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Abstract The present work proposes a review and comparison of different Kernel func-
tionals and neighborhood geometry for Nonlocal Means (NLM) in the task of digital image
filtering. Some different alternatives to change the classical exponential kernel function used
in NLM methods are explored. Moreover, some approaches that change the geometry of the
neighborhood and use dimensionality reduction of the neighborhood or patches onto prin-
cipal component analysis (PCA) are also analyzed, and their performance is compared with
respect to the classic NLM method. Mainly, six approaches were compared using quantita-
tive and qualitative evaluations, to do this an homogeneous framework has been established
using the same simulation platform, the same computer, and same conditions for the ini-
tializing parameters. According to the obtained comparison, one can say that the NLM
filtering could be improved when changing the kernel, particularly for the case of the Tukey
kernel. On the other hand, the excellent performance given by recent hybrid approaches
such as NLM SAP, NLM PCA (PH), and the BM3D SAPCA lead to establish that sig-
nificantly improvements to the classic NLM could be obtained. Particularly, the BM3D
SAPCA approach gives the best denoising results, however, the computation times were the
longest.
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1 Introduction

The image denoising methods are at the basis of digital image processing and still, there
are challenging problems to construct robust filters in applications where the noise has very
large standard deviation or where it is of multiplicative nature such as the speckle type noise
[15, 37]. Since 2005, the Nonlocal Means (NLM) filtering has gained some popularity and
credibility, because this type of filters deals with the preservation of structure and objects
into a digital image [2]. The “method noise” is the core of the mathematical analysis of such
nonlocal means filters where an error is defined as the difference between a noisy image
and its denoised version.

The image filtering or denoising, is a particular task of restoration or recuperation
approaches of an image to its original condition given a degraded image. The restoration
passes by reverting the effects caused by a distortion function which must be estimated in
most of the practical cases. In fact, the degradation characteristic is a crucial information
and it must be supposed known or estimated during the inversion procedure. Typically, this
is a point spread function which can be linked with the probability distribution of the noise
contamination (n ∼ p(n)). Thus, a global image formulation model could be given by:

y = F(x) + n, (1)

where, F(x) is a functional that could take for instance, two forms: F(x) = x and F(x) =
Hx, being H a linear operator which models the image degradation. All variables presented
along the text are, x: which represents an image to be estimated, y: represents the observed
image with additive white noise n and/or distorted by H , and x̂: is the estimator of x with
respect to data y.

The classic exponential kernel function is used in most of the cases as a weighting func-
tion in NLM methods [2–5] to deal with digital image filtering as it can be seen in (8).
Moreover, the performance of the NLM depends on an optimal choice of the bandwidth
parameter h, and other related parameters such as the size of the neighborhood, and the
search region (geometry of patches). An optimal selection of the bandwidth parameter h is
a difficult task, this problem has been interestingly solved in the works of Van De Ville and
Kocher [43, 44], and Talebi [39], by using the Stein’s unbiased risk estimate (SURE) and
locally adaptive procedures, also one can propose an empirical fixed approximation based
on experimental results. Moreover, since h depends on the noise level to have a good per-
formance of the NLM methods, in practice, it is important to estimate the noise distribution
or some of its statistical properties, recently some works have reported some performing
approaches in this important task [6, 9, 34, 35].

On the other hand, there are some other kernel functions which have other equivalent
parameters [19] and they may be used in the NLM context as robust weighing functions as
illustrated in [20, 22, 42]. More over, the performance of NLM could be improved by using
recent hybrid algorithms which are based on the change of the geometry of the neighbor-
hood of noisy pixels and performing a collaborative filtering, here the notion of block-wise
or patch-wise filtering plays an important role in NLM, since the methodology can be
improved as shown in works of Deledalle et al. [14, 15], and the successful BM3D method
proposed by Dabov et al. [7, 8]. In the present paper we propose the review and performance
comparison of different Kernel functionals and hybrid methods. First, one is interested to
answer the following questions: what happens with the performance of NLM methods if one
changes the kernel structure? And a second question is, what happens when one changes
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the geometry of the searching region for NLM? To answer both questions, some compar-
isons were performed with respect to the classic NLM method, to do this an homogeneous
framework has been established using the same simulation platform, the same computer,
and same conditions for the initializing parameters, such as the seed to generate the noise
random samples which will be added to free-noise database images.

