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Abstract Identification and authentication are ubiquitous questions which pan across var-
ious systems. In certain domains, they are of paramount importance. Like, security forces
deploy various human identifications systems to discern potential wrongdoers. They consti-
tute a vital part of various government social welfare schemes. The efficacy of the schemes
is greatly impacted by them. Being pervasive and eminent, they demand more dedicated
and focused research. Now-a-days, most of the systems incorporate a biometric system to
address identification and authentication. The biometric system employs disparate traits like
face, signature, iris, fingerprint, palmprint, speech, etc. for identification and authentication.
A biometric trait must possess the following fundamental aspects; It should be able to iden-
tify an individual uniquely. For an individual, it should be consistent. To acquire it should
be easy, cost-effective, time-efficient and automated. On such account, fingerprint trait is of
outstanding merit. It has been widely studied and is an integral part of the many present bio-
metric systems. However, fingerprints are subject to occupational hazard. The fingerprint is
of abysmal quality for hand labourer, blacksmith, etc. due to the nature of their work. If a fin-
gerprint based biometric system has a large number of such users then its precision is greatly
affected. In such scenario, an alternate is to use finger-knuckle-print which possess almost
comparable feature as fingerprint while being unaffected by such occupational hazards. In
this paper, we propose a novel finger-knuckle-print based biometric system which could be
deployed where a large number of user base is rural. Initially, ROI of finger knuckle image
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has been extracted, enhanced and transformed using the proposed Bubble ordinal pattern
(BOP), STAR ordinal pattern (SOP), and Image ray transform (IRT) based locally adapted
procedures. A novel DeepMatching technique has been used to perform non-rigid distortion
free matching between multiple features of two Finger Knuckle Images (FKI). Finally, the
performance of proposed system has been evaluated using score level fusion rule, revealing
improvement in the results.

Keywords Biometrics · Finger knuckle print · Bubble ordinal pattern · Star ordinal
pattern · Image ray transform · DeepMatching

List of Abbreviations

CLAHE Contrast Limited Adaptive Histogram Equalization
FKP Finger Knuckle Print
FKI Finger Knuckle Image
MCP Meta Carpo Phalangeal
PIP Proximal Inter Phalangeal
DIP Distal Inter Phalangeal
CNN Convolution Neural Network
GPU Graphics Processing Unit
PolyU The Hong Kong Polytechnic University
PCA Principal Component Analysis
ICA Independent Component Analysis
LDA Linear Discriminant Analysis
CRR Correct Recognition Rate
EER Equal Error Rate
ROC Receiver Operating Characteristics
FAR False Acceptance Rate
FRR False Rejection Rate
ROI Region of Interest
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
BLPOC Band Limited Phase Only Correlation
LBP Local Binary Pattern
LDP Local Direction Pattern
HOG Histogram of Oriented Gradients
DI Discriminative Index
FTE Failure to Enroll Rate
BOP Bubble Ordinal Pattern
SOP Star Ordinal Pattern
lBOP Longitudinal Bubble Ordinal Pattern
tBOP Transverse Bubble Ordinal Pattern
lSOP Longitudinal Star Ordinal Pattern
tSOP Transverse Star Ordinal Pattern
IRT Image Ray Transform
TIR Total Internal Reflection
KCPlBOP Knuckle Code Longitudinal Bubble Ordinal Pattern
KCPtBOP Knuckle Code Transverse Bubble Ordinal Pattern
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KCPlSOP Knuckle Code Longitudinal Star Ordinal Pattern
KCPtSOP Knuckle Code Transverse Star Ordinal Pattern
LI Left Index
LM Left Middle
RI Right Index
RM Right Middle
NIST National Institute of Standards and Technology
NIFQ NIST Fingerprint Image Quality
IIT Indian Institute of Technology
Mkl Middle Knuckle Line
Mkp Middle Knuckle Point
IT Knuckle Image
ni Refractive Index

1 Introduction

Traditional authentication and identification methods are based on features such as ID card,
tokens, passwords and PIN codes. These features can be easily duplicated, cracked or stolen.
An alternative to such systems is a biometric system that facilitates the process to rec-
ognize an individual by his/her unique physiological and behavioral characteristics. The
advantages of a biometric system are: no prerequisite to remember whatever, not easy to
manipulate or steal, difficult to forge or share, and testify the occurrence of genuine user at
the time of enrollment. However, not every physiological or behavioral characteristic meet
the requirements of being a biometric trait. A characteristic has to satisfy certain proper-
ties such as uniqueness, universality, collectivity, circumvention and permanence [14, 15].
Some features such as color of eye/skin/hair, age, scars, gender and height are known as
soft biometrics. It has been observed that individuals cannot be distinguished on the basis of
soft biometrics because these features may not be unique and stable. However, they improve
the precision of the system when used in conjunction with physiological or behavioral bio-
metrics traits. Illustrations of a few biometric traits such as face, signature, fingerprint, iris,
speech, and palmprint are shown in Fig. 1. They have been presented in numerous civilian
or forensic applications such as border crossing, e-banking, health care, and law enforce-
ment [15]. The choice of a biometric characteristic depends on the exact requirements of

Fig. 1 Biometric Traits
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the anticipated application [14]. It has been claimed that no biometric feature is superior to
others or can replace any other but each one has its own pros and cons [4, 14] as mentioned
in Table 1.

A biometric system can constitute of the following subsystems:

– Enrollment: Extracted features are saved in a database to register an individual.
– Verification: One-to-One matching that depends on a threshold (authentication).
– Identification: One-to-Many matching that reports top matching scores and correspond-

ing top probable subjects (recognition).

Hand based biometric traits have been intensively studied to develop a consistent authen-
tication system with higher precision, usability, and acceptance [4, 17]. Several hand
biometric traits such as palm print [9], Inner Knuckle Print (IKP)[18], and Finger Knuckle
Print (FKP) [5] have unique anatomical structures that can be captured with low cost and
small size imaging devices (such as a webcam) without mounting extra hardware [5, 17].
These traits are present in various access control applications and captures around 60 % of
market share of biometric systems [17].

