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Abstract The wide-spread video editing tools make it much easier to tamper a video, which
raises a huge need for authentication techniques that can prove the originality of video content
and locate the tampered regions on the video sequences. In this paper, a multi-granularity
geometrically robust video hashing method is proposed for tampering detection and localiza-
tion. In order to balance the robustness and sensitiveness, we describe a video from three levels
of granularity: frame sequence level, block level and pixel level, and then hashes are generated
at these three levels. Polar Complex Exponential Transform (PCET) moments are calculated
on the low-pass sub-band of 3D Discrete Wavelet Transform (3D–DWT) on frame sequence to
extract geometric invariant spatio-temporal hash, which is used for video authentication. Local
PCET moments are calculated on annular and angular blocks, which are used for geometric
correction and coarse tampering localization. Position information of salient objects is obtained
from saliency map for fine tampering localization. Experimental results show that the proposed
method is robust against temporal de-synchronization and geometrical transformation, and has
high tampering localization accuracy even when the video is rotated. Compared with state-of-
the-art methods, it is more robust against content-preserving operations and more sensitive to
malicious manipulations.

Keywords Video hashing .Multi-granularity . Tampering detection . Geometric invariant .

Temporal de-synchronization

1 Introduction

With the widespread use of powerful video processing tools, it has become easy to tamper
digital videos. An attacker may forge a video and use it as evidence during digital
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investigation. Developing automatic techniques for video tampering detection has become a
big challenge for researchers.

Perceptual video hashing is one of the most popular video tampering detection techniques.
A video can be mapped to a short binary string based on its content. If two videos have the
same semantic content, they should be mapped to the same hash value, which means that the
hash should be robust against content-preserving operations, such as compressing, blurring,
geometrical transformation and temporal de-synchronization. On the other hand, the hash
should be sensitive to malicious attacks which affect video’s semantic content. As for
tampering localization, the hash should give an estimate of the position where the content
was manipulated. There are two reasons why tampering detection is generally preferred: on
one hand, one can determine whether or not the video content is still acceptable for some
applications; on the other hand, in some circumstances, tampered content needs to be restored
to its original semantic. To sum up, the hash should be robust against content-preserving
operations and sensitive to significant content modifications. Furthermore, if a tampering event
happened, it should be able to locate the tampered regions.

In recent years, a number of video hashing methods have been proposed for video
authentication. These methods fall into two categories: frame-based hashing and spatio-
temporal based hashing.

Frame-based hashing treats a video as a set of image frames and a video hash is extracted from
each frame using an image hashing technique. Lee et al. [7, 8] proposed a video hashing method
based on Centroid of Gradient Orientations (CGO), which is robust against compression and
noise degradation. However, its robustness against geometrical transformation is limited. Roover
et al. [4] generated a rotation-invariant hash based on Radial projection (RASH). Lee [9] analyzed
the affine covariance to construct a video hash, which is robust against both geometrical and non-
geometrical transformations. Nie et al. [14] proposed an isometric feature mapping based video
hashing method. Frame-based hashing generates a video hash without considering the temporal
property, which makes it fragile to minor temporal de-synchronization.

Spatio-temporal based hashing regards a video as a whole rather than a trivial combination
of frames. Coskun et al. [3] used the low frequency coefficients derived from 3D Discrete
Cosine Transform (3D–DCT) to form a video hash. Using the temporal information of 3D–
DCT, Malekesmaeili et al. [13] generated a video hash, which is robust against noise
degradation and contrast adjustment. Willems et al. [20] used spatio-temporal interest points
as robust video hash for video authentication. Li et al. [11] proposed a Low Rank Tensor
Analysis (LRTA) based method, which applied multi-linear subspace projections on 3D–cubes
to extract a robust video hash. Saikia et al. [17, 18] computed 1D–DCT on the low-pass sub-
band of 3D Discrete Wavelet Transform (3D–DWT) to form a video hash. Spatio-temporal
based hashing is robust against minor temporal de-synchronization, such as frame rate change
[10]. However, these methods are sensitive to geometrical transformation. In fact, a video still
has the same visual content after geometrical transformation such as scaling or rotation.

