze the performance

Fig. 9 Hybrid model
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of image processing-based systems. These metrics include sensitivity, specificity, accuracy and
area under the receiver operating characteristic (ROC) curve (AUC) [10].

Equations 4, 5, 6 calculate the sensitivity, specificity and accuracy, respectively. A ROC curve
indicates the true positive rate (sensitivity) as a function of the false positive rate (1 - specificity).

Sensitivity ¼ TP

TPþ FN
ð4Þ

Specificity ¼ TN

TNþ FP
ð5Þ

Accuracy ¼ TPþ TN

TPþ FNþ FPþ FN
ð6Þ

where TP is true positive, FN is false negative, TN is true negative and FP is false positive.

4 Results and discussion

This section presents and discusses the results obtained with the proposed methodology with
reference to the lung nodules diagnosis on CT scans. All tests were implemented in Python
code using Keras deep learning library [5], running on a machine with an Intel Core i7-5960X
processor, 128 GB RAM, GeForce GTX Titan X 12 GB GPU and Linux operating system.

In order to evaluate the proposed hybrid model, each database described in Section 3.2, was
divided into two sets: training and test. The training set contains 3043 nodules (1313 malignant
and 1730 benign) generating 20,288 slices (12,328 malignant and 7960 benign) and the test set
contains 200 nodules (100 malignant and 100 benign) generating 1343 slices (993 malignant
and 350 benign). The validation set contains 10% of slices training set, which are used to
validate the training model.

Evolutionary convolutional neural networks were trained using SGDwith a batch size of 30
ROIs of each database, submitted simultaneously, over 30 epochs. Learning rate parameter
determines how much the weights can change in response to an observed error on the training
set. The value of the learning rate should be sufficiently large to allow a fast learning process
but small enough to guarantee its e effectiveness [41]. In order to find the global minimum, we
used a small rate of 0.01. The loss function used was the cross entropy [36]. The GA
parameters used in the training are assigned based on Table 2.

Table 3 presents the results obtained for all chromosomes of the final population, including
the sensitivity (SEN), specificity (SPE), accuracy (ACC) and AUC, followed by the standard
deviations. These results were obtained using the 1343 slices (993 malignant and 350 benign).

Table 2 Parameters chosen for
GA implementation Parameter Value

Population size 6
No. of epochs 100
Crossover rate 0.7
Mutation rate 0.3
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The ideal CADx system must presents a good balance among the sensitivity, specificity and
accuracy. Hence, a good methodology must be capable of successfully classifying both
malignant and benign nodules. Based on this, chromosome 1 obtained the best result of the
proposed methodology with a final error of 0.2808 taking about 9.5 min computation time.

Despite that, all chromosomes obtained good results for every metric, exceeding 92%. The
final population presented low standard deviations in all the metrics between the chromo-
somes, indicating the methodology’s robustness. Fig. 10 shows the final errors obtained by all
chromosomes. The mean computation time of a chromosome was of about 11 min.

Besides these results, we tested the performance of the chromosome 1 to classify the
volume of lung nodules. The classification is still based on slices, however, the metric is
evaluated considering all slices of a nodule. The criterion for the lung nodule classification
consisting in, if at least a slice of the nodule is classified as malignant, the nodule is considered
malignant. Confusion matrix shows the true and false rates between the actual cases and

Table 3 Results obtained by the final population

Chromosome Fitness C1 C2 MLP SEN (%) SPE (%) ACC (%) AUC

1 3.7925 80 15 66 94.66 95.14 94.78 0.949
2 3.7701 74 17 66 94.76 93.14 94.34 0.939
3 3.7673 80 17 66 94.66 93.14 94.26 0.939
4 3.7639 77 17 66 95.06 92.00 94.26 0.935
5 3.7624 80 17 64 93.95 94.28 94.04 0.941
6 3.7609 78 19 66 94.56 92.85 94.11 0.937
Standard deviation 0.0036 0.0111 0.0026 0.0049

(a) (b) (c)

(d) (e) (f)
Fig. 10 Learning curves of all the chromosomes with the final errors. a)chromosome 1, b) chromosome 2, c)
chromosome 3, d) chromosome 4, e) chromosome 5 and f) chromosome 6
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predicted cases. Table 4 presents the confusion matrix obtained, resulting in a sensitivity of
98%, specificity of 91% and accuracy of 94.5%. These results were obtained using the 200
nodules (100 malignant and 100 benign) of test set.

