
A resource-efficient encryption algorithm for multimedia
big data

Shadi Aljawarneh1 & Muneer Bani Yassein1 &

We’am Adel Talafha1

Received: 19 July 2016 /Revised: 24 November 2016 /Accepted: 29 December 2016 /
Published online: 23 January 2017
Springer Science+Business Media New York 2017

Abstract Nowadays, multimedia is considered to be the biggest big data as it dom-
inates the traffic in the Internet and mobile phones. Currently symmetric encryption
algorithms are used in IoT but when considering multimedia big data in IoT, sym-
metric encryption algorithms incur more computational cost. In this paper, we have
designed and developed a resource-efficient encryption system for encrypting multi-
media big data in IoT. The proposed system takes the advantages of the Feistel
Encryption Scheme, an Advanced Encryption Standard (AES), and genetic algorithms.
To satisfy high throughput, the GPU has also been used in the proposed system. This
system is evaluated on real IoT medical multimedia data to benchmark the encryption
algorithms such as MARS, RC6, 3-DES, DES, and Blowfish in terms of computa-
tional running time and throughput for both encryption and decryption processes as
well as the avalanche effect. The results show that the proposed system has the lowest
running time and highest throughput for both encryption and decryption processes and
highest avalanche effect with compared to the existing encryption algorithms. To
satisfy the security objective, the developed algorithm has better Avalanche Effect
with compared to any of the other existing algorithms and hence can be incorporated
in the process of encryption/decryption of any plain multimedia big data. Also, it has
shown that the classical and modern ciphers have very less Avalanche Effect and
hence cannot be used for encryption of confidential multimedia messages or

Multimed Tools Appl (2017) 76:22703–22724
DOI 10.1007/s11042-016-4333-y

* Shadi Aljawarneh
saaljawarneh@just.edu.jo

Muneer Bani Yassein
masadeh@just.edu.jo

We’am Adel Talafha
Watalafha13@cit.just.edu.jo

1 Faculty of Computer and Information Technology, Jordan University of Science and Technology,
Irbid, Jordan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-016-4333-y&domain=pdf

confidential big data. The developed encryption algorithm has higher Avalanche Effect
and for instance, AES in the proposed system has an Avalanche Effect of %52.50.
Therefore, such system is able to secure the multimedia big data against real-time
attacks.

Keywords Internet of things .Multimedia big data . Encryption . AES . GPU

1 Introduction

Currently, the emergence of a new dimension of communication between people and
objects, and between objects with each other is called BInternet of Things^ (IoT). It is
widely spread in several areas, such as industries, academia, wireless networking and
communications [20]. The term BInternet of Things^ (IoT) can be defined as a
collection of objects that have unique addresses which communicate with each other
through a network [3, 16].

This technology is composed of two parts, BInternet^ and BThings^. The phrase
BThings^ can be anything in the real world, whether alive or not alive [8, 9, 12, 17].
With the immediate access to information, which is related to the real world and
things, there has been a marked improvement in services, productivity, and perfor-
mance [4]. Consequently, numerous applications have been developed depend on the
IoT techniques, such as smarter transportation systems, smarter enterprises, smart grid,
factories and multimedia sensing [3]. Experts estimated that by 2020, IoT technology
will be encompassed to 50 billion objects [6]. With IoT growth and widespread rate,
current processing capacity presents a new obstacle for IoT development as they
cannot cope with the massive amount of data generated. So, a big data technology
is needed to improve IoT development [5].

Generally, big data can be defined as Bthe Information asset characterized by such
a high volume, velocity and variety to require specific technology and analytical
methods for its transformation into value^ [5]. However, the big data produced by
IoT has several features comparable to general big data due to the various kinds of
data that have been collected, such as heterogeneity, un-structure, and high redundan-
cy [5]. As part of big data, multimedia are increasingly becoming the BBiggest big
data^ as it currently generates 60% of Internet traffic and 70% of mobile phone traffic
[23]. One of the most important issues that faces multimedia big data is a security.

Many security systems have been developed to keep the communication channels
safe in IoT. One category of these systems employs public-key exchange, such as
AES, 3-DES, DES, and Blowfish. Public key exchange is based on a key that can be
created using time and mathematical processes. After that, the data can be encrypted
and sent using Internet insecure channels. The strength of any symmetric key encryp-
tion system depends on the size of the key used [21, 24, 27]. Symmetric key
encryption algorithms are suitable for IoT environment; since they need low compu-
tational cost and consumes less energy. But, with the huge data introduced by
multimedia big data, symmetric encryption algorithms suffer from performance deg-
radation due to the need of frequent key update mechanism.