In some circumstances, if a tampering event happened, it is necessary to locate the
tampering in the video. Unfortunately, few video hashing methods concern about tampering
localization. Researchers proposed some methods for image tampering detection. Although
these methods are fragile to minor temporal de-synchronization, they can be generalized to be
frame-based hashing methods for video tampering detection. Zhao et al. [25, 26] used Zernike
moments as global features to authenticate images, and used the position and texture infor-
mation as local features to detect the tampered regions. OuYang et al. [15] proposed a Scale
Invariant Feature Transform (SIFT) based hashing method. A rectangle bounding non-
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matched key-points is considered as a forged region. Yan et al. [23] used SIFT features
extracted on multi-scale round bins and angular bins to locate forged regions. Wang et al.
[19] generated a hash from the whole saliency map and thus located the tampered regions
precisely. But its hash length is tens of thousands of digits.

All video hashing methods mentioned above cannot simultaneously satisfy the following
requirements: (1) be robust against allowable temporal and spatial operations, especially geomet-
rical transformation; (2) be sensitive to illegal manipulations and (3) be able to locate the
tampering precisely. Fulfilling these requirements is difficult because they are contradictory
[16]. For example, being sensitive to small range of tampering requires the hash to describe the
detail of the video, i.e. sensitive to small change of video content. But in this situation the hash
would be sensitive to tolerant operations and thus fail to meet the robustness requirement. Being
robust against temporal de-synchronization requires the hash to describe the global perceptual
content of the video, while being sensitive to local malicious manipulations requires the hash to
describe the local detail of the video. Being able to locate the tampering requires the hash to
contain the position information. Based on previous analysis, in this paper, we propose a multi-
granularity geometrically robust video hashing method for tampering detection and localization.
We describe a video from three levels of granularity: frame sequence level, block level and pixel
level. 3D–DWT and Polar Complex Exponential Transform (PCET) are applied to extract
geometrically robust frame-sequence-level hash, which is used for video authentication. Local
PCETmoments are extracted on annular and angular blocks to form rotation-invariant block-level
hash, which is used for geometric correction and coarse tampering localization. In this paper, we
focus on the object-based tampering, such as adding object, deleting object, etc. Thus position
information of salient objects is extracted as pixel-level hash for fine tampering localization.

Our contributions are fourfold: (1) extract video hashes from multiple granularities to
balance the robustness and sensitiveness; (2) incorporate 3D–DWT and PCET to extract
geometric invariant spatio-temporal features; (3) a geometric correction technique based on
the hash of angular blocks is proposed to locate the tampered regions in the rotated frame; (4) a
coarse-to-fine tampering localization strategy is proposed to improve the detection accuracy.

The rest of this paper is organized as follows. 3D–DWT and PCET are introduced in
Section 2, and the proposed video hashing method is described in Section 3. Section 4
demonstrates the experiments. Finally, conclusion is presented in Section 5.

2 3D discrete wavelet transform and polar complex exponential transform

2.1 3D discrete wavelet transform

3D–DWT can capture the video’s temporal property [5, 6]. One level 3D–DWT is obtained by
applying three separate 1D transforms along the coordinate axes of a video. Let LA↓ denote
the low-pass filtering and down sampling operations, HA↓ denote the high-pass filtering and
down sampling operations, a single level 3D–DWT is illustrated in Fig.1.

The lowest frequencywavelet sub-bandLLL can be used as the input of the next level 3D–DWT.

2.2 Polar complex exponential transform

PCET is one of the Polar Harmonic Transforms (PHT) proposed by Yap [24], whose kernel
function is simpler than Zernike moments. In our former research [22], we found that PCET
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has the best reconstruction performance and rotational invariance. PCET is a 2D transform
defined over the unit circle in the polar coordinate system. It can be expressed as:

Mnl ¼ Ωn∫
2π
0 ∫10 Hnl r; θð Þ½ �* f r; θð Þrdrdθ ð1Þ

Ωn ¼
1
.
π; n ¼ 0

2
.
π; n > 0

8<
: ð2Þ

where [⋅]∗ is the complex conjugate; n and l are order and repeatability of PHT respectively,

with n , |l| = 0 , 1 , ⋯ ⋯ , +∞. Hnl(r, θ) = Rn(r)e
ilθ and Rn rð Þ ¼ ei2πnr

2
. If the image is rotated

by angle φ, PCET moments of the rotated image are Mφ
nl

� �
. According to (1), {Mnl} and

Mφ
nl

� �
has the relation:

Mφ
nl ¼ Mnle−ilφ ð3Þ

According to (3), PCET is rotation-invariant, i.e. jMφ
nlj ¼ jMnlj. Scaling invariance can be

obtained by image normalization.