1.1 Motivation

In severalAsian countries, like India,more than 70%of the population resides in rural areas. The
laborers, and cultivators do substantial work and use their hands very roughly. This causes
plenty of damage to their fingerprints permanently [32]. It has been observed that their
quality of fingerprint is not very good. In such a scenario, the quality of FKP is unaffected
because they are not used for any other purpose. Hence, it is less prone to injuries [6].

Table 1 Trait-wise Challenges and Issues

Trait Motivation Challenges Issues

Fingerprint [5] Easy collection, unique, eco-
nomic sensor, less cooperative

Rotation and translation Acceptance

Iris [28] Highly discriminative and
unique, expensive sensor,
well protected

Segmentation, Motion
blur, illumination,
rotation

Cooperation,
acquisition,
acceptance

Palm print [12] Contactless sensor, bigger
ROI, unique

Rotation and translation Cooperation,
acquisition,
acceptance

Hand Geometry [35] Easy collection, cheap sen-
sor, less cooperative

Rotation and translation Acceptance

Face [9] Non-intrusive, most obvious,
universal, economic sensor

Pose, rotation expression,
illumination, ageing

Acquisition

Finger Knuckle-Print [21] Unique, cheap sensor dis-
criminative, well protected,

Rotation and translation Cooperation,
acquisition,
acceptance

Ear [25] Non-intrusive, cheap sensor,
universal, robust shape

Scale, rotation trans-
lation, illumination

Cooperation,
acquisition,
acceptance

Dorsal Hand Vein [22] Non-intrusive, Expensive sen-
sor, universal, robust shape

illumination Cooperation,
acquisition,
acceptance
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1.1.1 Knuckle print

The convex shape skin patterns which form around finger joints namely Meta Carpo Pha-
langeal (MCP), Proximal Inter Phalangeal (PIP), and Distal Inter Phalangeal (DIP), consist
of highly rich lines and creases called as finger dorsal knuckle print (FKP) [18, 19]. The
skin patterns are believed to be very unique, universal, and permanent [6]. They lie on the
outer side of the finger and survive longer. Minutia and singular points of the fingerprint
are known to fade over time in the hands of cultivators and laborers as shown in Fig. 2a. In
such scenarios, FKP is a viable trait to be used for human identity recognition.

Quality comparison between FKP and fingerprint The prime goal of the proposed
system is to come up with a solution applicable to rural areas. In this context, fingerprint and
FKP based biometric systems are more suitable. A quality analysis of both of them reveals
the superiority of FKP images in rural scenarios. In this work, efforts are being made to
assess the image quality of FKP and fingerprint over a small in-house dataset of 10 individ-
uals. Among them, 4 subjects were 55-64 years old and others were 40-45 years old. All of
them belonged to rural Indian villages and were involved in very hard labor. To estimate the
FKP quality, our previous work [32] has been used, while for fingerprint quality estimation
publicly available NIST based nf iq tool [2] has been used objectively. Our observation over
such images clearly suggests that the fingerprint quality in this scenario lags behind FKP.

Likewise, palm provides a bigger ROI region, with more detailed features. However,
there is a risk of size complexity [9]. Also, the geometrical features of hand/finger may
not be unique for identification because they can change over time due to illness and other
environmental factors [11]. On the other hand, dorsal hand veins have strong anti-forgery
characteristics as the skin patterns underneath are actually unique and remain relatively
stable through the adult age [22]. The FKP can be collected easily using ordinary, contact-
less cameras with lesser user co-operation [39]. The user failure to enroll (FTE) rate is
lower as it is not associated with any fraud and criminal studies [32, 33]. Moreover, the
dorsal knuckle patterns cannot be easily duplicated, and the possibility of information loss
from this region is also less. But, there exist a big challenge to track the middle knuckle
line for FKP registration because there might be deviations in spatial location of fingers
during acquisition. Hence, it is concluded that a specific pre-processing, feature extraction
and matching schemes are required to fully trace the curved shape features for higher FKP
performance.

(a) (b)

Fig. 2 FKP motivation and challenges: (a) Quality based comparison of fingerprint (top) and knuckleprint
(bottom) images of a person (b) Knuckleprint images of the same finger with different nonlinear distortions
due to knuckle bending
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1.1.2 Deep-matching: Multi-scale image matching technique

The multi-scale architecture of Deep-matching technique is inspired by functioning of Con-
volution Neural Network (CNN). The CNN models are made up of neurons with learn-able
weights/biases and have shown tremendous improvements in image classification [10].
However, the Deep-matching technique does not create NN models to learn but this is a
beautiful hierarchically inspired image matching paradigm. Basically, a local descriptor
focuses only at the salient feature locations but match the deformable objects poorly. It has
been observed that the Scale Invariant Feature Transform (SIFT) like features are unable to
compute their pointwise dense correspondence. On the contrary, Deep-matching technique
utilizes a quad tree based multilayer network that filters an image cell at different scales
and improves the feature matching of non-rigid deformable as well as large displacement
surfaces very accurately [41].

1.1.3 Contribution

The non-rigid and weakly textured regions of a FKI provides intricacies to FKP recognition.
They are the major contributor towards false rejection in FKP based matches. Moreover,
we argue that the central line tracking for FKP registration may not have uniformity and
leads to the requirement of flexible ROI extraction. The deviations in spatial location of the
same finger at the time of acquisition can be clearly seen as depicted in Fig. 2b. This type
of intuition degrades the pointwise correspondence of deformable FKP patches. To han-
dle such non-rigid deformation and large displacement in FKP image, we need to estimate
correlation at several patch scales. The quad tree patch subdivision based Deep-matching
algorithm can be seen as an ultimate solution. The contribution of this work can be sum-
marized as follows: The ROI of raw FKP image is cropped by considering central knuckle
point as reference and further its contrast is enhanced using Contrast Limited Adaptive
Histogram Equalization (CLAHE). In the image enhancement, the additive noise is now
assumed as multiplicative and has shown significant improvement. The novel image trans-
formation schemes based on the ordinal relationship of two adjacent pixel gradient values,
named as Bubble Ordinal Pattern (BOP) and Star Ordinal Pattern (SOP) are proposed to
obtain the robust edge information. The resultant image is further processed using ray optics
based Image Ray Transform (used first time to best of our knowledge) to strongly highlight
the curved shape tubular features present in FKP image. Eventually, a high performance
Deep-matching algorithm (which is a Graphics Processing Unit (GPU) based parallelized
algorithm) has been used to address dense and non-rigid deformations in FKP images. The
proposed system has been tested over a publicly available benchmark – The Hong Kong
Polytechnic University (PolyU) FKP database [1] that consists of 7920 FKP images. Its
performance has been measured in terms of computation time, discriminating index, Equal
Error Rate (EER) and Correct Recognition Rate (CRR). The block diagram representation
of the proposed FKP biometric system is shown in Fig. 3. To the best of our knowledge,
there are very few related works existing in the literature which address the problem of large
displacement and non linear distortion in FKP images as shown in Fig. 2b.