There is a little research and technical reports in the academia and industry in the
security of multimedia big data [1, 2, 22]. In addition, there is no an real-time

22704 Multimed Tools Appl (2017) 76:22703–22724

encryption system to deal with the multimedia big data. Therefore, we have developed
a resource-efficient encryption system that is suitable for multimedia big data. The
proposed system attempts to offer a multi-level security model where it consists of a
Feistel Encryption System (FES) which is used to manipulate the blocks through the
shift and rotate operations [1, 2, 22], AES symmetric key algorithm, and Genetic
Algorithms (GA). Note that test evaluation has been conducted on real IoT data that
is the medical multimedia big data to the hospital of JUST university, Jordan.

In brief, the encryption phase in such system reads the input files in the form of
multi-size blocks. Each block is divided into plaintext and key. The key is ciphered
using Feistel Encryption System. Then, the plaintext is encrypted using the ciphered
key by AES to generate the cipher text. Finally, the ciphered text and the ciphered
key are integrated using genetic algorithm. On the other hand, the decryption phase is
the reverse of the encryption process. Using this proposed system, there is no need
for key distribution and update mechanism since the key is generated from the data
itself. The data to be encrypted using AES is only half of the original one (since the
other half is encrypted using FES as a key).

The proposed system is tested on high-performance machine equipped with GPU to
handle different real tests to benchmark the symmetric encryption algorithms such as
MARS, RC6, 3-DES, DES, and Blowfish in terms of encryption and decryption time,
throughput and Avalanche Effect. A GPU executes most of the computations, com-
puter graphics, and image processing extremely efficient compared to a CPU. Fur-
thermore, GPU provides many parallel processing units which are ideal for throughput
computing.

The rest of the paper is organized as follows: Section 2 discusses the related work.
In Section 3, we have offered the proposed efficient-resource encryption system and
its architecture framework. The results and discussions have been showed in
Section 4. Finally, Section 5 draws the conclusions and further work.

2 Related works

Many approaches and systems have been proposed to deal with the limitations and
constraints of encrypting transmitted data in the IoT. Furthermore, there is a vital need
to study further the security of multimedia big data. In this section, we have shown a
number of current security protocols and approaches that used to secure the multime-
dia big data.

Y. Zhao [30] proposed an Intelligence Service Security Application protocol
(ISSAP) in order to use a custom data packet encapsulation mechanism and a
cross-platform communication combined with a USPIOT platform for encryption and
business communication, and signature and authentication algorithms. The author did
not provide specific details about the encryption process but, in general, most
USPIOT platforms use traditional encryption algorithms which suffers from overhead
due to keys creation and management.

Sundaram, B. Vinayaga, et al. [25] introduced a combination of encryption and
hash algorithms for IoT. They proposed an encryption algorithm that takes 64 bits’
cipher text and 128 bits’ master key for 32 operational rounds. The hash algorithm is
applied for padding, compression, and truncation. This algorithm cannot deal the huge

Multimed Tools Appl (2017) 76:22703–22724 22705

data generated by multimedia big data, since it only can encrypt 64 bits per block,
and however, it is very slow in terms of performance. The algorithm also suffers from
extra overhead represented by key generation and distribution processes.

M. Xin [28] presented a hybrid approach that combines the benefits of both
symmetric and asymmetric encryption algorithms to deal with IoT requirements of
high security and low computation complexity. The hybrid approach uses the Advance
Encryption Standard (AES) and the Elliptic Curve Cryptography (ECC); where AES is
considered to be simple, fast, and reliable encryption algorithm for long plaintexts
encryption and elliptic curves are used as a digital signature and key management.
Although using AES is considered to be fast, key management and digital signature
processes are encrypted using elliptic curves which considered to be complex and
slow, thus adding extra overhead to the hybrid approach.

K. N. Prasetyo, et al. [19] suggested the use of symmetric encryption algorithm to be
adopted in IoT. Therefore, they proposed an implementation of the Blowfish encryption
algorithm on FPGA resource and program it using the VHDL language. The proposed
implementation was evaluated by measuring performance metrics such as security,
encryption time, avalanche effect, and throughput and found to provide a good perfor-
mance. The evaluation of this implementation was only conducted on text inputs and
did not consider multimedia input in the evaluation.

X. Yao, et al. [29] provided a scheme that defines lightweight no-pairing attribute-
based encryption policy that is managed by attribute authority. The scheme is based
on a combination of elliptic curve cryptography (ECC) and key policy (KP-ABE).
This is a suitable for IoT since it is a lightweight scheme, but it suffers from some
limitations like poor flexibility in revoking attribute, poor scalability, and poor gen-
erality. Another lightweight encryption algorithm was implemented by J. Y. Lee, et al.
[15]. Such encryption algorithm based on XOR manipulation was implemented on
hardware to enhance a typical RFID system that is used in IoT. The XOR manipu-
lation is used for anti-counterfeiting and privacy protection.

