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Abstract In the present work, a hybrid hierarchical framework for classification of breast
density using digitized film screen mammograms has been proposed. For designing of an
efficient classification framework 480 MLO view digitized screen film mammographic images
are taken from DDSM dataset. The ROIs of fixed size i.e. 128 × 128 pixels are cropped from
the center area of the breast (i.e. the area where glandular ducts are prominent). A total of 292
texture features based on statistical methods, signal processing based methods and transform
domain based methods are computed for each ROI. The computed feature vector is subjected
to PCA for dimensionality reduction. The reduced feature space is fed to the classification
module. In this work 4-class breast density classification has been conducted using hierarchical
framework where the first classifier is used to classify an unknown test ROI into B-I/other
class. If the test ROI is predicted as other class, it is inputted to second classifier for the
classification into B-II/dense class. If the test ROI is predicted as belonging to dense class, it is
inputted to classifier for the classification into B-III/B-IV class. In this work five hierarchical
classifiers designs consisting of 3 PCA-kNN, 3 PCA-PNN, 3 PCA-ANN, 3 PCA-NFC and 3
PCA-SVM classifiers has been proposed. The obtained maximum OCA value is 80.4% using
PCA-NFC in hierarchical approach. Further, the best performing individual classifiers are
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clubbed together in a hierarchical framework to design hybrid hierarchical framework for
classification of breast density using digitized screen film mammograms. The proposed hybrid
hierarchical framework yields the OCA value of 84.1%. The result achieved by the proposed
hybrid hierarchical framework is quite promising and can be used in clinical environment for
differentiation between different breast density patterns.

Keywords BIRADS breast density . Texture feature extraction . Principal component analysis .

kNNclassifier . PNN classifier . ANN classifier . NFC classifier . SVMclassifier . Hierarchical
classifier

1 Introduction

It has been demonstrated earlier that the increased breast density is prominent indicator for the
growth of breast cancer. It is the most common life threatening form of cancer that is found in
women [7, 92, 93]. For the experienced radiologists, especially in cases of dense mammogram
if masses are present in the center area (i.e. the area where glandular ducts are prominent)
detection of breast abnormalities is really a tedious work. In routine clinical practice, during
screening mammography the radiologist may find that sometimes in a dense tissue when the
lesion is not visible there are chances that the lesion is present and is masked behind the dense
tissue. So it is highly recommended that if the prediction for that suspicious case is dense (B-III
or B-IV) then such cases must be double screened for the presence of masked lesions.

Fundamentally, different breast tissues reflect different intensity i.e. fatty tissue represented
as dark region while dense tissues represented as brighter region on digitized screen film
mammographic images [51, 96]. The brief description of Breast Imaging-Reporting and data
system (BIRADS) density classes and the sample digitized film screen mammogram (SFM)
images of each class, randomly taken from the Digital database for screening mammography
(DDSM) dataset [36] are shown in Fig. 1.

1.1 Hierarchical classification system

It is worth mentioning that the designing of computer-aided diagnosis system, hierarchical
approach has been extensively used in studies [4, 32, 53, 69, 79, 80] which yields the
prominent results. The hierarchical approach for the design of 4-class breast density classifi-
cation system is shown in Fig. 2.

In the Fig. 3 it has been observed that classifier-1 is used to classify the input test ROI into
C1/other class. If the test ROI is predicted as other class, it is inputted to the second classifier
for classification into C2/other class-2. If the test ROI is predicted as belonging to other class-
2, it is inputted to the third classifier for the classification into C3/C4.

There are few advantages of hierarchical classification approach (a) less number of
classifiers required with respect to multiclass classifier (for 4-class classification problem six
binary classifiers required in OAO approach however only three binary classifiers are required
in hierarchical approach), (b) possibility to go stepwise from the general classification prob-
lem, i.e. fatty (B-I) versus other class, to more particular classification problem i.e. B-II versus
dense and B-III versus B-IV class.

Therefore in the present work hierarchical framework for the classification of breast density
is used. It provides the possibility to go stepwise from the general classification problem, i.e.
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Fig. 1 Sample of digitized screen film mammograms of BIRADS breast density class taken from DDSM dataset
belonging to (a) BIRADS-I: B-I, (b) BIRADS-II: B-II, (c) BIRADS-III: B-III and (d) BIRADS-IV: B-IV

Fig. 2 Hierarchical approach for the design of 4-class breast density classification system

Multimed Tools Appl (2017) 76:18789–18813 18791



B-I/other class, classification problem which is the identification of B-I breast density class
with hierarchical framework of classifiers. In the similar manner next level of classification
frameworks classify the B-II)/dense class {B-III, B-IV} and further move on for B-III/B-IV
breast density class.