The paper is organized according to the following sections: Section 2 describes the
general presentation of the Nonlocal Means filtering technique. The nonparametric esti-
mation and its connection to NLM is shown in Section 3 where the notion of kernel and
robust weighting functionals is presented and repositioned for the task of NLM filtering. In
Section 4, a summarized presentation of patch-wise based NLM is boarded. In Section 5, the
results of NLM filtering are discussed for several approaches and some illustrative results
are shown to answer the questions on the use of robust kernels and changing geometry of the
searching region into the NLM framework. Finally, in Section 7 some concluding remarks
are given.

2 Nonlocal means (NLM) filter

Let us consider the following observation model, which is a particular case of (1)

y(i) = x(i) + n(i), (2)

where y(i) is the observed value, x(i) is the true value, and n(i) is the noise perturbation
at a pixel i. The classic way to model the effect of noise on a digital image is the additive
white noise, for example, Gaussian noise where n(i) ∼ N (0, σ 2

n ) (AWGN).
Buades et al. [2–5] have defined the denoising method Dh according to the following

equation:

y = Dh(y) + n(Dh, y), (3)

where y is the noisy image and h is a filtering parameter, which usually depends on the
standard deviation of the noise. Ideally, Dh(y) is smoother than y and n(Dh, y) models the
realizations of a white noise.

Definition 1 Let y be any image and Dh a denoising operator depending on h. Then, the
method noise of y is defined by the following image difference

n(Dh, y) = y − Dh(y). (4)

Moreover, in [4] the authors establish that a good denoising method produces a method
noise n(Dh, y) that is distributed as close as possible to the original noise distribution
according to following three principles:

Principle 1: For every denoising algorithm, the method noise must be zero if the image
contains no noise and should be in general an image of independent zero-mean random
variables.

Principle 2: Noise-to-noise principle. A denoising algorithm must transform a white noise
image into a white noise image (with lower variance).

Principle 3: Statistical optimality. A generalized neighborhood filter is optimal if it finds
for each pixel i all and only the pixels j having the same model as pixel i.
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The previous definition, is at the core of the proposed NLM method by Buades et al.
[2–5], which follows the next integration formula

x̂(i) = NL(y)(i) = 1

C(i)
×

∫

�

exp

(

−
(

Ga ∗ |y(i + ·) − y(j + ·)|2) (0)

h2

)

y(j)dj

(5)

where i ∈ � ⊂ R
2, Ga is a Gaussian kernel with a standard deviation a, h is a bandwidth

which acts as a filtering parameter, and thus the choice of this parameter is important, and in
practice it is estimated in function to the noise variance σ 2

n or standard deviation h = k0σn,
with a constant k0 [6, 9, 34, 35] or estimated according to [43, 44]. The value of C(i) is a
normalizing constant such that

C(i) =
∫

�

exp

(

−
(

Ga ∗ |y(i + ·) − y(j + ·)|2) (0)

h2

)

dj,

and
(

Ga ∗ |y(i + ·) − y(j + ·)|2) (0) =
∫

R2
Ga(t)|y(i + t)−

y(j + t)|2dt.

One could say that NL(y)(i) is the denoised value at the i-th position, and it is the mean
value of all pixels whose Gaussian neighborhood looks like the neighborhood of i-th pixel.

2.1 The classic discrete proposition

According to the previous introduction of the NLM method (5), this is approximated by the
following sum for the discrete images case (discrete grid i ∈ I ⊂ Z

2)

x̂(i) = 1

C(i)

∑

j∈I
w(i, j)y(j), (6)

where the wights {w(i, j)}j depend on the similarity between the pixels i and j and satisfy
the conditions: 0 ≤ w(i, j) ≤ 1,

∑

j w(i, j) = 1, and C(i) is a normalizing factor given by

C(i) =
∑

j∈I
w(i, j), (7)

being I the searching region around i and w(i, j) is a weighting function, that compares
the neighborhoods around pixels i and j , such that

w(i, j) = exp

(

−‖y(Ni ) − y(Nj )‖2
2,a

h2

)

, (8)

where Ni defines a neighborhood system on I .