Another novel approach for IoT was offered by P. N. Mahalle, et al. [18] namedthe
Identity Authentication and Capability-based Access Control (IACAC). It uses public
key approach that is consistent with the limitation of IoT. The approach also intro-
duces a timestamp technique for authenticating the messages sent between the devices
in order to prohibit man-in-the-middle attacks and serve as MAC. Furthermore, the
model uses an RC5 algorithm to encrypt data between communicating devices. The
proposed model aims to gain over the mutual identity establishment in IoT by filling
the existing gaps in both authentication and access control capabilities with the
integrated protocol. When considering multimedia big data, the approach suffers from
additional overhead due to key generation, update, and distribution.

Finally, A. Kumar, et al. [14] introduced a signal security system that depend on
Genetic Algorithms (GA) with Non-Linear Forward-Feedback-Shift-Register
(NLFFSR) for encrypting the signals and transforming them into an unknown format
(disorder data). The main aspect of the system is the feasible integration with
multimedia transmission application and high throughput rate. Using GA in cryptog-
raphy, the system becomes more powerful in encrypted multimedia data specially the
randomness properties of NLFFSR. Subsequently, the best technique is used to facility
transferring the data with highly safe and reliable in the domain of multimedia
communication. However, their results were very sensitive to parameter fluctuations.

22706 Multimed Tools Appl (2017) 76:22703–22724

3 Proposed encryption/decryption system

In this section, we introduce our resource-efficient encryption system. The proposed
system consists of three main components: Feistel network, AES with S-box, and
Genetic algorithm. Figure 1 illustrates the proposed system framework.

The input file is divided into a number of equal size blocks, where each block is
split to plaintext and key parts. The key part is encrypted/decrypted using Feistel
network. The Feistel network component divides the key to small blocks and performs
a series of shift and rotation operations on them. The Feistel network produce a
cipher key that will be used in AES component.

AES with S-box accepts the plaintext and the ciphered key as input. AES uses the
substitution-permutation network and performs 10 rounds of encryption to generate the
ciphered text. One of the main challenges in AES is key generation and management,
the proposed system alleviates this challenge since each block is encrypted using a
unique key generated from the data itself.

The ciphered text and ciphered key are integrated in the genetic algorithm com-
ponent. The genetic algorithm uses two levels of integrations; crossover and mutation.
In crossover, portion of the cipher text and ciphered key are swapped, where in
mutation a randomly chosen bit is flipped in both ciphered text and ciphered key.
This integration is repeated number of times for the same block. The result of this
integration along with the crossover and mutation points are written to the encryption
file as a ciphered block. Note that the addition of the crossover and mutation points
increase the system security against brute force attacks.

3.1 Functionality overview of the proposed system

The data required for the system is read serially from an input files in form of blocks
with equal sizes (each block size is 256 bits). The input files may include image,
audio, video or text.

As a start, each block is split into 2 uniform parts; a 128 plain text stream of bits
called Left (L) and another 128 key stream of bits called Right (R). As shown in
Fig. 2, the encryption steps are as follows:

Fig. 1 System framework

Multimed Tools Appl (2017) 76:22703–22724 22707

1. Next, the key (R) is divided into 16 bytes that numbered from B0 to B15. Each byte
is split into two nibbles which are symbolizing to lower and upper halves of the byte.
Then using symmetric technique, bytes’ nibbles are shifted.

2. The key (R) part is ciphered using a Feistel algorithm that depends on three operations;
logical right shift to the upper side of a byte, logical left shift to the lower part of another
byte and logical OR for both lower and upper sides of each byte.

Fig. 2 256-bits encryption process

22708 Multimed Tools Appl (2017) 76:22703–22724

3. The upper nibble of each byte is rotated to the right and the lower nibble of each byte
is shifted according to the proposed algorithm and illustrated in Fig. 1. As a result, the
arrangement of all nibbles is adjusted as the lower portion becomes comprise of the
upper halves and vice versa; the upper portion became of comprise the lower halves.

4. Rotating, adjusting and swapping are main operations in Feistel algorithm that are
used to change the nibbles order completely, providing a 128 bits encrypted key.
This encrypted key will be used to encrypt plain text part (L).