2 Literature review

From the study conducted in past it has been observed that the breast density
classification systems have been designed for (1) 2-class (fatty tissue/dense tissue)
breast density class, (2) 3-class (fatty tissue/fatty glandular tissue/dense tissue) breast
density class and (3) 4-class BIRADS (fatty tissue/some fibroglandular tissue/hetero-
geneously dense tissue/extremely dense tissue) breast density classes. The classification
of these approaches is shown in Fig. 3.

The broad study of the literature demonstrate that the breast density classification
system using SFMs can be designed using (1) segmented tissue based approaches
(STBAs) [11, 12, 18, 30, 42, 52, 60, 65, 67, 68, 70] and (2) fixed size region of interest
(ROI) based approaches (RBAs) [35, 39, 59]. It is well known that STBAs require
additional steps viz. eliminating the background and removing the pectoral muscle. Due
to these additional steps STBAs are more time consuming and complex in comparison to
the RBAs.

After the depth study of literature it has been observed that most of the studies for 4-
class breast density classification using SFMs carried on benchmark dataset i.e. (a)
Mammographic image analysis society (MIAS) [11, 18, 65, 67, 68, 70], (b) DDSM
[11, 12, 52, 67, 68] and (c) self collected mammograms by individual research group
[30, 35, 39, 42, 59, 60]. It is worth mentioning that the DDSM dataset contains images
which are already labeled according to BIRADS density standard by the experts, however
in case of MIAS dataset as well as in case of datasets collected by authors the images
have been labeled according to BIRADS standard by the participating radiologists.

Fig. 3 Approaches used for the design of breast density classification systems. Note: STBAs: Segmented tissue
based approaches, RBAs: ROI based approaches. Benchmark dataset#: MIAS, DDSM
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2.1 Study carried out on benchmark DDSM dataset

After the extensive study of the literature it has been observed that the most of the studies
carried out on benchmark DDSM dataset is using STBAs [11, 12, 67, 68]. The brief
description of studies carried out for 4-class breast density classification on DDSM dataset
is given in Table 1. It is worth observing that the only one study is based on RBAs [52]. The
maximum classification accuracy obtained for DDSM dataset is 84.7% using the STBA [11].
The study [11] carried out on 500 digitized SFMs taken from DDSM dataset which is
comprised of 125 mammograms of each class. The segmentation of breast region is performed
using global thresholding method and polynomial approach proposed by Ferrari at el. [30] is
used for removal of pectoral muscle. Appearance based and edge based features are extracted
for each segmented mammograms and support vector machine is used for classification
purpose. In this study 499 samples are used for training purpose and 1 image is tested 500
times and 84.7% classification accuracy is observed.

In study [52] the authors have attempted 4-class breast density classification using RBA on
480 digitized SFMs taken from DDSM dataset. The fixed size of ROIs i.e. 128 × 128 pixels
are cropped from center location of each breast (i.e. just behind the nipple) and wavelet texture
features are computed using the haar compact support wavelet filter. The study reports the
accuracy of 73.7% using SVM classifier. From the literature study it may be noted that the
study [52] can be only directly related to present work as it has been carried out on DDSM
dataset using RBA.

2.2 Study carried out on benchmark MIAS dataset

In the literature few studies [11, 18, 65, 67, 68, 70] have been carried out on benchmark MIAS
dataset for 4-class breast density classification as the images have been labeled according to

Table 1 Studies carried out for 4-class breast density classification

Dataset Author, Year STBA/RBA No. of images Classifier Accuracy (%)

DDSM Bovis et al. [12] STBA 377 ANN 71.4
Oliver et al. [67] STBA 615 kNN 47.0
Bosch et al. [11] STBA 500 SVM 84.7
Oliver et al [68] STBA 132 SFS + kNN 77.0
Kumar et al.[52] RBA 480 SVM 73.7

MIAS Oliver et al. [67] STBA 270 Decision tree 73.0
Bosch et al. [11] STBA 322 SVM 95.4
Oliver et al. [68] STBA 322 SFS + kNN 66.0
Qu et al.[70] STBA 322 FELM* 72.6
Chen et al.[18] STBA 322 kNN 75.0
Mustra et al. [65] RBA 322 kNN 79.2

Self collected dataset Miller et al. [30] STBA 40 Bayesian 80.0
Karssemeijer; [60], 1998 STBA 615 kNN 65.0
Jamal et al. [42] STBA 100 -- 78.3
Liu et al.[39] RBA 88 SVM 86.4
Masmoudi et al. [59] STBA 2052 kNN 79.0
He et al.[35] STBA 360 -- 78.0

STBA Segmented tissue based approach, RBA Region of interest based approach FELM* Fuzzy-extreme learning
machine, SVM Support vector machine, ANN Artificial neural network, kNN k-Nearest neighbors
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BIRADS standard by the participating radiologists. It is worth observing that most of the
studies conducted on using STBAs [11, 18, 67, 68, 70] and only few studies are conducted
using RBAs. The maximum accuracy of 95.4% has been achieved by using STBA on studies
carried out on MIAS dataset [11]. In study [11] 322 SFMs are taken. Whole breast region is
segmented using global thresholding method and polynomial approach proposed by Ferrari at
el. [30] is used for removal of pectoral muscle. The extracted features are based on edges and
intensity appearance and used classifier is support vector machine.