The rest of the article is organized into the following six main sections. Section 2
describes the FKP state-of-art work. In Section 3, ROI extraction, image enhancement, and
image transformation schemes have been discussed. Section 4 highlights the role of fea-
ture extraction. The proposed matching strategy is discussed in Section 5. Then, experiment
results are described in Section 6. Finally, the conclusions are summarized in the last section
of this paper.
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Fig. 3 The proposed framework for FKP based biometric system

2 Related work

The skin patterns such as creases, lines, and texture over finger knuckle surface have a lot of
discrimination ability to be broadly recognized as a biometric identifier. Initially, due to lack
of benchmark datasets and poor recognition rates, this area did not receive much attention
and thus a limited number of works were reported till 2007. After that, immense efforts
have been made in the area of FKP based personal authentication system. Majority-wise,
region of interest (ROI) detection, feature extraction, and classification play an important
role in FKP based personal recognition system. There are some additional requirements too,
such as the size of the template, power intake, memory storage etc., but these cannot be
achieved together. In this section, a state of art related to ROI extraction as well as feature
extraction/classification techniques are presented.

2.1 ROI extraction

To segment and extract fixed size ROI from an original FKP image is a crucial stage and it
really affects the final recognition accuracy. The existing methods extract ROI based upon
local convexity characteristics of the skin patterns near major finger joint (PIP). Most of
the existing techniques are tested against two publicly available datasets i.e., PolyU FKP
dataset and IIT Delhi Finger Knuckle Image dataset.

In [29], a local coordinate system is established to align the images (PolyU FKP) and ROI
is cropped for feature extraction. In this method, the curved lines on the two sides of the PIP
joint are observed and then pixels over lines are encoded as a two tuple (1,-1) as per their
convex directions. The convexity magnitude is measured to find the strength of principal
curve. It is minimum around the center of PIP joint while maximum on left and right sides
lines because FKP image is positioned horizontally. On that basis, the center position is
considered to fix the Y- axis of the coordinate system and ROI of size (160× 80) is cropped
empirically. In [20], authors designed a novel ROI extraction algorithm by using contrast
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enhanced and corrected skewed images. Subsequently, a center point based ROI detection
and localization method for FKP images is given in [38]. This method is robust against
finger displacement and rotation in the horizontal direction. In [32], the middle knuckle line
and middle knuckle point are determined to extract the ROI of FKP image. The authors
proposed a modified Gabor filter by adding curvature parameter to check the response of
curved convex line features present around the major finger joint. It has been observed that
the pixels over middle knuckle line have a maximum filter response because FKP structure
is vertically symmetric. Finally, ROI is extracted on the basis of central knuckle point and
found 95 % of accuracy over PolyU FKP dataset.

2.2 Feature extraction and classification

The conventional knuckle print recognition approaches can be categorized into the follow-
ing groups: subspace methods, coding methods, texture analysis methods, and other image
processing methods. In [7] an apparatus was developed to identify or verify individuals
using their knuckle contours. In [18], the authors considered creases of finger inner surface
for biometric identification. The matching was carried out using the normalized correla-
tion function. In [36] the folds and creases on the finger outer surface were examined. The
authors had employed Minolta 900/910 sensor to collect 3D finger samples, but it was quite
an expensive, bulky, and slow processing device which limited its use in commercial or real
time systems. In the following year, knuckle code based coding scheme for texture feature
extraction was conceptualized [29]. During the same time, the authors [33] clubbed both
the knuckle texture and geometrical features of hand, which were acquired by a peg-free
and non-contact imaging setup. In [40], 2-D Gabor filter was employed to extract local ori-
entation information, and saved it in a feature vector named competitive code. Likewise,
the authors [24], modified the knuckle codes approach by applying radon transform on
enhanced knuckle images and resulted in 1.14 % EER and 98.6 % rank one recognition
rate. Additionally, [23] suggested a multi algorithmic approach based on matching scores of
principal component analysis (PCA), linear discriminant analysis (LDA) and independent
component analysis (ICA) with EER of 1.39 %. In [41], another significant method called
as monogenic code (3 bit vector) which reflected the phase and orientation information
in knuckle images was framed. Likewise, [42] improved their previous work by combin-
ing the magnitude (magnitude code) and the orientation information (improved competitive
code). In another work [43], the authors have used a weighted sum rule to fuse local and
global information to achieve optimum results. In [30], SIFT key points from Gabor filter
based enhanced FKP images were extracted. In [6], knuckle texture had been used as an
identifier in smartphone applications. In [31], efforts were made to compute FKP image
quality attributes. In [11], score level fusion was adopted to integrate the obtained matching
scores caused by fragility masks. In [37], the authors implemented a well-known local fea-
ture descriptor called as LBP over ROIs based FKP images. In [26], the authors performed
matching over recovered minutiae samples by using minutiae cylindrical code, minutiae
triangulation, and spectral minutiae based approaches. This section presented the various
author’s research work and highlights the following issues: The FKP is still a less exam-
ined biometric trait for a wide range of applications. There are few related works that exist
in literature which tackle the problem of large displacement and non-rigid deformation in
FKP images, as this leads to false rejections in the matching process. There is a lack of FKP
databases in which images incorporate the real world situations such as variation in bending
of fingers.
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3 Pre-processing approach

In this section, a sub region of finger knuckle image near Proximal Inter Phalangeal joint
(PIP) is extracted using a ROI extraction algorithm [32]. The raw ROI images are then
enhanced using the CLAHE scheme to stabilize the effects of poor contrast and non-uniform
illumination. Although, finger dorsal surface is rich with texture patterns but the curve shape
lines are not very clear. So, ROI samples are transformed into a better visual representa-
tion by gradient ordinal relationship based encoding schemes. Subsequently, its ray tracing
features are extracted with the help of IRT which gives more discriminative information.