Definition 2 A neighborhood system on I is a family N = {Ni}i∈I of subsets of I such
that for all i ∈ I ,
1) i ∈ Ni ,
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2) j ∈ Ni ⇒ i ∈ Nj .

The subsetNi is called the neighborhood, similarity window of i, or patch window.

The neighborhoods or similarity windows have different sizes and shapes, the most com-
mon shape is a squared window of fixed size. The restriction of y to a neighborhood Ni is
denoted by

y(Ni ) = (y(j), j ∈ Ni ). (9)

2.2 Some new trends

Since the introduction of the NLM approach proposed by Buades et al. [2, 3, 5] for image
filtering, several generalizations or alternatives have been proposed in the literature, hybrid
approaches such as combination of NLM and Wavelets [28, 45, 46], and also more general
NLM and Linear Transforms, NL Variational Methods [37], NL anisotropic patches [31],
the focusing on the calculations of an appropriate or optimal bandwidth selection [39, 43,
44], the appropriate size or geometry of the patches or neighborhoods of analysis [14], and
the change of the kernel or weighting function to be used [13, 14, 20, 22, 38, 42], since the
most of time the exponential function is used. Also, the notion of self-similarity or redun-
dancy has been explored to construct methods to accelerate the NLM approach such as
the pre-selection of the contributing neighborhoods based on average value and gradient,
average and variance or higher-order statistical moments [38], Milanfar [33], cluster tree
arrangement, and singular value decompositions [15], such as Principal Component Anal-
ysis. Also the computation of the distance measure between different neighborhoods can
be optimized using the fast Fourier transform [14, 29] or a moving average filter obtain-
ing fast algorithms. One of the best alternatives nowadays is of course, the hybrid method
of sparse 3-D transformation with collaborative filtering (Block Matching 3-D–BM3D) [7,
8]. Other recent propositions concern Bayesian patch-based methods [27], or the adaptive
penalized NLM [37] which search to have a similar performance or better than the BM3D
method. More over, these methods have been adapted to obtain robust image filtering where
non-Gaussian or multiplicative noise is present.

3 Connections of nonparametric estimation and NLM

According to the work of Takeda et al. [38], and Milanfar [33], and from (1) it is possible to
obtain a kernel regression formulation such that an image estimator is given by the following
expression,

̂F(xi) =

∑

j∈I
Kh(y(Ni ) − y(Nj ))y(j)

∑

j∈I
Kh(y(Ni ) − y(Nj ))

, (10)

also according to the consistency theorem given by Buades [3], the previous equation cor-
responds also to the NLM method, where classically the Nadaraya–Watson kernel assumes
an exponential structure, such as in (8), where one can establish that

w(i, j) = Kh(y(Ni ) − y(Nj )). (11)
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This last equation let us to connect the nonparametric estimation framework with the
NLM method (see also [26]), where a kernel structure is necessary to obtain an estimate
version p̂m,h(z) (empirical distribution) of a distribution p(z) where z is a vector of inde-
pendent and identically distributed random variables of size m. For the 1-dimensional case,
let the following expression denote such estimators:

p̂m,h(z) = p̂m,h(z|z1, . . . , zm) = 1

m

m
∑

i=1

Kh (z − zi) . (12)

This expression assumes the hypothesis that p(z) is symmetric, two times differentiable
and positive, indeed, it is also assumed that Kh(·) is a kernel weighted function which
satisfies some imposed conditions treated in the works of Berlinet [1], Devroye [16–18],
Loader [30] and Masry [32]. The bandwidth h = hm is given in function of both the sample
size m and the standard deviation of z, this parameter could be considered as a sequence of
positive numbers that must satisfy: hm → 0 and mhm → ∞ when m → ∞. The strong
uniform consistency of p̂m,h(z) and its convergence toward p(z), depend on a convenient
procedure of bandwidth selection. Berlinet and Devroye have made a complete study, where
they have compared several classic and plug-in techniques [1], [17]. A simple and faster
procedure which has been retained for this work is the technique proposed and developed
by Terrell. It has been shown that under reasonable conditions of symmetry and for mono-
modal distributions this procedure is consistent, the complete conditions to assure the global
consistency, efficiency and convergence are given in [40, 41], which is very similar to the
estimate technique selected by You et al. in [45, 46] in the framework of hybrid NLM and
Wavelets. The nonparametric framework for denoising signals [12, 26, 33] seems to be a
parallel tool with respect to NLM techniques, where for instance the exponential kernel
structure is the most used.