4.1 Comparison with other related works

Table 5 presents a comparison between the results found on this research and the related
works. It is important to reiterate that to perform a trustworthy comparison with these previous
researches, it should be necessary to use the same image database, same training and test sets,
and same settings for the classifiers, including the architecture, weight initialization, among
other parameters.

Comparing the best result obtained in this research with the related works, only that of
Cheng et al. [4] presents accuracy better than our research, with the difference of less than
1%, however, our research presents a better sensitivity, of about 2.26% of difference. In
term of CADx system, the sensitivity is the metric more important, because it shows the
model performance to classify correctly malignant nodules, allowing the fast medical
intervention. Besides, our research used large samples of LIDC-IDRI database (21,631
slices). Only Sun et al. [39] used an amount of samples superior to ours, consisting in
174,412 samples. Nonetheless, the accuracy presents a low value. In brief, the proposed
deep learning-based CADx system presents good results, exceeding 94%, in the classifi-
cation of both malignant and benign nodules, even applied in large samples.

Table 4 Confusion matrix by the chromosome 1

CADx system Malignant Benign

Malignant 98 2
Benign 9 91

Table 5 Comparison with other researches with reference to the classification of lung nodules in whether
malignant or benign

Research Database (Samples) SEN (%) SPE (%) ACC (%) AUC

ANN Chen et al. [3] Private (200) - - 90.00 0.955
Elizabeth et al. [13] Private (1714) 92.31 94.92 94.44 -
Dandil et al. [7] Private (128) 92.30 89.47 90.63 -
Gupta and Tiwari [14] Private (120) 86.66 93.33 90.00 -
Kuruvilla and Gunavathi [25] LIDC (110) 91.40 100 93.30 -

SVM Nascimento et al. [31] LIDC (73) 85.64 97.89 92.78 -
Krewer et al. [23] LIDC-IDRI (33) 85.71 89.47 87.88 -
Orozco et al. [33] NBIA-ELCAP (113) 83.33 84.80 84.00 -
Huang et al. [20] Private (107) - - 83.11 0.843
Parveen and Kavitha [35] Private (3278) 91.38 89.56 - -

Deep learning Hua et al. [19] LIDC (2545) 73.30 78.70 - -
Kumar et al. [24] LIDC (4323) 83.35 - 75.01 -
Cheng et al. [4] LIDC (10,133) 92.4 98.9 95.6 0.989
Sun et al. [39] LIDC (174,412) - - 81.11 -
Proposed methodology LIDC-IDRI (21,631) 94.66 95.14 94.78 0.949
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5 Conclusion

Lung cancer is considered to be the main cause of cancer death worldwide. It evidences the
importance of developing research aimed at precocious diagnosis, providing a better treatment
to patients. Thereof, this research has proposed a methodology to classify lung nodules in
whether malignant or benign on CT images using an evolutionary convolutional neural
network, a deep learning technique jointly with the genetic algorithm.

The results obtained demonstrate the promising performance of the proposed hybrid model.
All results exceeded 91%. Besides, the proposed deep learning-based CADx system avoids the
need of the feature extraction and selection steps. It reduces the computational complexity of
the CADx system without compromising the performance.

Although the database used in this research was robust and ensured a high diversity of the
nodules, additional tests with other databases are necessary to improve the proposed method-
ology and to make it more robust and generic. Finally, the methodology presented can
integrate a CADx system to classify lung nodules in whether malignant or benign, making,
therefore, the analysis of exams by radiologists more efficient and less exhaustive.
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