3.1 FKP ROI extraction

The basic idea behind ROI extraction is to apply a curvature Gabor filter with modification
in X coordinate to estimate the middle knuckle line Mkl , and middle knuckle point Mkp

as described in (1). The raw FKP image is thresholded to get binarized image from which
knuckle boundary is measured as shown in Fig. 4b. The knuckle region is taken out using
Sobel edge detector and a strongly attached component assuming the solid knuckle bound-
ary (horizontal axis) as shown in Fig. 4c. The knuckle area is retrieved back from the pixels
within the defined knuckle boundary as given in Fig. 4d. To estimate the Middle Knuckle
Line Mkl , the knuckle region can be considered symmetric around the middle knuckle line
of phalangeal joint. Since, the convex shape lines are observed to be protuberant on left and
right side of knuckle area, while curves near middle knuckle line do not possess the exact
convex shape. This makes the efforts easy to spot middle knuckle line and midpoint. To
visualize such a convex shaped texture, a knuckle filter using additive curvature parameter
is designed, as shown in Fig. 4e. The filter response can be seen as a modified version of
classic Gabor filter, with X and Y modulated as:

X = x × cosθ + y × sinθ + c(−x × sinθ + y × cosθ)2; Y = −x × sinθ + y × cosθ (1)

Several curved Gabor filters can be obtained by changing the value of curvature parame-
ter (c) and distance parameter (d) between two flipped curved filters. Now, the knuckle area
image is convolved with the specific curvature Gabor filter (F 0.01,30) which provided a bet-
ter idea to measure the strength of convex shaped lines over the knuckle region. The column
wise filter response is found maximum at the middle column and that position is consid-
ered as a middle knuckle line (vertical axis) as shown in Fig. 4f. To estimate the Middle

Fig. 4 FKP ROI extraction (a) Original, (b) Binary Sample, (c) Boundary, (d) FKP area, (e) Knuckle filter,
(f) Filter response, (g) Localized ROI (h) Final ROI
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Knuckle Point Mkp , the point at the center of the middle knuckle line with respect to the
knuckle area is specified as the middle knuckle point. For locating a midpoint, top and bot-
tom points of the middle knuckle line are assumed over knuckle area. Then, a ROI of fixed
size is cropped from knuckle area image with consideration of Mkl and Mkp as shown in
Fig. 4g. Finally, the knuckle ROI is normalized as given in Fig. 4h. Algorithm 1 summarizes
the ROI extraction method.

3.2 FKP ROI enhancement

The textured region of the knuckle print can be used for identification as it is unique for
every individual. The finger dorsal signifies a fairly deformable surface, which results in
uncertain reflections and illuminations. A ROI sample is partitioned into non overlapping
fixed size cells (10 × 10). The cell size is selected empirically which ensures that mean of
every cell almost indicates the coarse illumination of it. This mean of coarse illumination
is expanded to the original ROI sample. The estimated illumination of every cell is divided
from the corresponding cell of the original ROI and get a uniformly brightened ROI sample,
as shown in Fig. 5b. Instead of using the full illumination value for this purpose, we have
scaled down the value using fscale (between 0 and 1). Now, the resulting ROI image is
enriched using CLAHE, which improves the contrast in the texture without adding noise
and increases the discriminative strength as shown in Fig. 5d. Further, the blocking effect
is reduced using bi-linear interpolation. Finally, Weiner filtering is applied to smooth the
boundaries between the blocks, and to minimize the additive noise as depicted in Fig. 5e.

(a) (b) (c) (d) (e)

Fig. 5 Proposed Image Enhancement for FKP images (Difference between Additive Vs Multiplicative noise
can be observed from Fig. 5c and d)
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Justification Here, our assumption is that noise is multiplicative in nature that increases
brightness. The increase in overall performance adds merit to our assumption.

3.3 FKP ROI transformation

A key issue to efficiently measure the texture properties is to get the best texture represen-
tation. Recently, many robust methods such as LBP [3] have been developed for texture
representation which threshold the neighborhood pixel with respect to a central pixel. In
this work, the enhanced ROI sample is transformed using novel image transformation
schemes namely Bubble Ordinal Pattern (BOP) and Star Ordinal Pattern (SOP). We propose
BOP/SOP over first order image gradient which shows high level discriminative features.
They provide robust transverse and longitudinal representations against variable illumina-
tion. This is due to the fact that gradient values are strong indication of the local edge
information. Further, a ray tracing based mechanism has been used to enhance the detection
of knuckle structural features relying strongly on their intensity. Image Ray Transform (IRT)
basically highlights the knuckle convex hull strongly due to presence of high intensity epi-
dermal texture around major finger joint. Algorithm 2 concludes the image transformation
steps.

Comparison of proposed transformation with various existing transformation
LBP [3] and CS-LBP [13] are originally defined over gray scale images (as shown in Fig. 6c,
d), but we have observed that gray values as well as their locally computed ordinal rela-
tionship are very fragile, especially in the region where the texture is very elusive. On the
other hand, they are not robust to illumination variation. Hence, in order to cater such issues,
we have used the first order derivatives computed by difference operator. We propose the
Bubble Ordinal Pattern (BOP) over first order gradient which can extract the high level dis-
criminative features. To best of our knowledge, such Bubble pattern code (BOP) has never
been considered previously. As compared to LBP, the BOP does not threshold with respect
to center pixel. While, SOP is related to CS-LBP, but instead of 4-bit codes we have redun-
dant them into 8 bit as they were not properly scaled into image representation. Thus, the
key point to note here is that SOP/BOP computations are over the image gradients.
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(a)

(c)

(g)