3 Proposed method

3D–DWT captures the spatio-temporal property of a video, while with image normalization,
PCET extracts scaling and rotation invariant features. Base on this, we propose a multi-
granularity video hashing method for tampering detection and localization. Fig.2 shows the
process of video hash generation. First of all, a video V is divided into several frame sequences.
3D–DWT is performed on each frame sequence to obtain the sub-band LLL, on which PCET

Fig. 1 Single level 3D–DWT
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moments are calculated. Then a key-based random matrix projection is performed on these
PCET moments to get the geometrically robust frame-sequence-level hash, which is used for
video authentication. Secondly, to detect and locate small range of tampering, we need hash
derived from a smaller granularity. Thus each frame is further divided into annular and angular
blocks. Local PCET moments are calculated on these blocks and then randomly projected to
form the block-level hash, which is used for geometric correction and coarse tampering
localization. Thirdly, position information of salient objects is extracted as pixel-level hash,
which is used for fine tampering localization. Finally, hashes of three granularity levels are
concatenated to form the final video hash.

3.1 Frame-sequence-level hash generation

Frame-sequence-level hash is used for video authentication, and it can be generated as follows.

(1) Video preprocessing. Sample the video V to K frames, resize each frame to I × J, thus
V ∈ℝI × J ×K. Divide V into N frame sequences fsi, i = 1 , 2 , . . .N. Each frame sequence
fsi has s = ⌊K/N⌋ frames (see Fig.3).

(2) Feature extraction. Perform three-level 3D–DWTon each frame sequence fsi (1 ≤ i ≤N)
to get the lowest frequency sub-band LLL. Extract PCET moments on each frame of
LLL and select L robust moments to form feature vector FV of fsi.

(3) Frame-sequence-level hash generation. With a Gaussian random matrix W1∈ℝm f �L

generated by a secrete key Key, a key-based pseudorandom matrix projection [12] is

performed on FV to generate mf dimensions hash Hi
f. Concatenate these hashes to

obtain the frame-sequence-level hash of video V.

HV
f ¼ Hi

fji ¼ 1; 2; :::N
n o

ð4Þ

Fig. 2 Multi-granularity video hash generation
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3.2 Block-level hash generation

In order to generate hash which is robust against rotation and sensitive to small range of
tampering, we generate block-level hash as follows.

(1) Blocks division. Divide each frame fs ji (1 ≤ i ≤N , 1 ≤ j ≤ s) of the i th frame sequence
into Nann annular blocks and Nang angular blocks, as shown in Fig.4.

(2) Annular block hash generation. Let Cann (Cann = 1/Nann) denote the width of each

annular block and Rx = (x − 1)Cann, for each annular block blockannx of fs ji , calculate its
PCET moments according to Eq.(5).

Mann
nl blockannx

� � ¼ Ωn∫
2π
0 ∫Rxþ1

Rx
Hnl r; θð Þ½ �* f r; θð Þrdrdθ where n; lj j≤Qann ð5Þ

Fig. 3 Illustration of frame
sequences dividing

Fig. 4 Two blocking styles a Annular blocking b Angular blocking
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Similar to frame-sequence-level hash generation, perform pseudorandom matrix projection

on magnitude of PCET moments Mann
nl blockannx

� ��� �� j n; lj j≤Qann

� �
to generate a mann

dimensions hash Hann
x .

(3) Angular block hash generation. Similarly, let Cang (Cang = 2π/Nang) denote the size of

each angular block and θy = (y − 1)Cang, for each angular block blockangy of fs ji , calculate
its PCET moments according to Eq.(6).

Mang
nl blockangy

� �
¼ Ωn∫

θyþ1

θy ∫10 Hnl r; θð Þ½ �* f r; θð Þrdrdθ where n; lj j≤Qang ð6Þ

Perform key-based pseudorandommatrix projection on Mang
nl blockangx

� ��� �� j n; lj j≤Qang

n o
to generate mang dimensions hash H

ang
y .