Fig. 3 256-bits decryption process

Multimed Tools Appl (2017) 76:22703–22724 22709

5. The plain text part (L) is ciphered using S-Box technique that is mainly based on
the implementation of Advanced Encryption Standard (AES) encryption algorithm.
AES is used to encrypt plain text part (L) depending on the ciphered key (128
bits) that is already generated from the Feistel algorithm. The key size is very
important in AES, it is responsible for determining the number of iteration for
conversion rounds, which is essential to convert the plaintext into ciphered text,
such as: 10 cycles of repetition for 128-bit key and 12 cycles of repetition for
192-bit keys.

6. The AES algorithm consists of three main rounds. Each round includes many
processing steps and each of them comprise of four similar but different stages,
while taking into account one stage that depends on the encryption key itself. we
can summarize AES as follow:

& Initial Round: this round uses bitwise (XOR) technique that combined the block of
the round key with each byte of the state, this is called Add Round Key.

& Rounds: this round encompass on four main processes that can be described as
follows:

Fig. 4 Single point crossover

22710 Multimed Tools Appl (2017) 76:22703–22724

– Sub Bytes process: process of replacing each byte that is located in the state
with another byte by take into account the lookup table. Also is called a non-
linear substitution process.

– Shift Rows process: process of shifting each byte of the state to the left
cyclically.

– Mix Columns process: This process is implemented on each column, each of
them is multiplied with a constant polynomial.

– Add Round Key process: In this process the Rijndael’s key schedule is
responsible for deriving the sub-key from the main key for each round. After
that, the bitwise XOR merges the corresponds byte in each state and sub key;
due to insert the sub-key.

& Final Round: This process contains the same previous processes (Sub Byte, Shift
Rows and Add Round Key) without Mix Columns process.

After AES algorithm finish the job completely, the plaintext is encrypted perfectly.

7. The ciphered text and the cipher key are integrated via a Genetic Algorithm (GA). Genetic
Algorithm is a method that is trying to solve any optimization problem successfully by
modeling it based on the natural selection process. Generally, GA consists of initialization,
selection, mutation, crossover, and termination steps. Those steps are repeated for a
number of generations.

Both of the ciphered key (128 bits) generating from step 5 and the ciphered text (128
bits) results from step 7 are integrated using mutation and crossover steps of GA and
repeated for 10 generations.

8. Finally, a message that includes 256 bits ciphered word, crossover points and mutation
points is sent to the receiver. Algorithm 1 shows a pseudocode for the encryption
algorithm.

Figure 3 illustrates the decryption process. Generally, The decryption process is a reversible
way of the encryption algorithm. The decryption steps is as follows:

1. When the message arrived at the receiver side, the ciphered word (256 bits), crossover
point and mutation point are extracted. GA accepts them as an input; where it divides the
ciphered word into two blocks L/R sides that each of them have the same size (128 bits).
Mutation and crossover operations will be applied for both blocks in reverse order. These
operations will be repeated based on the number of generations.

2. The R block (ciphered key) is entered into Feistel algorithm and decrypted using the
proposed key encryption so as to retrieve the original encryption key, this operation is
called Key Recovery.

3. The L block (ciphered plaintext) along with the R block (ciphered key) are entered into
AES algorithm to be decrypted. Finally, the decrypted plaintext from AES and the
recovered key from Feistel algorithm are added up and sent to an output file.

4. It should be noted that the proposed system is carried out on a graphical processing unit
(GPU) rather than the CPU, in order to optimize performance through parallel processing.
A GPU executes most of the computations, computer graphics, and image processing
extremely efficient compared to a CPU. Furthermore, GPU uses high-speed parallel
processing compared to the CPU’s low-speed sequential processing. So, to encrypt and
decrypt multimedia big data in a fast and efficient way, we used of GPU rather than CPU.

Multimed Tools Appl (2017) 76:22703–22724 22711

The pseudocode of the decryption algorithm is shown in algorithm 2.

22712 Multimed Tools Appl (2017) 76:22703–22724

Multimed Tools Appl (2017) 76:22703–22724 22713

3.2 Genetic algorithm

Genetic Algorithm plays essential role in the proposed system. For each block, it integrates and
mixes the cipher plain text and cipher key together based on crossover and mutation operator
actions, which will be repeated for a predefined number of iterations (number of generations).

Crossover is an operation in which two blocks are mixed and match their desirable qualities
in a random way. Many crossover techniques were proposed in literature; our proposed system
uses single-point crossover technique which is illustrated in Fig. 4. The crossover operation
starts by randomly choosing the crossover point (Fig. 4a). Then, the portion of the blocks from
the crossover point to the least significant bit in the two blocks are exchanged (Fig. 4b, c).