(l) (m) (n) (o) (p)

(h) (i) (j) (k)

(d) (e) (f)

(b)

Fig. 6 Visual features based appearance analysis. Images are persented before and after applying various
existing transformations. First row: Original and IRT applied images, Second row: Transformations over gray
images, Third and Fourth row : Transformations over gradient images. Last row shows rich and enhanced
FKP tabular structure extracted using IRT

Our motivation to work over gradient was that gradients are robust to variable illumina-
tion. Any gradient based ordinal relationship can be considered more robust as compared
to any equivalent gray scale version. Since gradient values are involved, we have observed
that automatically edges and their relationship gets most of the emphasis and finally got
encoded into the proposed pattern (as shown in Fig. 6g-p). This encoding scheme not only
becomes robust for variable illumination, but also very discriminative. Moreover in our cur-
rent experimentation, we have monitored the behavior as well as visual image appearance
as shown in Fig. 6, along with the performance of the proposed BOP/SOP codes presented
in Section 6.6.

3.3.1 Bubble ordinal pattern (BOP)

The enhanced ROI samples are down-sampled to a fixed size in order to reduce computation
time. The ROI samples are further processed by the proposed encoding schemes – Bubble
Ordinal Pattern (BOP) and Star Ordinal Pattern (SOP). The computational steps related to
BOP are mentioned in Algorithm 3 and transformed images are shown in Fig. 6h, i, m and n.

Transformation basis The opted Sobel kernel (9 × 9) can estimate thick and discrimi-
native edges. It is a discrete differentiation operator which is a result of quantification of
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the longitudinal and the transverse derivative approximations of the gradient of the image
intensity function. The BOP computes the ordinal relationship of two adjacent pixel gradi-
ent values, specifically when neighbors have similar values. The gradient of any pixel will
be +ve or −ve that is encoded into a bit either 1 or 0 coding value. Hence, such ordinal
relationship encodes the type of edge that is passing trough the corresponding pixels. The
proposed encoding mechanism utilizes Sobel longitudinal kernel to assign an 8-bit code
(lBOP ) to every pixel based on the derivatives of eight neighbors. It has been observed that
the obtained transverse derivatives are not very robust primarily due to the prominent lon-
gitudinal features present in the FKP images. Hence, after rigorous experiments, we have
dropped transverse gradient (tBOP ) and other derived features from it.

Transformation The bubble ordinal pattern based encoding evaluates BOPCode for every
pixel based on transverse and longitudinal derivatives of its eight neighbors as shown in
Fig. 7a. Suppose that Eu,v defines spatial location of (u, v)th pixel in an enhanced FKP ROI

(a) (b)

Fig. 7 Neighborhood pattern considered for image transformation
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sample. The obtained BOPCode response for each pixel is an 8-bit binary number whose
kth bit is stipulated in (2):

BOPCode(u, v)[k] =
{
1, if Gk > Gk+1
0, otherwise

(2)

where, GK , k=1,2,3....8 represent the gradients of eight adjacent pixels positioned around
Eu,v with the use of transverse or longitudinal Sobel kernels. Therefore, lBOP or tBOP are
basically BOPCode based representation of entire pixels in a ROI sample as computed in
step 2 of Algorithm 2.

Justification The basic assumption is that the pattern of edges within eight neighborhood
of any pixel does not change abruptly because gradient values are robust in nature. Our
motivation was not only to achieve illumination invariance (so using gradient) but also to
get discrimination that has been achieved because the edges get more and more emphasis.
The related BOP codes are shown in Fig. 8b, c.

3.3.2 STAR ordinal pattern (SOP)

Another encoding scheme, known as star ordinal pattern (SGORP), has been used [32]. In
this scheme, gradient of a pixel is given either positive, negative or zero code based on
its edge position. An 8 bit encoding scheme for every pixel is performed which considers
diagonally opposite neighbors (as shown in Fig. 7b) together with upper and lower ones.
The SOPCode can be computed using the Algorithm 4. The related SOP codes are shown
in Fig. 8d, e.

3.3.3 Image ray transform (IRT)

The transformed ROI knuckle image (IT ) consists of prominent curved lines, and stable
structures than original ROI sample. The detection of specific structural features within an
image is a challenging task in biometrics. The image ray transform (IRT) has been received
significant consideration for structural feature detection empirically in medical imaging, and
retinal vessel extraction. Based on the principal of ray optics, IRT technique uses the concept
of tracing light rays through an image as depicted in Fig. 9. Hence, it mainly highlights the
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(a) (b) (c) (d) (e)

Fig. 8 BOP and SOP based Image Transformation and Encoding Schemes (Transversed components are
discarded)

curvilinear structures such as tubes or curves as clearly evident from Fig. 6l-p. In this work,
IRT is introduced for the first time, to best of our knowledge, to emphasize the curved (lines
and creases) features from transformed FKP images as explicitly shown in Figs. 6 and 10.
The transform treats an image pixel as a set of 2-D glass blocks with refractive indexes
linked to intensity of the pixel and then casts a large number of rays through the image.
The sequence of these rays is accumulated into an output image which emphasizes certain
structural features. The route that a ray follows is often changed when propagating from
one to another medium with different refractive indexes. Refraction of light at the surface
of separation of two media can be better understood by the Snell’s Law.

Justification FKP images have a significant amount of longitudinal textured patterns.
These are thick curved features obtained after BOP or SOP transformations. One can
observe from Fig. 10, that such features can be easily highlighted using proposed IRT
transformation.

IRT implementation The IRT creates a magnified image as the way light reflects off
curved features [8]. Take a transformed knuckle image (IT ) of size (m×n). Then, a refractive
index (ni) value for the ith pixel is computed as a function of its intensity (g).

ni = 1 +
( g

255

)
(nmax − 1) (3)

whereas, nmax represents the maximum refractive index for a linear model. Next, the com-
putation of the refractive index for randomly selected pixels is described. The algorithm
traces a path through the pixels by emulating refraction and total internal reflection. Figure 9
visually explains the working of IRT. At each pixel the direction of normal is vertical. The
blocks of distinct shades represent media with different refractive index.