The maximum accuracy achieved on MIAS dataset using the RBAs is 79.2%
reported in study [65]. In this study ROI of fixed size i.e. 512 × 384 pixels are
cropped from 322 digitized SFMs. The 7 intensity based and 17 GLCM texture
features (for the angle 0°, 45°, 90° and 135° at inter-pixels distance 1,3,5 and 7)
are extracted for each ROI. Naïve Bayes probabilistic classifier is used for the
characterization between BIRADS density class. The summary of studies carried out
for 4-class breast density classification on MIAS dataset is reported in Table 1.

2.3 Study carried out on self collected mammograms by individual research group

It is also found that the few studies were carried out on self collected mammograms
by individual research group [35, 39, 42, 59, 60]. It is worth observing that the most
of the studies carried out on self collected mammograms by individual research group
are based on STBAs. The maximum classification accuracy obtained on self collected
dataset is 80.0% consisting of 80 mammograms [39]. The summary of studies carried
out for 4-class breast density classification on self collected by different research
group dataset is reported in Table 1.

In the present work, a hybrid hierarchical framework for classification of breast density
is designed which is consisting of five hierarchical classifiers i.e. 3 PCA-kNN, 3 PCA-
PNN, 3 PCA-ANN, 3 PCA-NFC and 3 PCA-SVM classifiers have been proposed.
Further, the best performing individual classifiers at each node are clubbed together in
a hierarchical framework to design hybrid hierarchical framework for classification of
breast density using digitized screen film mammograms. Various texture parameters
including 11 first-order statistics (FOS) features, 13 GLCMmean features, 5 Gy level
difference statistics (GLDS) features, 11 Gy level run length matrices (GLRLM) features,
30 Laws’3 features, 75 Laws’ 5 features, 30 Laws’7 features, 75 Laws’9 features and 42
2-D Gabor wavelet transform (GWT) features are computed from extracted each fixed
size of ROIs i.e. 128 × 128 pixels from center area of the breast (i.e. the area where
glandular ducts are prominent). Finally, a combined feature set consisting of 292 features
is inputted to Principal component analysis (PCA) for feature space dimensionality
reduction. The resultant feature vector is fed to the classification module.

3 Materials and methods

3.1 Experimental work flow for the design of a hierarchical framework
for classification of breast density using digitized screen film mammograms

The experimental work flow followed in this work for the design of a hierarchical framework
for classification of breast density using digitized screen film mammograms is shown in Fig. 4.
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3.2 Description of image dataset

The image dataset used for this work comprises of 480 mediolateral oblique (MLO) view
digitized screen film mammograms taken from DDSM dataset such that (1) 120 mammograms
belong to B-I class (2) 120 mammograms belong to B-II class (3) 120 mammograms belong to
B-III class and (4) 120 mammograms belong to B-IV class. The DDSM dataset is a standard
benchmark dataset which contains four digitized screen film mammographic images for each
case, comprising of left/right MLO and left/right cranial-caudal (CC) views. The overlay file of
each image contains the expert evaluation of BIRADS breast density [36]. The description of
dataset used for this study and its bifurcation into training and testing dataset is shown in
Fig. 5.

3.3 ROI extraction module

The study carried by Li et al. [57] verified that the textural variations exhibited by the central
region of the breast tissue are significant to account for discrimination between different breast

Fig. 4 Experimental work flow for the design of a hierarchical framework for classification of breast density
using digitized screen film mammograms
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density classes and also according to the participating radiologist the center area (i.e. the area
where glandular ducts are prominent) is visualize for the discrimination between different
breast density classes. Therefore, in this study ROIs of size 128 × 128 pixels have been
cropped from the center area of the breast. The sample images belonging to BIRADS class
with respected ROIs is shown in Fig. 6.

3.4 Feature extraction module

From the previous study it has been observed that the statistical texture features [11, 12, 35, 39,
42, 52, 59, 67], Law’s texture features [47, 48, 54] and 2-D Gabor wavelet transform features
[1, 13, 14, 22, 23, 26, 38, 55, 71, 83, 97] are extensively used for the designing of CAD
system. Accordingly in this work a wide variety of texture features are computed by using
FOS features, GLCMmean features [5, 15, 33, 37, 46, 49, 57, 61, 63, 64, 77, 87, 88, 91], GLDS
features [19, 29, 45, 49, 73, 86] GLRLM features [21, 25, 49, 75], Laws’ texture energy
features [47, 48, 54] and 2-D Gabor wavelet transform (GWT) features [1, 13, 14, 22, 23, 26,
38, 55, 71, 83, 97].