A function of the form Kh(z) is assumed as a fixed kernel Kh(z) = 1/(hd)K(z/h),
where h > 0, this parameter is called the kernel bandwidth (smoothing factor). The fun-
damental problem in kernel density estimation lies in both the selection of an appropriate
value for h and the selection of the kernel structure. The choice of K(z) could depend on
the smoothness (regularity) of p(·). Two different nonparametric schemes are revisited in
this section to connect nonparametric to NLM methods. The first one uses the exponential
kernel, which has proved to give good performance when h is selected by using the over-
smoothed principle introduced by Terrell. And the second uses a kernel obtained from the
class of Hilbert kernels proposed in [19]. It avoids the bandwidth h selection and its per-
formance depends on other parameters, which selection is easier (parameters d and k are
defined in Section 3.2).

3.1 Exponential kernel with h optimally estimated

Among the different classic kernels [1], the Gaussian kernel is the most utilized in non-
parametric estimation due to its regularity and symmetric properties (Gaussian decay) and
it leads to an easy to implement estimator. The following expression resumes this estimator
by a sum of exponential functions:

p̂m,h(z) = 1

mh
√

2π

m
∑

i=1

exp

(

− (z − zi)
2

2h2

)

. (13)
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In such a case, and considering that a fixed kernel structure has been chosen, Terrell [40]
proposes to use an over-smoothed bandwidth h that corresponds to:

h0 = 3

(

1

2
√

π(35)

) 1
5

σm− 1
5 ,

this bandwidth value guarantees the minimization of the Mean Integrated Squared Error
(MISE), σ is the standard deviation of the sample z, and

∫

K(z)2dz = 1
(2

√
π)

. Under mild

conditions, the kernel density estimates based on the over-smoothing principle are consis-
tent and for sufficiently large sample sizes m, they will display all information present in the
underlying variables density p(z). This way to approximate h will be used into the NLM
classic method, where the h0 depends adaptively on the search regions of the image, for rel-
atively small homogeneous areas [35] (I = [−5, 5]× [−5, 5], [−7, 7]× [−7, 7]) obtaining
an acceptable noise variance estimation and standard deviation for each search region.

3.2 Hilbert kernel

Another class of kernel density estimates is called the Hilbert kernel estimate. In this
case, the Kh(z) = 1/(hd)K(z/h) is considered equivalent to K(u) = 1/‖u‖d , where the
smoothing factor h is canceled obtaining:

p̂m(z) = 1

m

m
∑

i=1

1

‖z − zi‖d
. (14)

The Hilbert estimates are viewed as an universally consistent density estimate whose
expected performance (L1, L∞, pointwise) is monotone in m (at least in theory) for all
densities. The consistency of this class of estimators is proved in [18](see theorem 2). The
Hilbert density estimate of order k (k ≥ 1) is a redefined subclass that avoids the infinite
peaks produced during the estimation, the value considered most of the time is k = 2, giving
the following expression for p̂m(z):

p̂m(z) =
√

√

√

√

4

V 2
d πm(m − 1) log m

∑

1≤i<l≤m

1

Deni,l

, (15)

where Deni,l = ‖z−zi‖2d +‖z−zl‖2d and Vd is the volume of the unit ball in R
b. This last

expression is also called Cauchy density estimate, due to its similarity to the multivariate
Cauchy density, ‖ · ‖ denotes the L2 metric on R

d . Finally, it is assumed that p̂m(z) → p(z)

at least in probability for almost all z.
From the previous nonparametric estimator, and to answer the first question, about what

happens if one changes the exponential kernel by another (replacing (8) by (16)), it is now
proposed to use as a weighting function for the NLM method the Hilbert kernel, that is:

Proposition 1 Hilbert kernel:

w(i, j) = 1

‖y(Ni ) − y(Nj )‖d
2,a

, (16)

where one have experienced in other works with integer values for d = 1, 2, 3, 4 [10–12].
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This proposition, is given in the same sense of the robust filtering proposition made by
Dinesh et al [20], where some interesting results are discussed. More over, one notes that this
is a generalization of the BLUE function discussed in [22], for d = 2 where w(i, j) = 1/h2

when ‖y(Ni ) − y(Nj )‖2
2,a ≤ h.