Fig. 9 A patch in the transformed image has been enlarged to explain Image Ray Tracing (IRT). Reflection,
refraction and TIR happens in accordance to Snell’s law
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(a) (b) (c) (d) (e)

Fig. 10 Image Ray Transformation (Transverse components are discarded)

– At point M, ray is initialized and travels towards B.
– At point N (n1 = n2), the ray continues to travel along the same direction.
– At point O (n1 < n2) or at point P (n1 > n2), refraction occurs and the light ray bends

towards or away from the normal accordingly.
– At point Q (θi > θc), hence Total Internal Reflection (TIR) takes place and the ray

reflects back into the same medium.
– At point R and S, the ray is an inverse replica of trace occurred at points O and P.
– At Q, eventually the ray exits. The tracing is allowed to continue until d reflections or

refractions have undergone for each ray.

For each pixel, during the path tracing, if the refractive index of the next pixel is different,
the θi (angle of incidence) and θr (angle of reflection) are calculated as:

cos θi = N.V (4)

n = n1

n2
(5)

cos θr =
√
1 − n2(1 − N.V ) (6)

where, N is the normal direction at each pixel, and V is a vector function of the initial
direction vector at each pixel. The refraction vector, for the path to pass across boundary of
pixel with different refractive index, is given as:

Rr = nV + (n(N.V ) − cos θr )N (7)

Likewise, if θi > θc and n1 > n2, internal reflection will take place and hence the
reflection vector is given by:

Rl = V − 2(N.V )N (8)

The initial direction φ, to start the path tracing from each pixel, is randomly drawn from
a uniform distribution. The overall methodology is outlined in Algorithm 5. Once the ran-
dom rays from all the different points are cast, they start to trace in the whole image. The
algorithm works in such a way that regions consisting of pixels with similar intensity values
are emphasized. Thus, the tracing path of all those rays will finally converge and highlights
the curved lines and creases from the rest of the image. Finally, when each ray has under-
gone a fixed number of refractions or reflections, the tracing of rays is ceased. The IRT
implementation is mainly affected by maximum refractive index nmax (affects the number
of segmented pixels), number of rays traced N (impacts the smoothness), and depth of ray
tracing d (responsible for sharpness of the extracted features). Here, we set nmax value to
100, increased N value to 10000, and assume d value to 256. All parameters used in this
work, have been listed and their default values with descriptions, as well as operating ranges
are presented in Table 2.
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Table 2 Description and nature of parameters

Parameter Default value Description Operating Range Nature

ROI Extraction

Threshold 0.8 Otsu generated 0.3–0.9 High

c 0.01 The curvature term 0.0–0.04 Low

d 30 Distance between two gabor (Empirical) 0–50 Moderate

f 0.75 Fraction to binarize the response 0.45–0.95 High

CLAHE

fscale 0.5 Scaling down 0.4–0.6 Moderate

Block Size 10 × 10 Blocking, selected empirically (8 × 8)–(16 × 16) Low

BOP/SOP

Sobel Kernel 9 × 9 Blocking to compute gradient (for
thick features)

(3 × 3)–(11 × 11) High

Image Ray Transform

nmax 80 Maximum refractive index for lin-
ear model

20–120 Moderate

depth (d) 256 Tracing the ray to depth (d) 100–400 High

N 10000 Total number of points for experi-
ment

1000–50000 High

DeepMatching

Patch Size 4 × 4 Atomic Patch size 2 × 2–16 × 16 Low

Maxpooling 3 × 3 Max-pooling with a stride of 2 (3 × 3)–(9 × 9) Low

Rectification 1.4 Gamma correction power factor 1–2 Moderate

Rotation –26◦ to +26◦ Rotational Invariance –30◦ to +30◦ High
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4 Feature extraction

To perform image matching by using the set of local interest points is an important aspect of
local texture descriptor based approaches. They perform compact vector representations of
a local neighborhood, and are building blocks of many computer vision algorithms. Local
features such as points, edges, blobs, and small image patches are distinctive and enable
these methods to better handle scale change, rotation, and variable illumination [16]. The
popular scale and rotation invariant local texture detectors are: Scale invariant feature trans-
form (SIFT), Speeded up robust transform (SURF), Hessian Laplace, Harris detector, Local
Energy based shape histogram, Local binary pattern (LBP), Local direction pattern (LDP),
HOG, etc. The SIFT operator provides a robust solution to compare image patches with
rich textures [27]. It performs a cascaded operation to match the robust key-points of the
corresponding regions. But SIFT fails to match non-rigid deformable regions and image
patches with weak or repetitive textures [34]. This is because the 4 cell grid in SIFT is com-
pletely rigid and it is not able to detect the non-linear deformations present in FKP images.
In this section, the problem to match FKP images with non-rigid deformation and large
displacement is highlighted.

5 DeepKnuckle : a novel knuckle identification framework

In contrast to descriptor matching approaches a dense, hierarchical algorithm to compute
dense correspondence between images is introduced which is known as Deep Matching
[34]. Deep Matching algorithm is based on a multi-stage architecture with 6 layers (depend-
ing on the image size), interleaving convolutions and max-pooling, a construction similar to
deep convolution nets. Here, convolution is done at patch-level, which proceeds in a multi-
layer fashion. In this multi-layered architecture, the images are subdivided into patches like
a quad-tree pattern, but the quadrants in the target image are not in fixed positions. Hence,
these sub-blocks are allowed to move locally to re-optimize their position, irrespective of
the position of other sub-patches. In this way, each of the 16 sub-patches in a 4*4 grid can
move and match to the position from which it finds a closest match.