FOS features In this work a total of 11 first-order statistics features i.e. energy, average grey
level, third moments, uniformity, mean, entropy, variance, standard deviation, skewness,
kurtosis and smoothness are extracted for each ROI [49, 77].

Fig. 5 Description of image dataset and its bifurcation into training and testing dataset
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GLCMmean features From the exhaustive review of the literature it is observed that the
texture features computed using GLCMmean contain significant information to account for
variations in texture patterns exhibited by different breast density classes [49, 77]. The
GLCMmean for a ROI belonging to a particular breast density class is obtained by using eq. (1).

GLCMmean;B−I d¼ið Þ ¼
GLCMB−I 0ο;d¼ið Þ þ GLCMB−I 45ο;d¼ið Þ þ GLCMB−I 90ο;d¼ið Þ þ GLCMB−I 135ο;d¼ið Þ

4

ð1Þ
In the similar mannerGLCMmean,B-II(d = i), GLCMmean,B-III(d = i) andGLCMmean,B-IV(d = i) are

computed by varying the inter-pixel distance ‘d’ = ‘i’ from 1 to 15.
In the present work 13 GLCMmean features are computed. One of the GLCMmean feature i.e.

entropy (ENTmean) is computed at inter-pixel distance ‘d’ = 10 by using eq. (2).

ENTmean d¼10ð Þ ¼
ENT θ¼0ο;d¼10ð Þ þ ENT θ¼45ο;d¼10ð Þ þ ENT θ¼90ο;d¼10ð Þ þ ENT θ¼135ο;d¼10ð Þ

4

� �

ð2Þ
In the same manner, remaining 12 GLCMmean texture features (contrastglcm_mean,

varianceglcm_mean, angular second momentglcm_mean, correlation, inverse difference moment,
information measures of correlation-1, information measures of correlation-2, sum average,
sum variance, sum entropy, difference variance, difference entropy) have been computed by
varying the inter-pixel distance ‘d’ from 1 to 15. It has been observed that the features
extracted at inter-pixel distance d = 10 yielded the maximum classification accuracy. Thus
the GLCMmean features computed at inter-pixel distance d = 10 is considered for this study.

GLDS features In this work a total of 5 GLDS features i.e. contrastglds, homogeneityglds,
meanglds, energyglds and entropyglds are extracted for each ROI [49, 77].

Fig. 6 Sample images belonging to BIRADS classes with ROIs marked
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GLRLM features In this work a total of 11 GLRLM features, i.e., emphasisshort_run,
emphas i s l o n g _ r u n , emphas i s l ow _ g r a y _ l e v e l _ r u n , emphas i s h i g h_g r a y _ l e v e l _ r u n ,
emphasisshort_run_low_gray_level, emphasislong_run_low_gray_level, emphasisshort_run_high_gray_level,
emphasislong_run_high_gray_level, non_uniformitygray_level, non_uniformity_run_length and
run_percentage are computed for each ROI [49].

Laws’ texture energy features In this study, the Laws’ texture energy features [47, 48, 54]
have been extracted using 1-D filters of different kernel width, (i.e. 3, 5, 7 and 9). These special
filters of different kernel width are used to perform local averaging (L), spot detection (S), edge
detection (E), ripple detection (R) and wave detection (W) in an ROI image. The brief
description of the Laws’ mask and steps involved to calculate the features are shown in Fig. 7.

In this study a total of 210 Laws’ features i.e. 30 Laws’3 features, 75 Laws’5 features, 30
Laws’ 7 features and 75 Laws’9 features are computed for each ROI.

2-D GWT features In this study, 2-D GWT multi-scale decomposition has been carried out
using three magnitude value (0, 1 and 2) and seven directions (22.5°, 45°, 67.5°, 90°, 112.5°,
135° and 157.5°) gives a group of 21 (3 × 7) Gabor wavelet filter bank. The real part of Gabor
wavelet filter bank is shown in Fig. 8.

Further, a set of 21 filtered images are obtained after the convolution of ROI with the real
part of Gabor filter bank. Each filtered image i.e. feature image represents the texture
information at a certain magnitude and direction. Compute two statistics mean and standard
deviation from these 21 feature images resulting in a feature vector of length 42. Thus 2-D
Gabor feature of length 42 is used for this study.