Themutationoperation ingeneral isused tomaintain thegeneticdiversity fromonegeneration
to another. Similar to crossover, different mutation types were proposed, in our proposed system
we use the bit string mutation. Figure 5 illustrates the bit string mutation operation, it starts by
randomly choose a mutation point for both cipher plaintext and cipher key (Fig. 5a). Then, the
target bit is flipped in both blocks (Fig. 5b). Note that the mutation probability of a bit is 1/length
(block), where length (block) is the length of the cipher text or cipher key.

The number of generations represents the number of times mutation and crossover opera-
tions are repeated. When this number is high, the system will be more secure since the

Fig. 5 Bit string mutation

22714 Multimed Tools Appl (2017) 76:22703–22724

integration is repeated many times but the running time will suffer. On the other hand, when
the number is low, the system will be less secure.

4 Results and analysis

This section presents the evaluation of our proposed encryption system. The evaluation was
conducted to show that the proposed system provides a balance between security and
performance, which make it suitable for multimedia big data environment.

4.1 System implementation and environment

The proposed system was implemented in JAVA language and evaluated against benchmark
symmetric encryption algorithms, such as Data Encryption Standard (DES), 3-DES with 168
bits’ key size, MARS, Rivest Cipher (RC6) and Blowfish with 64 bits’ key size in terms of
running time, throughput for encryption and decryption processes, and the avalanche effect.
The results were measured by a timing process within the program itself. The nature of the
experiment was to replace the AES algorithm with each of the previously mentioned algo-
rithms and compute the running time for each one of them (This is called Benchmarking).
Each test was conducted for several times and the results were averaged. In general,
benchmarking is a process used to measure the performance of an algorithm using specific
indicator then compared the results with others [13].

All the experiments were conducted on an identical platform; HPC resources of Jordan’s
National Supercomputing (IMAN1) which includes 5 IBM cell processor machines. Each
node is equipped with 32 GB of memory, Two Intel Xeon Processor E5-2609 v2 4C 2.5 GHz
10 MB Cache 1333 MHz 80 W CPU, and NVidia tesla k20 GPU which includes 2496
processor cores and 706 MHz core clock. Figure 6 shows the TESLA k20 block diagram [11].

Fig. 6 TESLA K20 block diagram [10]

Multimed Tools Appl (2017) 76:22703–22724 22715

The data used in the experiments are collection of real IoT data that is the medical
multimedia big data that are taken from the hospital of JUST university, Jordan. We have
tested the proposed algorithm with different input files sizes, those files were selected
randomly to fall into one of the following intervals: [1 K–1 M], (1 M–100 M], (100 M–
500 M], (500 M–1 G], and (1 G–5 G].

4.2 Performance analysis

In this section, we present and discuss the results of our proposed system in terms of
performance metrics such as Running Time and Throughput for a number of symmetric key
algorithms like MARS, RC6, DES, 3- DES, Blowfish.

Figure 7a–e shows the average running time of the encryption process for input files in the
intervals ([1 KB – 1MB], (1 MB – 100 MB], (100MB – 500 MB], (500MB – 1 GB], (1 GB –

Fig. 7 Average Encryption Time for Intervals: a [1 KB – 1 MB], b (1 MB – 100 MB], c (100 MB – 500 MB], d
(500 MB – 1 GB], e (1 GB – 5 GB]

22716 Multimed Tools Appl (2017) 76:22703–22724

5 GB]). In general, running time is the time that an encryption/decryption algorithm takes to
produce a cipher text/plaintext from a plaintext/cipher text.

All evaluated algorithms have a main advantage which is the ability to eliminate weak and
semi-weak keys as the cipher and its inverse use different components. However, all of them
are different from each other’s in terms of number of encryption/decryption rounds, key size,
and structure. Note that DES and 3-DES have the same number of rounds, but 3-DES runs
DES three times, for the same plaintext, with three different keys.

The results demonstrate that AES has the lowest running time in comparison with all other
algorithms which does not exceed 1700 s for the [1 GB – 5 GB] interval. AES is considered to
be very fast in practice; it works more efficiently in hardware and software, more strong and
resistant against all known attacks. MARS achieved better security than RC6 because, in

Fig. 8 Average decryption time for intervals: a [1 KB – 1 MB], b (1 MB – 100 MB], c (100 MB – 500 MB], d
(500 MB – 1 GB], e (1 GB – 5 GB]

Multimed Tools Appl (2017) 76:22703–22724 22717

general, it has key size between 128 and 448 bits whereas RC6 support key sizes of 128, 192,
and 256 bits. RC6 has many rounds and does use an extra multiplication operation to make the
rotation dependent on every bit in the word, not only the least significant bits, which increase
the encryption time. From the other side, RC6 is more flexible than MARS because it has 20
rounds than MARS, which is 32 rounds, and it uses less space in memory because it does not
have a table lookup. MARS uses a table lookup, similar to DES S-box, which is a single table
of 512 32-bit word. This leads to a slow software implementation since at least 3 instructions
are needed per lookup. MARS needs less encryption time than RC6, DES, 3-DES, and
Blowfish algorithms because it has heterogeneous structure (most of the rounds are jacketed
by unkeyed mixing rounds) and full optimized implementation.