5.1 Building of the approach

This algorithm starts to generate the correlation maps in a bottom up fashion and later
computes the correspondence in a top down fashion. The SIFT/HOG descriptor which is
a popular approach to match regions between images, with 4 × 4 spatial cells generates a
real vector in 128 dimensional space V ∈ �4×4×8. Now the SIFT patch can be split into
4 quadrants represented as I = [I 0, I 1, I 2, I 3] with In ∈ �2×2×8. Suppose, there are two
SIFT descriptors – one reference and another target. In the target descriptor, the quadrants of
4× 4 sized grids have not been kept fixed. Their positions can be optimized by maximizing
Sim(I, I ′(p)) = 1

4

∑3
i=0 maxpi

sim(Ii, I
′(pi)), where I ′(p) ∈ �2×2×8 is the descriptor of

a single quadrant extracted at position p. The similarity can be estimated efficiently with
the assumption that each of these quadrants can move independently (upto some extent),
which gives a coarse non-rigid matching. This method can perform reasonable non-rigid
matching with explicit pixel-wise correspondences, if it is applied in recursive nature, which
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motivates to use Deep Matching in FKP matching problem. For the sake of clarity, the
matching algorithm is divided into two main steps.

– Correlation maps are computed 23using a bottom-up algorithm.
– A top-down method estimates the motion of atomic patches starting from matches of

large patches.

5.2 DeepKnuckle : matching algorithm

In this section, we introduce a matching algorithm based on correlations at patch-level. Two
given images IR and IT are compared using algorithm 6. Initially, the algorithm works in a
bottom-up fashion (fine level to coarse-level) which include convolution, max-pooling and
sub-sampling as depicted in Fig. 11. It starts with the computation of correlation maps of
small sized patches and proceeds up to larger patches by aggregating the smaller patches.
Finally, a top-downmethod is implemented to estimate the motion of atomic patches starting
from top level correlation maps. Each response map has maxima which alone cannot explain
the full set of pixel-wise correspondences between the images so that the correspondences
extracted from all local maxima are merged in order to better estimate the global flow. In this
way, after using deep matching the number of feature points matched correctly can be used
as a matching score. In this work, we have used its inverse as a dis-similarity score. Finally,

Fig. 11 Correlation maps obtained while matching reference image with target image using DeepMatching
[34]
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a top-down method is implemented to estimate the motion of atomic patches starting from
top level correlation maps as depicted in Fig. 12. All parameters used in DeepMatching,
have been listed and their default values with descriptions, as well as operating ranges are
presented in Table 2.

Fig. 12 Top down correspondence pruning over correlation map pyramid



Multimed Tools Appl (2017) 76:18955–18984 18975

6 Experimental results

Any identification or verification algorithm is tested to evaluate its performance over a data
set to check its adaptability in a variety of applications. In this work, the largest benchmark
publicly available, PolyU FKP dataset [1] has been used for performance evaluation. The
rigours tests are performed to determine the practicality of FKP images for a biometric
system.

6.1 Database specification

The database was developed by Biometric Research Center (UGC/CRC) at the Hong Kong
Polytechnic University and is freely available for academic, non-commercial use. It con-
tains 7920 images in BMP image format with resolution 110 × 220. The 165 (125 : 40)
individuals participated in the enrollment process, including males and females. For each
subject, 6 images per index/middle finger are acquired in two different sessions (time gap
between 14 to 96 days).

6.2 Parametric analysis

The proposed system employs multiple techniques that can module wise perform several
essential tasks for effective and efficient FKP matching. Proposed techniques like BOP,
SOP, IRT, Deep-Matching, ROI extraction, and local enhancement, multiple key parameters
to be determined initially so as to let this system work. We have generated a small validation
data set consisting of 80 subjects by considering first 20 subjects from each finger LI, LM,
RI, RM. The best performing parametric set has been chosen in terms of CRR, and EER as
shown in Table 2.

In Table 2, each and every parameter used in this work has been described. Its default
value and operating range has been also been specified. Based on the operating range and
its default value, a semantic label from the set {High,Moderate, Low}, has also been
allotted. These labels can significantly enhance user’s qualitative parametric understanding
and reproducibility of results over different databases and scenarios.

6.3 Testing protocol

The performance metrics used for analysis of the proposed system are Equal Error
Rate(EER), Correct Recognition Rate (CRR), Error under ROC Curve EUC, and Decid-
ability Index (DI ) along with computation time. The strategy is tested over inter-session
matching that considers first six images as training and last six images for testing. Based on
the matching score, a matching is declared genuine if both the images belong to the same
class else considered as an impostor.

6.4 ROC based analysis

For a better justification of the proposed method, experiments related to recognition and
verification are thoroughly conducted. The results for ROC based analysis are presented
below:

Test 1: In this experiment, four categories of PolyU FKP database – Right Index
(RI), Right Middle (RM), Left Index (LI), Left Middle (LM) – are considered
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independently. The corresponding ROC characteristics for each category of
database are shown in Fig. 13. Based on the testing protocol of our system, total of
5,940 genuine and 9,74,160 impostor matches are reported. The main conclusions
from the first test are as follows. The KCPlBOP based schemes gave significant
improvement in results over KCPlSOP transformation because FKP image pat-
terns are better justified in BOP based longitudinal gradient. The multi-feature
fusion outperforms individual feature based schemes when tested over individual
FKP data sets as mentioned in Table 3. Among all four datasets, one can observe
that the optimum EER of 0.96 % and CRR of 100 % are achieved with LM (165
subjects) images.

Test 2: In the second test, all subjects (660) and their corresponding poses (660 ∗ 12)
are included for performance evaluation. A similar methodology is adopted for

(c) (d)

(b)(a)

Fig. 13 Test-1 : ROC Curve based Experimental Analysis
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Table 3 ROC based Performance Analysis over individual FKP databases

Description DI EER(%) Accuracy(%) EUC CRR(%)