Fig. 7 Laws’ mask and steps involved to calculate the features
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3.5 Feature space dimensionality reduction module

There might be a possibility that computed texture feature vectors (TFVs) may have redundant
features which are correlated to each other thus providing no extra information. The use of
redundant features for an efficient classifier design may degrade the performance of the
designed system. Therefore the computed TFVs are inputted to dimensionality reduction stage
using PCA [2, 28, 40, 50, 72]. In this study, to retain the optimal number of principal
components (PCs) for classification task, reduced texture feature vectors have been computed
for all classifiers by varying the principal components values from 2 to 15. The steps involved
in the implementation of PCA algorithm are given here in Fig. 9.

3.6 Classification module

The classification module consists of three binary classifiers arranged in a hierarchical
framework. These three classifiers provide stepwise classification for the generalized 4-class
breast density classification problem. The first classifier is used to classify an unknown test
ROI into B-I/other class. If the test ROI is predicted as other class, it is inputted to second
classifier for the classification into B-II/dense class. If the test ROI is predicted as belonging to
dense class, it is inputted to classifier for the classification into B-III/B-IV class. The general-
ized block diagram of a hierarchical framework for system is classification of breast density is
shown in Fig. 10.

Mapping of higher dimension feature space to lower dimension feature space using
principal component analysis algorithm is applied individually before designing each binary
classifier. Initially, five different hierarchical frameworks for classification of breast density

Fig. 8 Real part of Gabor wavelet filter bank

Fig. 9 Steps of PCA algorithm
implementation
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designed using three PCA-kNN classifiers (shown in Fig. 11), three PCA-PNN classifiers
(shown in Fig. 12), three PCA-ANN classifiers (shown in Fig. 13), three PCA-NFC classifiers
(shown in Fig. 14) and three PCA-SVM classifiers (shown in Fig. 15.) and. The performance
of each binary classifier is evaluated at each node and the best classifiers (yielding the
maximum accuracy) at each node are combined in a hierarchical framework for designing
the hybrid hierarchical framework (shown in Fig. 16) for classification of breast density.

3.6.1 Hierarchical framework for classification of breast density using PCA-kNN
classifiers

The kNN classifier is an instance based classifier in which the class of a testing instance is
decided by the class of majority from its k nearest neighbors in the training set by calculating
the Euclidean distance between neighboring instances [6, 11, 12, 18, 52, 59, 62, 65]. It tries to
cluster the instances of feature vector into disjoint classes with an assumption of that the
instances of feature vector lying close to each other in feature space represent instance
belonging to the same class. The class of an unknown testing instance is selected to be the
class of majority of instances among its k-nearest neighbors in the training set. The classifi-
cation performance is affected by varying the parameter k. In this work, the value of k is
optimized by repeated experimentation for classifier design by stepping through by 1 varying
from 1 to 10, and if the same performance is achieved for more than one value of k the
minimum value of k is considered.

The block diagram of hierarchical framework for classification of breast density using
PCA-kNN classifiers is shown in Fig. 11.

3.6.2 Hierarchical framework for classification of breast density using PCA-PNN
classifiers

The PNN classifier is a direct continuation of the theory of Bayesian classification estimation
of probability density function (PDF). The architecture of PNN classifier comprises of an input

Fig. 10 Generalized block diagram of a hierarchical framework for classification of breast density

Fig. 11 Block diagram of hierarchical framework for classification of breast density using PCA-kNN classifiers
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layer, pattern layer, summation layer and decision layer. The PNN classification algorithm
defines a probability density function (PDF) and optimized kernel width parameter for each
class on the basis of training dataset [50]. The width of the radial basis kernel function (RBF) is
determined by the spread parameter denoted as Sp. In this work, the Sp is optimized by repeated
experimentation for classifier design by stepping through various values of Sp ranging from 1
to 10. The PNN classifier trained with the optimum value of Sp is then tested with reduced
instances of testing dataset [58, 76, 81]. Instances of feature vectors consisting of optimal
number of PCs obtained for the binary classification tasks (i.e. B-I/other class, B-II/dense class
and B-III/B-IV) are fed to the input layer of corresponding binary PNN classifiers.

The block diagram of hierarchical framework for classification of breast density using
PCA-PNN classifiers is shown in Fig. 12.

3.6.3 Hierarchical framework for classification of breast density using PCA-ANN
classifiers

The architecture of ANN classifier comprises of an input layer, hidden layer and output layer.
For designing each ANN classifier, corresponding neurons to the output class label is set to 1
and other neurons class label is set to 0, i.e. the learning of each ANN classifier is supervised.
Adaptive learning with back-propagation algorithm is used to getting the desired input-output
relationship [8, 20, 24, 34, 56, 74, 84, 89, 90, 94, 95, 98]. For the designing of an efficient
hierarchical ANN classifier, the trial-and-error procedure was used for the optimization of
hidden layer neurons. After the extensive experimentation with different numbers of hidden
layer neurons, it was observed that with 10 neurons in hidden layer of ANN-1 to ANN-3 a
reasonable tradeoff between convergence and accuracy was obtained.