(4) Block-level hash generation. Concatenate all annular block hashes and angular block

hashes of frame fs ji to formHb fs ji
� �

.

Hb fs ji
� � ¼ Hann

x jx ¼ 1; :::Nann
� �

; Hang
y jy ¼ 1; :::Nang

n on o
ð7Þ

From (7), we can obtain the block-level hash of video V.

HV
b ¼ Hb fs ji

� �ji ¼ 1; :::N ; j ¼ 1; :::s
� � ð8Þ

3.3 Pixel-level hash generation

Salient objects, as critical video content, are more preferred to be tampered. Motivated by this
fact, we keep the position information of salient objects as pixel-level hash, which is used for
fine tampering localization.

We adopt our former method proposed in [21] to obtain a saliency map of each frame,
which is then post-processed with binarization and morphological operations to obtain
salient objects. In order to shorten the hash length, a bounding polygon with Nvertex

vertexes is used to represent a salient object, as shown in Fig. 5. Adjusting the parameter

Fig. 5 Extraction of pixel-level hash a Tested frame b Salient objects c Bounding polygons
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Nvertex can balance detection accuracy and hash length. The hash of a frame fs ji is computed as
follows.

Hp fs ji
� � ¼ pvert jver ¼ 1; :::Nvertex; t ¼ 1; :::Npoly

� � ð9Þ

where pvert denotes the position of the ver th vertex in the t th polygon, Npoly is the number
of polygons.

Concatenate hashes of all frames to form the pixel-level hash of the video V.

HV
p ¼ Hp fs ji

� �ji ¼ 1; :::N ; j ¼ 1; :::s
� � ð10Þ

The final video hash Hv is expressed as follows.

Hv ¼ HV
f HV

b HV
p

h i
ð11Þ

3.4 Video tampering detection scheme

For a received video V' and its hash H
0
v, we compare H

0
v with Hv for video authentication and

tampering localization. Frame-sequence-level hash H
0
f is used for video authentication, while

block-level hashH
0
b and pixel-level hash H

0
p are used for coarse-to-fine tampering localization.

3.4.1 Video authentication

Video authentication determines whether a frame sequence of the received video is forged or

not. For each frame sequence fsi' of the received video V', if the distance between Hi
f and Hi

f
is greater than threshold τf, the received frame sequence fsi' is classified as a forged frame
sequence.

forged fsi
0ð Þ ¼ 1 if Dh Hi

f;H
i
f

� �
≥τ f ;

0 else

(
; 1≤ i≤N ð12Þ

where Dh(·) indicates the 2-norm distance.

3.4.2 Tampering localization

Once fsi' is judged as a forged frame sequence, we need to know the exact position of the
tampering. The procedure of tampering localization is described as follows.

(1) Geometric correction

In order to locate the tampering in a rotated frame, geometric correction is needed to be
performed before spatial tampering localization. It detects the block offset δ by minimizing the
objective function.

argmin
δ

∑
Nangþδ

q0¼δ
∑
q¼1

Nang

Dh Hang
q ; Hang

mod q0;Nangð Þ
	 


ð13Þ
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where Hang
q is the q th angular block hash of the original video V, Hang

mod q0;Nangð Þ is the

mod(q',Nang) th angular block hash of the received video V'. mod(q',Nang) denotes the modular
function on q' and Nang.

After solving out δ, with known angular block size Cang, we obtain the estimated rotated
angle φ according to Eq.(14).

φ ¼ δ−1ð ÞCang ð14Þ

(2) Coarse-to-fine tampering localization

After geometric correction, we then determine whether the block of each suspected frame is
forged or not. For a received annular block blockannx ; 1≤x≤Nann (or angular block

blockangy ; 1≤y≤Nang), if the distance between Hann
x (Hang

y ) and Hann
x (Hang

y ) is greater

than a given threshold τann (τang), the received block is classified as a forged block. If two
forged blocks blockannx and blockangy satisfy the requirement blockannx ∩blockangy ≠∅, we obtain

the tampered sector block blockk ¼ blockannx ∩blockangy , as shown in Fig. 6. All blockk form the

forged block set BS .
To fine tune BS , pixel-level hashes HV

p and HV
p are compared to determine whether a

polygon (salient object) is forged or not. Let PS denote all the pixels in the polygons

represented by HV
p, PS' denote all the pixels in the polygons represented by HV

p, a pixel p is

forged if it locates in the intersection of BS and the union regions of PS and PS'. All forged
pixels form the final detection result DR.