Nevertheless, MARS has lower performance than AES because it has a table lookup (at
least 3 instructions per look-up) similar to S-Box in DES which is lead to slow software

Fig. 9 Average running time of encryption process for all intervals

Fig. 10 Average running time of decryption process for all intervals

22718 Multimed Tools Appl (2017) 76:22703–22724

implementation. From above Fig. 4a–c, it can be seen that Blowfish algorithm behavior better
than 3-DES algorithm, although it uses 128-bit block size compared 168 bit for 3-DES
algorithm. For small input sizes, the difference in key length, which reflects the number of
blocks to be encrypted, does not have a significant effect on encryption time since the number
of blocks to be encrypted are small. On the other hand, results shown in Fig. 4d–e shows that
3-DES is better than Blowfish because it needs more blocks to be encrypted and the number of
blocks to be encrypted is huge (input files sizes 500 MB – 5 GB).

Finally, it was found that 3-DESworse than DES since 3-DES implement DES three times
in sequence. It consists of three different keys (K1, K2 and K3) and has an effective key length

Fig. 11 Average throughput for encryption process for all intervals

Fig. 12 Average throughput for decryption process for all intervals

Multimed Tools Appl (2017) 76:22703–22724 22719

of 168 bits. On the other hand, 3-DES more secure than DES because it has 168 bits’ key size,
whereas 56 bits’ is the key size for DES.

Figure 8a–e illustrates the average decryption time for files with input files in the intervals
([1 KB – 1 MB], (1 MB – 100 MB], (100 MB – 500 MB], (500 MB – 1 GB], (1 GB – 5 GB]).
The pattern of the results is the same as the encryption process; this is due to the fact that the
decryption process in symmetric key algorithms is the reverse of the encryption process.

Figures 9 and 10 show the average running time for each algorithm in milliseconds versus
different file sizes (1 KB – 5 GB). The figures show that the overall running time of encryption
and decryption processes for AES is lower than the overall average running time for DES, 3-
DES, MARS, RC6 and Blowfish. The average overall running time for MARS is very close to
AES, but MARS does not satisfy the requirements of IoT.

Figures 11 and 12 present the average throughput for the encryption/decryption processes
for all intervals. The throughput of the encryption/ decryption scheme is calculated by dividing
the total plaintexts in Kilobytes over the total encryption/decryption time [7]. So, as the
throughput of an algorithm increased, the algorithm is considered to have a high speed [7].

Throughput ¼ Plain text Kilobyteð Þ=Encryption Time Secondð Þ:
Figure 10 shows the superiority of the AES encryption algorithm over all other algorithms

for all intervals, from small multimedia file sizes to big multimedia file sizes, with a more than
1120 KB\S throughput. This indicates that AES has high speed for encrypting multimedia big
data per second in comparison with the other algorithms since it uses a substitution-
permutation structure with 10 encryption rounds. On the other hand, 3-DES has the lowest
with throughput that did not exceed 240 KB/S. 3-DES is considered to be a very slow
encryption algorithm since it runs DES three times with three different keys for the same
plaintext block. MARS has the second highest throughput since it uses Type-3 Feistel network
with 32 encryption rounds, followed by RC6, DES, Blowfish, and finally 3-DES. Another
point can be noticed that Blowfish has a very low throughput, this due to the small key size
used compared with the other algorithms.

Figure 11 describes the throughput of the decryption process for all intervals. Similar to the
encryption process, AES has the highest throughput with more than 2290 KB/S followed by
MARS, RC6, DES, Blowfish, and 3-DES with 2280, 1144, 460, and 410 KB/S respectively.