Instances of feature vectors consisting of optimal number of PCs obtained for the binary
classification tasks (i.e. B-I/other class, B-II/dense class and B-III/B-IV) are fed to the input
layer of corresponding binary ANN (BNN) classifiers. The Block diagram of hierarchical
framework for classification of breast density using PCA-ANN classifiers is shown in Fig. 13.

Fig. 12 Block diagram of hierarchical framework for classification of breast density using PCA-PNN classifiers

Fig. 13 Block diagram of hierarchical framework for classification of breast density using PCA-ANN classifiers
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3.6.4 Hierarchical framework for classification of breast density using PCA-NFC
classifiers

The Neuro fuzzy classifier (NFC) is a multilayer feed-forward network comprises of the input
layer, membership layer, fuzzification layer, defuzzification layer, normalization layer, and
output layer [3, 10, 16, 27, 31, 41, 43, 44, 66, 82, 85]. It is worth mention that fuzzy inference
systems are suffers from the learning capability and neural networks have the learning
capability. Thus neuro fuzzy classifier (NFC) is the prominent applications of fuzzy inference
system and neural network i.e. NFC overcomes the limitations of neural network and fuzzy
inference systems. Thus NFC has the capability to learn and represent knowledge according to
defined rule and learning ability. In the present study, instances of feature vectors consisting of
optimal number of PCs obtained for the binary classification tasks (i.e. B-I/other class, B-II/
dense class and B-III/B-IV) are fed to the input layer of corresponding binary NFC classifiers.
The block diagram of hierarchical framework for classification of breast density using PCA-
NFC classifiers is shown in Fig. 14.

3.6.5 Hierarchical framework for classification of breast density using PCA-SVM
classifiers

All three binary SVM classifiers designed for the hierarchical framework for classification of
breast density are implemented using LibSVM library [17]. In SVM algorithm, training data is
mapped from lower dimensional input features to higher dimensional features. Kernel func-
tions are used for nonlinear mapping of the training data from input space to higher dimen-
sional feature space. In this study, Gaussian radial basis kernel function based SVM classifier
(available in LibSVM library) has been used for the design of computerized framework for
detection of lesions in dense mammograms.

For designing the classifier, Gaussian radial basis function (RBF) kernel is used. The 10
fold cross validation approach is used to optimize the kernel width γ and regularization

Fig. 14 Block diagram of hierarchical framework for classification of breast density using PCA-NFC classifiers

Fig. 15 Block diagram of hierarchical framework for classification of breast density using PCA-SVM classifiers
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parameter C of radial basis function by extensive experiment carried out on training data for
the values of γ ∈ {2−12, 2−11,..., 24} and C ∈ {2−4, 2−3 ,…, 215} [9, 34, 55, 78]. The block
diagram of hierarchical framework for classification of breast density using PCA-SVM
classifiers is shown in Fig. 15.

4 Experiments and results

The 4-class breast density classification task has been considered and hierarchical framework
is designed using five classifiers (i.e. PCA-kNN, PCA-PNN, PCA-ANN, PCA-NFC and PCA-
SVM) arranged in a hierarchical framework.

The brief details of experiments carried for hierarchical framework for classification of
breast density using digitized screen film mammograms is reported in Table 2.

The performance of designed each hierarchical framework at each node is evaluated in
terms of accuracy of binary classifier expressed as Acc_Bin_Class, overall classification
accuracy expressed as OCA and Individual class accuracy expressed as ICA.

Experiment 1: The performance of hierarchical framework for classification of breast
density using PCA-kNN classifier is given in Table 3.

Fig. 16 Architecture of proposed hybrid hierarchical framework for classification of breast density for digitized
screen film mammograms

Table 2 Experiments carried for hierarchical framework for classification of breast density using digitized
screen film mammograms

Experiment
No

Description of experiments

Experiment
1

Design of hierarchical framework for classification of breast density using PCA-kNN classifiers
and obtained results are given in Table 3.

Experiment
2

Design of hierarchical framework for classification of breast density using PCA-PNN classifiers
and obtained results are given in Table 4.

Experiment
3

Design of hierarchical framework for classification of breast density using PCA-ANN classifiers
and obtained results are given in Table 5.

Experiment
4

Design of hierarchical framework for classification of breast density using PCA-NFC classifiers
and obtained results are given in Table 6.

Experiment
5

Design of hierarchical framework for classification of breast density using PCA-SVM classifiers
and obtained results are given in Table 7.

Experiment
6

Design of hybrid hierarchical framework for classification of breast density using the best
performing individual classifiers at each node are combined in a hierarchical framework and
obtained results are given in Table 9.
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Experiment 2: The performance of hierarchical framework for classification of breast
density using PCA-PNN classifiers is given in Table 4.