DR ¼ pjp ∈BS∩ PS∪PS0ð Þf g ð15Þ

Fig. 6 Illustration of block blockk intersected by blockannx and blockangy
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4 Experimental results

Proposed hashing method is evaluated from two aspects: video authentication and tampering
localization. We compare our method with CGO [8], Rash [4], 3D–DCT [3], LRTA [11], 3D–
DWT [17], Zernike method [26] and SIFT method [23]. Since only Zernike method and SIFT
method can locate the tampered regions, we compare our method with these two methods in
tampering localization test.

4.1 Dataset and parameters setting

4.1.1 Dataset

Dataset SYSU-OBJFORG [2] contains 100 pristine videos and 100 corresponding tampered
videos. All videos are 1280 × 720, H.264/MPEG-4 encoded with frame rate of 25 frames per
second (fps). Each tampered video clip contains one or two forged segments which lasting
from one to five seconds. The tampered types include object addition and object deletion. No
perceptive traces can be easily found in forged frames.

Each similar version of frame sequences is processed with temporal de-synchronization,
rotation or blurring as listed in Table 1 to construct the corresponding similar dataset.

4.1.2 Parameters setting

Experiments have been performed on Matlab R2014a, Windows 7 PC with Intel Core i5 CPU
3.30 GHz. Half of the dataset is used for parameters determination. By comprehensive
considering both the ROC performance and hash length, the optimal parameters are found
by grid search, and then the performance over the whole dataset is reported.

Each video is resized to 256 × 256 × 270, and is divided into 10 frame sequence, thus each
frame sequence has 27 frames, i.e.s = 27.

When generate frame-sequence-level hash, set L = 60 and mf = 5. It means that 60 features
are selected, and the hash length of each frame sequence is 5.

Each frame is divided into 5 annular blocks and 24 angular blocks, i.e. Nann = 5, Nang = 24.
When generate the block-level hash, set Qann = 5 andQang = 5,mann = 4 andmang = 2. Thus the
block-level hash length is 68.

Because the number of salient objects is not more than three in dataset, we choose Npoly = 3,
each polygon has Nvertex = 8 vertexes. Pixel-level hash length is 48.

Table 1 Content-preserving operations and parameters setting

Operations Parameters setting

Frame rate change Subsampling by a factor of 2, 3, 4
Rotation Degree: 5, 15, 30, 45–315 with step 45
Scaling Scaling factor: 0.5, 0.8, 0.9, 1.1, 1.4, 1.5, 1.7, 2.0
JPEG compression Quality factor: 10, 30, 50, 70, 90
Contrast adjustment Low_in: 0.1,0.2,0.3,0.4 with high_in: 1
Gaussian noise Mean: 0, variance: 0.002–0.01 with step 0.002
Salt and pepper noise Variance: 0.02–0.1 with step 0.02
Gaussian blurring Filter size: 3 × 3 to 9 × 9 with step 2
Median blurring Filter size: 3 × 3 to 9 × 9 with step 2
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4.2 Performance of video authentication

Video authentication determines whether a received frame sequence is forged or not. For it is a
binary decision-making process, the receiver operating characteristics (ROC) curve, created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various thresholds,

is employed to evaluate its performance. Let HV
f, H

V
f
*
and HV0

f denote the hash of the original
frame sequence, similar frame sequence and tampered frame sequence separately, we calculate
TPR and FPR as follows.

TPR τð Þ ¼ Pr Dh HV
f−H

V
f
*

� �
< τ

� �
ð16Þ

FPR τð Þ ¼ Pr Dh HV
f−H

V0
f

� �
< τ

� �
ð17Þ

where the Pr(•) function indicates the classification probability.
Original frame sequences and tampered frame sequences in SYSU-OBJFORG, and the

corresponding similar frame sequences generated by performing tolerant operations (as shown
in Table 1) on the original frame sequences are used in video authentication test. Parameters of
compared methods are given by the relevant literature and are fine-tuned in our experiments.