3.3 Other robust kernels

Also the works of Goossens et al. [22] and Tian et al. [42] give some interesting kernel
propositions, in the case of [42] with poor performance in the filtering, which was due to an
erroneous consideration on w(i, j) and h which has been corrected in this work to perform
the comparison given in the Section 5. The following two kernels were also replaced as
weighting functions for the NLM method (changing the (8) by (17) and (18) respectively),
where the value of λ reported in [42] was substituted by h2. Specifically, these two functions
were taken into account because they have good performance characteristics (see also the
modified bi-square proposed in [22]),

Proposition 2 The Tukey or bi-square function:

w(i, j) =
(

1 −
(‖y(Ni ) − y(Nj )‖2

2,a

h2

))2

, (17)

for 0 < ‖y(Ni ) − y(Nj )‖2
2,a ≤ h.

Proposition 3 The Andrews or Wave function:

w(i, j) =
sin

(

π‖y(Ni )−y(Nj )‖2,a

h

)

π‖y(Ni ) − y(Nj )‖2,a/h
, (18)

for 0 < ‖y(Ni ) − y(Nj )‖2
2,a ≤ h.

4 Neighborhood geometry and dimensionality reduction in NLM

Some of the recent hybrid algorithms are based on the change of the geometry of the neigh-
borhood and the collaborative filtering, this is lead by using dimensionality reduction of the
neighborhood or patches onto principal component analysis (PCA) improving the perfor-
mance of the classic NLM, since the methodology can model far better the geometries and
textures as shown in works of Deledalle et al. [14] (NLM with Shape Adaptive Patches–
SAP), [15] (NLM PCA), were promising results are given and are comparable with those
of the successful BM3D method proposed by Dabov et al. [7], which also has adopted the
philosophy of adapting shapes into a PCA [8] improving its own results (BM3D SAPCA).
In [22] the authors also propose PCA decomposition, and uses a post-processing filter that
seems to give competitive results with respect to BM3D method (in the present work we
only change the proposed kernels in Section 3.3). The core in this new type of NLM based
methods is the use of orthogonal over complete dictionaries combined with sparse learning
techniques where the dictionaries are learned directly from the noisy image by using a PCA
decomposition of patches, this stage is also complex since one is faced to the selection of
the best dictionaries. All these methods also require the knowledge of σn to calculate the
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optimal bandwidth h. The filtering task is thus lead by denoising an image block-wise or
patch wise instead of a single pixel, that means the following

x̂b(i) =

∑

j∈I

K
∑

k=−K

b(k)w(i + k, j + k)y(j)

∑

j∈I

K
∑

k=−K

b(k)w(i + k, j + k)

, (19)

where x̂b(i) are multiple estimations of the i-th pixel based on a block or patch based NLM
(with K overlapping blocks), and b(k) is an additional weighting function to aggregate the
different estimates.

On the other hand, the usual geometry for the patches is a square, if one changes the shape
of the patch taking advantage of the local geometry of the image, one arrives to construct
anisotropic patches with the benefit of directionality and best geometry representation as
discussed in [31]. This is the main idea in [8, 14], where some type of shapes have been
proposed (Disks, Pie slices, and Bands). The final task into these approaches is to carry
out a procedure called aggregation, where several estimators are combined giving the best
solution (computing several times the NLM, this is made for each shape). The performance
of these methods is great, since the aim is to model adequately the texture content and
at the same time model the edges with high contrast. For example, in the case of BM3D
SAPCA [8], the processing is carried out according to the following stages: Shape adaptive
grouping, obtaining the shape by 8 directional filters with effective sparsity of the image
data and finding similar blocks; then PCA basis are obtained and used into the collaborative
filtering obtaining a 3-D transformation, followed by a Shrinkage task and inverting the
transformation. An aggregation task is performed to obtain the final denoised image.