4.3 Security analysis

In this section, we have evaluated our developed algorithm by the security metric which is the
Avalanche Effect. Note that the key advantage of Avalanche Effect is measure the strength of
the proposed algorithm against cracking and hacking threats and real time attacks such as brute

Table 1 The avalanche effect for
different encryption algorithms Encryption

Technique
No. of bits
flipped

%

DES 29 24.2
3-DES 37 30.8
CR6 56 46.6
MARS 59 49.2
Blowfish 31 48.4
Proposed Technique 63 52.5

22720 Multimed Tools Appl (2017) 76:22703–22724

force attacks. In key encryption algorithms, changing a small number of bits in plain text in
order to avalanche changes in subsequent rounds resulting in a large number of cipher text bit
changes. For an algorithm to satisfy the avalanche criterion, the change of one plaintext bit is
expected to result in one-half of the cipher text bits changing [26]. The avalanche effect can be
calculated as:

Avalanche effect ¼ No: of flipping bits in the cipher text=No: of bits in the cipher text

� 100%

For example, considering a two-byte plaintext (0100100001101011), the most significant
bit is flipped (1100100001101011). After encryption, the original ciphered text is
(1110101010100110) and the modified ciphered text is (1011000100000100). The Avalanche
effect can be calculated by counting the number of flipped bits in the cipher text, which is 8,
divided by the number of bits in the cipher text. So, the avalanche effect is 50%. The results in
Table 1 are obtained after calculating the respective Avalanche Effects.

Figure 13 presents the avalanche effect for AES and other benchmark encryption algo-
rithms (DES, 3-DES, MARS, RC6 and Blowfish). The results show that AES algorithm
outperforms all other algorithms with 52.5%, Followed by MARS with 49.2%, Blowfish
48.4%, CR6 46.7%, 3-DES 30.8%, and finally DES 24.2%. It can be seen that AES is the only
encryption algorithm to satisfy the avalanche effect criterion; subsequently it needs more time
to be cracked. That is why AES is widely distributed and much more dependable than other
benchmark algorithms.

From the evaluations, it’s concluded that the proposed framework with AES has the lowest
running time, highest throughput, and highest avalanche effect. Thus, the proposed framework
is fast, efficient, secure, reliable, and scalable.

5 Conclusion

In this article, a novel efficient GPU encryption system has been developed to secure the
Multimedia Big Data against real-time attacks such as DoS and tampering attacks. It should be
noted that the developed encryption algorithm combines the process of scrambling of bits and
substitution boxes resulting in high avalanche effect. The results showed that the developed

Fig. 13 The avalanche effect for different encryption algorithms

Multimed Tools Appl (2017) 76:22703–22724 22721

system is promising and encouraging in terms of the security and performance objectives. Note
that we have run the experiments on IoT medical multimedia big data from JUST University
Hospital. As a part of future work, the developed system will be run on other IoT multimedia
big data, such as IoT military and education multimedia big data.

References

1. Aljawarneh S (2011) Cloud security engineering: avoiding security threats the right way. Int J Cloud Appl
Comput (IJCAC) 1(2):64–70. doi:10.4018/ijcac.2011040105

2. Aljawarneh S, Raja M, Abdelsalam M (2016) Investigations of automatic methods for detecting the
polymorphic worms signatures. Futur Gener Comput Syst 60:67–77

3. Atzori L, Iera A, Morabito G (2010) Internet of things: a survey. Comput Netw 54:2787–2805
4. Bandyopadhyay D, Sen J (2011) Internet of things: applications and challenges in technology and

standardization. Wirel Pers Commun 58:49–69
5. Chen M, Shiwen M, Yunhao L (2014) Big data: a survey. Mob Netw Appl 19:171–209
6. Dave E (2016) The internet of things: how the next evolution of the internet is changing everything. Cisco
7. Elminaam DS, Abdual-Kader HM, Hadhoud MM (2010) Evaluating the performance of symmetric

encryption algorithms. IJ Netw Secur 10:216–222
8. Evans D (2011) The internet of things how the next evolution of the internet is changing everything. Cisco

Internet Business Solutions Group (IBSG)
9. Hart J, Martinez K (2015) Toward an environmental internet of things. AGU Earth Space Sci 2:194–200
10. http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf. Accessed 14 July 2016
11. http://www.sesame.org.jo. Accessed 30 Aug 2016
12. Kalyani V, Gaur P, Vats S (2015) IoT: ‘machine to machine’ application a future vision. J Manag Eng Inf

Technol (JMEIT) 2:2394–8124
13. Kuehner H, Hartenstein H (2016) decentralized secure data sharing with attribute-based encryption: a

resource consumption analysis. Proceedings of the 4th ACM International Workshop on Security in
Cloud Computing

14. Kumar A, Rajpal N, Tayal A (2005) New signal security system for multimedia data transmission using
genetic algorithms. NCC05

15. Lee JY, Lin WC, Huang YH (2014) A lightweight authentication protocol for internet of things. Proceedings
of the International Symposium on Next Generation Electronics