Left Index finger-knuckle-print PolyU Database

lBOP 2.24 4.12 96.376 1.3027 98.68

KCPlBOP 2.33 2.50 97.978 0.5765 99.39

lSOP 1.88 8.84 93.056 3.340 96.36

KCPlSOP 2.29 3.42 96.807 1.040 98.78

f usion 3.40 1.10 98.722 0.261 99.39

Left Middle finger-knuckle-print PolyU Database

lBOP 2.26 3.66 96.992 0.904 99.29

KCPlBOP 2.37 1.74 98.511 0.296 100

lSOP 1.9120 6.97 93.449 2.868 96.86

KCPlSOP 2.404 2.96 97.438 0.727 99.39

f usion 3.44 0.96 99.015 0.094 100

Right Index finger-knuckle-print PolyU Database

lBOP 2.35 3.17 96.972 0.836 99.09

KCPlBOP 2.43 1.84 90.254 0.350 100

lSOP 1.80 8.71 92.075 3.963 94.64

KCPlSOP 2.29 3.57 96.865 1.050 99.59

f usion 3.51 0.98 99.151 0.145 100

Right Middle finger-knuckle-print PolyU Database

lBOP 2.32 3.44 97.113 0.768 99.69

KCPlBOP 2.42 1.99 98.197 0.441 99.39

lSOP 1.911 7.38 93.189 3.366 99.56

KCPlSOP 2.319 3.64 97.124 0.942 99.29

f usion 3.51 0.97 98.97 0.149 99.79

Full FKP finger-knuckle-print PolyU Database

lBOP 2.32 3.13 97.088 0.8323 98.81

KCPlBOP 2.36 1.93 98.42 0.339 99.62

lSOP 1.911 7.35 93.18 3.366 96.45

KCPlSOP 2.268 2.93 97.393 0.789 98.86

f usion 3.304 0.92 99.061 0.1414 99.39

selection of training and test images per class. Thus, a total number of 15,657,840
impostor and 23,760 genuine matching scores are computed. The results for com-
plete FKP data set are described in Table 3 and ROC plots are shown in Fig. 14a.
The proposed multi-feature fusion scheme achieves 0.92 % EER over full FKP
data-set which is significantly higher than four individual feature based schemes.
Hence, it can be concluded that our experimental results on PolyU FKP database
using proposed multi-feature fusion with Deep Matching are highly robust for
FKP based biometric systems. The genuine against impostor score distribution
has been presented in Fig. 14b for fusion scheme over full FKP database. A
well discriminating characteristic can be observed, as also reported in terms of
discriminating index (DI = 3.304) in Table 3.
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(a) (b)

Fig. 14 Test-2 : ROC curve based experimental analysis (Full FKP Database)

6.5 Comparative analysis with other state-of-the-art FKP systems

The performance of our proposed system is compared against some well-known systems
and results has been presented in Table 4. Overall, the proposed fusion scheme has per-
formed very well over all type of FKP images. The results presented in Table 4 strengthened
our belief of suitability of FKP images for high end security purpose. The results presented
for comparison are taken from [32] as public implementations are not available. One can
observe that Compcode [40] and fusion of MoriCode and MtexCode [11] have been per-
forming consistently well. But the proposed scheme has achieved superior performance.
Fusion of multiple features as reported in [11] and [43] has also been surpassed by our pro-
posed fusion, which highlights the effectiveness of our proposal. The overall performance
of left hand images is slightly worse than right handed, as most of the subjects were right
handed individuals.

6.6 Comparison among prevalent akin transformations

In this work, we have only considered transformations over gradient values as the perfor-
mance over transformed gray values turned out to be poor as well as unfair comparison. We
conclude that the vertical gradient information is more useful than the horizontal gradient
for a FKP due to more prominent vertical edge structure. We have empirically observed that
a 4-bit CS-LBP [13] does not achieve the high performance. Thus, we generate an 8 bit code
by bit duplication. Bit redundancy have scaled the bit-code value of each pixel. It resulted
in a better performance because we compute and match features over images obtained
after transformation, rather than using hamming distance between codes as dis-similarity
measure.
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Fig. 15 Comparative analysis of various transformations such as LBP, CS-LBP etc. Results are obtained by
applying DeepMatching over first 100 LI subjects using default parameters.

The detailed ROC based comparative analysis among prevalent akin transformations has
been presented in Fig. 15. It has been observed that BOP followed by IRT has shown
superior performance among all and closely followed by SOP + IRT . Therefore, we have
fused their longitudinal components. CS − LBP , which is closely related to SOP + IRT ,
falls well short in performance but better then several others such as GORP + IRT trans-
formation. LBP transformation’s performance has been observed to be bad as compared
with others. Remaining transformations without applying IRT have also shown very sim-
ilar ROC behaviour as shown in Fig. 15. Hence, such comparison helps us to conclude the
superiority of the proposed DeepKnuckle based FKP framework, in which transformation
BOP/SOP is followed by IRT and later matched using DeepMatching.

6.7 Time analysis

The proposed prototype system is implemented in C/C + + language which uses
open source computer vision library OpenCV along with T orch,Atlas and several
other libraries. The machine is equipped with four Intel(R) Core(TM) 2 Quad CPU
Q9550@2.83GHz processors with a RAM of 8GB and open source Ubuntu 10.10 as its

Table 5 Timing Analysis
Stage Knuckle (ms)

ROI Extraction 198

lBOP and lSOP Generation 14.96 × 2 = 29.92

KCPlBOP and KCPlSOP Generation 141.6 × 2 = 283.2

lBOP and lSOP Matching 56.4 × 2 = 112.8

KCPlBOP and KCPlSOP Matching 65.3 × 2 = 130.6

Fusion of all codes 2.3

Total Single Matching Time 756.82
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operating system. The detailed time analysis of the system is reported in Table 5. The
proposed system can perform single verification in less than a second (i.e. 756.82 ms) in
our prototype system, which is fast enough for real-time applications.

7 Conclusion

This work has been carried out with the aim to develop a FKP recognition system for a rural
community that can be used for applications such as financial inclusion schemes (NREGA
and MNREGA). In this work, the proposed algorithm is based on score level fusion of
multiple texture features. Initially, the ROI’s of enhanced FKP images are extracted using
modified Gabor filter method. The extracted ROI samples are further transformed using
two novel BOP and SOP schemes to obtain robust image representations. The SIFT image
features are matched using a hierarchical Deep matching algorithm. Deep matching per-
formed in top down and bottom up fashion in order to handle weak texture and non-rigid
deformable regions robustly. To put merit to the work, the performace is evaluated over the
largest FKP benchmark dataset. The results are then compared with other state of the art
methods. Our proposed methods are better in terms of CRR (99.39 %), EER (0.92 %) and
computation time (756.82 ms). It has been observed that transverse features are not very use-
ful and robust in FKP based recognition system. Also, instead of additive, a multiplicative
noise assumption is better suited for such applications.
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