Experiment 3: The performance of hierarchical framework for classification of breast
density using PCA-ANN classifiers is given in Table 5.

Experiment 4: The performance of hierarchical framework for classification of breast
density using PCA-NFC classifiers is given in Table 6.

Experiment 5: The performance of hierarchical framework for classification of breast
density using PCA-SVM classifiers is given in Table 7.

The value of OCA is obtained by adding the number of misclassifications obtained at each
stage of the hierarchical framework for breast density classification using PCA-NFC classifiers
yields minimum i.e. a total of 47 misclassifications consisting of 8, 6, 6, 10, 14 and 3
misclassifications for PCA-NFC1, PCA-NFC2 and PCA-NFC3 classifiers respectively,

Table 3 Performance of hierarchical framework for classification of breast density using PCA-kNN classifiers

Classifier PCs CM Acc_Bin_Class (%) ICA (%) OCA (%)

PCA-kNN1 15 B-I Other class 85.0 (204/240) 72.5 (174/240)
B-I 39 21 65.0 (39/60)
Other class 15 165 91.6 (165/180)

PCA-kNN2 7 B-II Dense
B-II 54 6 90. 5(163/180) 90.0 (54/60)
Dense 11 109 90.8 (109/120)

PCA-kNN3 11 B-III B-IV
B-III 49 11 89.1 (107/120) 81.6 (49/60)
B-IV 2 58 96.6 (58/60)

PCs Optimal No. of principal components, CM Confusion matrix, kNN k-Nearest neighbor classifier

Table 4 Performance of hierarchical framework for classification of breast density using PCA-PNN classifiers

Classifier PCs CM Acc_Bin_Class (%) ICA (%) OCA (%)

PCA-PNN1 8 B-I Other class 68.3 (164/240)
B-I 36 24 84.5 (203/240) 60.0 (36/60)
Other class 13 167 92.7 (167/180)

PCA-PNN2 8 B-II Dense
B-II 50 10 87.7 (158/180) 83.3 (50/60)
Dense 12 108 90.0 (108/120)

PCA-PNN3 3 B-III B-IV
B-III 48 12 85.8(103/120) 80.0 (48/60)
B-IV 5 55 91.6 (55/60)

PCs Optimal No. of principal components, CM Confusion matrix, PNN Probabilistic neural network classifier
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therefore, OCA for hierarchical framework using PCA-NFC classifiers is {(240–47) /
240} × 100 = {(193 / 240) × 100} = 80.4%.

By visualizing the performance of individual binary classifiers of PCA-kNN, PCA-PNN,
PCA-ANN, PCA-NFC and PCA-SVM based on hierarchical framework (shown in Table 3,
Table 4, Table 5, Table 6 and Table 7), some interesting facts are observed:

(a). For classification between B-I/Other class the maximum accuracy of 96.2% is obtained
by using PCA-SVM1 classifier in comparison with 85.0%, 84.5%, 80.4% and 94.1% as
obtained by using PCA-kNN1, PCA-PNN1, PCA-ANN1 and PCA-NFC1 classifiers.

(b). For further classification of other class instances into B-II/dense class the maximum
accuracy of 91.1% is obtained by using PCA-NFC2 classifier in comparison with
90.5%, 87.7%, 72.7% and 88.3% as obtained by using PCA-kNN2, PCA-PNN2,
PCA-ANN2 and PCA-SVM2 classifiers respectively.

(c). For classification of dense class into B-III/B-IV class the maximum accuracy of 89.1% is
obtained by using PCA- kNN3 classifier in comparison with 85.8%, 80.8%, 81.6% and
85.8% as obtained by using PCA-PNN3, PCA-ANN3, PCA-SVM3 and PCA-NFC3
classifiers.

4.1 Comparative analysis

The comparative performance analysis of designed hierarchical frameworks for classification
of breast density using various experiments carried out in this work is reported in Table 8.

Table 5 Performance of hierarchical framework for classification of breast density using PCA-ANN classifiers

Classifier PCs CM Acc_Bin_Class (%) ICA (%) OCA (%)

PCA-ANN1 8 B-I Other class 80.4 (193/240) 50.4 (121/240)
B-I 37 23 61.6 (37/60)
Other class 24 156 86.6 (156/180)

PCA-ANN2 7 B-II Dense
B-II 31 29 72.7 (131/180) 51.6 (31/60)
Dense 20 100 83.3 (100/120)

PCA-ANN3 2 B-III B-IV
B-III 53 7 80.8 (97/120) 88.3 (53/60)
B-IV 16 44 73.3 (44/60)

PCs Optimal No. of principal components, CM Confusion matrix, ANN Artificial neural network classifier

Table 6 Performance of hierarchical framework for classification of breast density using PCA-NFC classifiers

Classifier PCs CM Acc_Bin_Class (%) ICA (%) OCA (%)