16. Li S, Da Xu L, Zhao S (2015) The internet of things: a survey. Inf Syst Front 17:243–259
17. Madakam S (2015) Internet of things: smart things. Int J Future Comput Commun 4:250–253
18. Mahalle PN, Anggorojati B, Prasad NR, Prasad R (2013) Identity authentication and capability-based access

control (IACAC) for the internet of things. J Cyber Secur Mob 1:309–348
19. Prasetyo KN, Purwanto Y, Darlis D (2014) An Implementation of data encryption for internet of things using

blowfish algorithm on FPGA. International Conference on Information and Communication Technology
20. Santucci G (2009) From internet to data to internet of things. Proceedings of the International Conference on

Future Trends of the Internet
21. Schneier B (1996) Applied cryptography, 2nd edn. Wiley
22. Schweitzer D, Boleng J (2009) Designingweb labs for teaching security concepts. J Comput Sci Coll 25:39–45
23. Smith J (2013) Riding the multimedia big data wave. In: Proceedings of the International ACM SIGIR

Conference on Research and development in Information Retrieval (SIGIR’13)
24. Stallings W (1999) Cryptography and network security principle and practice, 2nd edn. Prentice Hall
25. Sundaram BV, Ramnath M, Prasanth M, Sundaram V (2015) Encryption and hash based security in internet

of things. Proceedings of International Conference on Signal Processing, Communication and Networking
26. Tavares SE, Heys HM (1995) Avalanche characteristics of substitution-permutation encryption networks.

IEEE Trans Comput 44:1131–1139
27. Wang W, Hu Y, Chen L, Huang X, Sunar B (2012) accelerating fully homomorphic encryption using GPU.

Proceedings of the IEEE Conference on High-Performance Extreme Computing (HPEC)
28. Xin M (2015) A mixed encryption algorithm used in internet of things security transmission system.

International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
29. Yao X, Chen Z, Tian Y (2015) A lightweight attribute-based encryption scheme for the internet of things.

Futur Gener Comput Syst 49:104–112
30. Zhao Y (2013) Research on data security technology in internet of thing. Proceedings of the International

Conference on Mechatronics and Control Engineering

22722 Multimed Tools Appl (2017) 76:22703–22724

http://dx.doi.org/10.4018/ijcac.2011040105
http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf
http://www.sesame.org.jo

Shadi Aljawarneh is an associate professor, Software Engineering, at the Jordan University of Science and
Technology, Jordan. He holds a BSc degree in Computer Science from Jordan Yarmouk University, a MSc degree
in Information Technology fromWestern Sydney University and a PhD in Software Engineering from Northumbria
University-England. He worked as an associate professor in faculty of IT in Isra University, Jordan since 2008. His
research is centered in software engineering, web and network security, e-learning, bioinformatics, Cloud Computing
and ICT fields. Aljawarneh has presented at and been on the organizing committees for a number of international
conferences and is a boardmember of the International Community forACM, JordanACMChapter, ACS, and IEEE.
A number of his papers have been selected as BBest Papers^ in conferences and journals.

Dr. Muneer Masadeh Bani Yassein received his B.Sc. degree in Computing Science and Mathematics from
Yarmouk University, Jordan in 1985 and M. Sc. in Computer Science, from Al Al-bayt, University, Jordan in
2001. And PhD degrees in Computer Science from the University of Glasgow, U.K., in 2007, He is currently an
associate professor in the Department of Computer science at Jordan University of Science and Technology
(JUST), Muneer served as Chairman of the department of Computer science from 2008 to 2010, as Vice Dean of
the Faculty of Computer and Information Technology from 2010 to 2012, and from 2013 to 2014. Muneer is
currently conducting research in Mobile Ad hoc Networks, Wireless sensors Networks, Cloud Computing,
simulation and modelling, development/analysis of the performance probabilistic flooding behaviours in MA-
NET, optimizations and the refinement of service discovery and routing algorithms for mobile device commu-
nications in heterogeneous network environments. Bani Yasin has published over 90 technical papers in well
reputed international journals and conferences. During his career, he has supervised more than 50 graduate and
undergraduate students. Dr. Bani Yasin is member of IEEE and he is a member of the technical programs of
several journals and conferences.

Multimed Tools Appl (2017) 76:22703–22724 22723

We’am is a postgraduate student in the CS Department, JUST, Jordan. She has received her BC from Jordan
Yarmouk University with excellent rate. We’am has published a number of papers in very good conferences and
journals.

22724 Multimed Tools Appl (2017) 76:22703–22724

	A resource-efficient encryption algorithm for multimedia big data
	Abstract
	Introduction
	Related works
	Proposed encryption/decryption system
	Functionality overview of the proposed system
	Genetic algorithm

	Results and analysis
	System implementation and environment
	Performance analysis
	Security analysis

	Conclusion
	References