According to [11], frame-based hashing method (CGO, Rash) used 2 dimensions per frame
in video authentication, thus 2 × 27 = 54 dimensions pre frame sequence are used by CGO,
Rash methods, while 128 dimensions per frame sequence are used by 3D–DCT, LRTA and 3D–
DWT methods. In [26], Zernike method used 22 dimensions per frame, while in [23], SIFT
method used 11 dimensions per frame. Thus 594 and 297 dimensions per frame sequence are
respectively used by two hashing methods. The proposed method used only 5 dimensions per
frame sequence in video authentication. Table 2 shows the hash length of eachmethod for video
authentication test. It shows that the proposed method uses less hash length than other methods.

Figure 7 shows the video authentication performance of the eight methods under frame rate
change and geometrical transforms. From Fig. 7a we can see that frame-based methods, such
as CGO, Rash, Zernike method and SIFT method which do not consider the temporal property
of the video, perform not so well. Spatio-temporal based hashing methods such as the
proposed method, 3D–DWT, 3D–DCT, LRTA are more robust against temporal de-
synchronization than frame-based methods. The proposed method is particularly robust against
temporal de-synchronization. Fig. 7b-c show the performance under geometrical transforms:
rotation and scaling respectively. Fig. 7b shows that the proposed method, Zernike method and
SIFT method show excellent robustness against rotation. 3D–DCT, CGO, Rash methods are
robust against small angle rotation but sensitive to large angle rotation. Due to the image
normalization, all hashing methods are robust against scaling, as shown in Fig. 7c. It can be
seen from Fig. 7 that only the proposed method is robust against both temporal de-
synchronization and geometrical transforms.

Table 2 Hash length for video authentication (unit: dimension per frame sequence)

CGO
[8]

Rash
[4]

3D–DCT
[3]

LATA
[11]

3D–DWT
[17]

Zernike method
[26]

SIFT method
[23]

Proposed
method

Hash
length

54 54 128 128 128 594 297 5
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Figure 8 shows the video authentication performance of the eight methods under JPEG
compression, contrast adjustment, noise degradation and blurring. Noise degradation includes
Gaussian noise degradation and salt and pepper noise degradation, while blurring includes
Gaussian blurring and median blurring. From Fig. 8a, we can see that all hashing methods
show excellent robustness against JPEG compression. But the performance of these methods
degrades under contrast adjustment. From Fig. 8b it can be seen that the proposed method
shows the best robustness against contrast adjustment over other methods. Since the LLL band
of 3D–DWT filters out most of the high frequency noise, the extracted features are robust
against noise degradation (shown in Fig. 8c). Fig. 8d shows that all hashing methods are robust
against blurring.

4.3 Performance of tampering localization

Tampering localization locates the tampered regions in a frame. To analyze its performance,
more quantitative indicators such as precision, recall and F1 score are adopted, which are
often-used measures in the field of information retrieval [1]. Let TP denote the number of
detected points in forgery region, TN denote the number of undetected points in non-forged

Fig. 7 Video authentication performance under a frame rate change b rotation and c scaling
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region, FP denote the number of detected points in non-forged region and FN denote the
number of undetected points in forgery region, we calculate the precision, recall, F1 as follows.

precision ¼ TP
TP þ FP

ð18Þ

recall ¼ TP
TP þ FN

ð19Þ

F1 ¼ 2� precision� recall

precisionþ recall
ð20Þ

The higher the precision, the fewer mismatches are detected. The higher the recall, the more
complete forged regions are detected. The higher the F1, the better performance is achieved.
All the 10,440 forged frames in dataset and their corresponding original frames are used in the
tampering localization test. Each forged frame is processed with rotation, scaling or blurring as
listed in Table 1. Zernike method and SIFT method are compared with the proposed method.