PCA-NFC1 11 B-I Other class 94.1 (226/240) 80.4 (193/240)
B-I 52 8 86.6 (52/60)
Other class 6 174 96.6 (174/180)

PCA-NFC2 7 B-II Dense
B-II 54 6 91.1 (164/180) 90.0(54/60)
Dense 10 110 91.6 (110/120)

PCA-NFC3 3 B-III B-IV
B-III 46 14 85.8 (98/120) 76.6 (46/60)
B-IV 3 57 95.0 (57/60)

Note: PCs: Optimal No. of principal components, CM: Confusion matrix, NFC: Neuro-fuzzy classifier
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From Table 8, it can be observed that the PCA-NFC based hierarchical framework performs
better in comparison with PCA-kNN, PCA-PNN, PCA-ANN and PCA-SVM based hierarchi-
cal framework for 4-class breast density classification. For classification between B-I/other
class PCA-SVM1 perform best at PCs value 9. For classification between B-II/dense, PCA-
NFC2 is the best at PCs value 7 and for classification between B-III/B-IV, PCA- kNN3 is the
best at PCs value 11.

Experiment 6: Design of hybrid hierarchical framework for classification of breast
density designed the best performing individual classifiers at each node a hierarchical
framework

The architecture of the proposed hybrid hierarchical framework for classification of breast
density designed the best performing individual classifiers at each node in hierarchical
framework is shown in Fig. 16.

The performance obtained for proposed hybrid hierarchical framework for classification of
breast density for digitized screen film mammograms is reported in Table 9.

From Table 9, it has been concluded that the proposed hybrid hierarchical framework yields
the maximum OCA value of 84.1% with only 38 misclassifications out of 240 test instances.
The proposed hybrid hierarchical framework perform best in comparison to PCA-kNN, PCA-
PNN, PCA-ANN, PCA-NFC and PCA-SVM based hierarchical framework for classification
of breast density using digitized screen film mammograms. The OCA obtained by hybrid
hierarchical framework is 84.1% in comparison with 72.5%, 68.5%, 50.4%, 78.3 and 80.4% as
obtained by PCA-kNN, PCA-PNN, PCA-ANN, PCA-NFC and PCA-SVM based hierarchical
framework respectively.

Table 7 Performance of hierarchical framework for classification of breast density using PCA-SVM classifiers

Classifier PCs CM Acc_Bin_Class (%) ICA (%) OCA (%)

PCA-SVM1 9 B-I Other class 96.2 (231/240) 78.3 (188/240)
B-I 53 7 88.3 (53/60)
Other class 2 178 98.8 (178/180)

PCA-SVM2 7 B-II Dense
B-II 52 8 88.3 (159/180) 86.6(52/60)
Dense 13 107 89.1 (107/120)

PCA-SVM3 3 B-III B-IV
B-III 46 14 81.6 (98/120) 76.6 (46/60)
B-IV 8 52 86.6 (52/60)

PCs Optimal No. of principal components, CM Confusion matrix, SVM Support vector machine classifier

Table 8 Comparative analysis of performance of designed hierarchical framework for classification of breast
density using various experiments

Experiment Acc. B-I /Other class (%) Acc. B-II /dense (%) Acc. B-III /B-IV (%) OCA (%) TMI

PCA-kNN 85.0 90.5 89.1 72.5 66
PCA-PNN 84.5 87.7 85.8 68.3 76
PCA-ANN 80.4 72.7 80.8 50.4 119
PCA-SVM 96.2 88.3 81.6 78.3 52
PCA-NFC 94.1 91.1 85.8 80.4 47

Acc. Accuracy of binary classifier, OCA Overall classification accuracy, TMI Total misclassified instances
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5 Conclusion

During the clinical routine screening of mammography expertise observed that the breast
lesions are missed in case of dense mammograms. Thus, in this study extensive experimen-
tations have been performed for breast density classification using PCA-kNN, PCA-PNN,
PCA-ANN, PCA-NFC and PCA-SVM based hierarchical framework. Among these PCA-
NFC based hierarchical framework yielding the OCA value is 80.4% with 47 (47/240)
misclassification out 240 test instances. However, it is observed that the hybrid hierarchical
framework designed by combination of best binary classifiers at each node yields the OCA
value of 84.1% with only 38 (38/240) misclassifications out of 240 test instances. The
proposed hybrid hierarchical classification framework perform best in comparison to each of
PCA-kNN, PCA-PNN, PCA-ANN, PCA-NFC and PCA-SVM based hierarchical classifica-
tion framework for breast density classification. The result achieved by the proposed hybrid
hierarchical framework for classification of breast density using digitized screen film mam-
mograms is quite promising and indicate its effectiveness to assist radiologists in adequate
scheduling of breast lesion treatment in clinical environment.
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