Fig. 8 Video authentication performance under different tolerant operations a JPEG compression b Contrast
adjustment c Noise degradation d Blurring
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Figure 9 shows the tampering localization performance of three hashing methods under
various tolerant operations. Rotation, scaling, JPEG compression, Gaussian noise degradation

Fig. 9 Tampering localization performance under various tolerant operations. Rotation, scaling, JPEG compres-
sion, Gaussian noise degradation and Gaussian blurring are shown from top to bottom. Precision, recall and F1
are shown from left to right
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and Gaussian blurring are shown from top to bottom, while precision, recall and F1 score are
shown from left to right. Column 1 shows the precision rate obtained by each hashing method
under content-preserving operations. It shows that the proposed method detects the tampered
regions more precisely than other methods. Based on a coarse-to-fine strategy, the proposed
method reduces lots of mismatches and has the highest precision. SIFT method has the worst
performance since the sector blocking strategy is improper to detect rectangle-like object like
human body. It causes a low precision rate because too many non-forged areas are detected as
forged. Column 2 shows recall rate obtained by each hashing method, indicating that Zernike
method detects the most complete forged regions. This is because the bounding box contains
the most complete of the object. Column 2 also shows that more than 96% forged regions are
detected by three hashing methods. Column 3 shows F1 score obtained by each hashing
method. It shows that the proposed method performs better than other two methods in locating
the tampered regions. Although other methods have higher recalls, their low precisions lower
their F1 scores. It can be concluded from Fig.9 that the proposed method shows the best
performance in tampering localization under various tolerant operations.

Figure 10 displays the detection results obtained by three hashing methods. It is obvious that
the proposed method reduces most of mismatches and therefore obtains the highest precision
over the other two methods. With a coarse-to-fine strategy, the proposed method retrieves

Fig. 10 The tampering localization results

Table 3 Hash length for tampering localization (unit: dimension per frame)

Zernike method [26] SIFT method [23] Proposed method

Hash length 48 291 116
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excellent detection accuracy. Sector-blocking strategy used by SIFT method introduces many
mismatches. Because Zernike method does not restore the rotated image before tampering
localization, it cannot detect the tampering in a rotated frame, as shown in Fig. 10 row 4. SIFT
method and the proposed method correct the rotated angle before tampering localization, thus
these two methods detect the tampered regions accurately in the rotated frame.

Table 3 shows the hash lengths of different methods used for tampering detection test. In
the experiments, it takes the proposed method 68 dimensions to do geometric correction, 48
dimensions for polygons to represent salient objects, which makes the proposed method
generate longer hash than Zernike method. However, the geometric correction helps the
proposed method gain higher detection accuracy under rotation than Zernike method, as
shown in Fig.9a-c and Fig.10 (row 4); while the strategy of using polygons improves the
localization accuracy no matter what the shape of the object is. Zernike method shows good
localization performance for rectangle-like objects (such as human bodies), but for non-
rectangle-like objects, it contains too many mismatches and therefore its localization perfor-
mance degrades. In conclusion, our hashing method generates a longer video hash, but
performs better in detecting the any-shape object in any-angle-rotated frame.

4.4 Time consumption

Table 4 shows that the proposed method consumes less time in generating hash for video
authentication, which is mainly because we extract features at frame sequence level rather than
frame level (CGO, Rash, Zernike method, SIFT method). However, the proposed method and
Zernike method consume more time than SIFT method in generating hash for tampering
localization. The time consumption of the proposed method focuses on: (1) Calculating PCET
moments on each block of each frame; (2) Obtaining a saliency map for each frame.

5 Conclusion

In this paper, a multi-granularity video hashing method is proposed for tampering detection. To
balance the robustness and sensitiveness, we generate a video hash from different levels of
granularity (frame sequence level, block level, pixel level). Frame-sequence-level hash, which
is generated by 3D–DWT and PCET, shows particularly robustness against temporal de-
synchronization and geometrical transformation. Hashes of block-level and pixel-level are
used for geometric correction and coarse-to-fine tampering localization, which obtains an
excellent tampering localization results. Our video hash describes the video from multiple
aspects, while the hash generation time cost is higher than other methods. Our future work is to
speed up our method by using GPU acceleration approach.

Table 4 Time consumption of hash generation (unit: second per frame)

CGO
[8]

Rash
[4]

3D–DCT
[3]

LRTA
[11]

3D–DWT
[17]

Zernike
method
[26]

SIFT
method
[23]

Proposed
method

Video authentication 0.11 0.22 0.03 0.03 0.04 0.03 0.03 0.02
Tampering

localization
/ / / / / 2.44 0.69 3.09
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