5 Some simulation results and comparison

Some results were obtained conducting two different experiments. For both experiments,
Gaussian noise random samples were added to free-noise database images (the (2) has been
implemented) obtaining noisy images which were denoised using the following approaches:

Approach 1 Corresponds to the classic NLM method (software elaborated by Manjon
and Buades downloaded from [25]), but taking into account that the bandwidth h values
chosen to parameterize the NLM algorithm depends directly on the true σn of the noise
(here some values were chosen according to those reported in [43], but for the fixed
values h = 0.7σn, h = σn, and h = 1.5σn.

Approach 2 Since in practice, for real acquired images the true value of σn is often
unknown, the second approach considers to still use the classic NLM algorithm but esti-
mating optimally the value for h = k0h0 (where the variance and standard deviation
are also estimated using maximum likelihood estimators, for each search region I (see
Section 3.1).

Approach 3 For a third approach, (16), (17), and (18) were replaced by (8), and the role
of parameter h was changed by d for the Hilbert kernel, where the noisy images were
filtered by using the following integer values d = 2, 3, 4 for the case of the Hilbert
kernel, while for the case of the Tukey and Andrews kernels the value h = √

6σn which
is nearest to the value proposed in [22].
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Approach 4 In this case, the approach used is NLM with Shape Adaptive Patches (NLM
SAP) which was downloaded from the web page of Deledalle [24], and corresponds to
an hybrid patch based algorithm. This method uses a trapezoidal kernel and only three
pie slices as shapes, obtaining a fast version proposed by authors (in this case h2 =
2
√

8σ 4
n |S|, where S is an equivalent size of the shape).

Approach 5 Other hybrid approach is the patch based PCA: local vs. global (NLM
PCA), proposed in [15], here authors compare patch global PCA (PG), hierarchical
PCA (PH), and local PCA (PL), the software was also downloaded from the web
page of Deledalle [24] and (PH) results were considered for our comparison purposes.
Almost all the default parameters to simulate this approach have been preserved, and
only the values for Mmin were replicated according to the value of σn (in the function
PHPCA_best_params.m).

Approach 6 The final simulated approach corresponds to the method BM3D shape-
adaptive (SA) PCA proposed in [8], the software was downloaded from the web page of
Foi [23]. The default parameters to simulate this approach have been preserved.

From the comparison of approaches 1, 2, and 3, the results let us to answer to the
first question asked in the introduction section, and results obtained with approaches 4, 5,
and 6 let us to answer the second question. In the first experiment, the obtained results
are compared with respect to some other reported results in literature. From a classic
database testing images only Barbara, Lena, Cameraman, Mandril and Boats were used,
trying to corroborate results reported in other references cited in the present paper. The
Gaussian noise has zero mean, with different variance values, with standard deviations
σn = 10, 15, 20, 25, 30, 40 (medium to high level of noise). In the second experiment,
also some results were obtained for the complete database TID2008 (25 images) which
has been used in [35], in this experiment the values for the standard deviation of noise
are σn = 0, 1, 3, 5 (noiseless to low level of noise). For both experiments an objective
and a subjective comparisons have been performed. In Sections 5.1 and 5.2 the Peak Sig-
nal to Noise Ratio (PSNR) has been considered as a measure to quantify the performance
of all compared approaches (one can also use other quantification like the Structural Sim-
ilarity (SSIM)), while in Section 5.3 some comments are made concerning a subjective
evaluation qualifying the visual perception of some denoised images. Also, all results were
obtained using MATLAB version 2010a, a personal computer with AMD A10 APU Pro-
cessor, with 8 GB of RAM and bus of 64 bits, and the random seed code in MATLAB was
randn(’seed’,2), and the same function for the PSNR.

5.1 PSNR results for some classic test images

Table 1 shows the PSNR values obtained when filtering or denoising the Barbara test image.
Here, it is compared in an objective way the performance level of restoration versus the
level of noise. Also, in Table 2 some similar performance results were obtained for Lena test
image. In both tables, the six implemented approaches previously described are compared
with respect to other two approaches reported in literature, particularly those results reported
by Lin [28] (in Tables 1 and 2 appears as NLM Wiener-Wavelets) and by You [46] (in
Tables 1 and 2 appears as NLM Wavelet). One can see from Tables 1 and 2, that obtained
results using approaches 1, 2, and 3 are improved when changing the kernel, particularly
for the case of Tukey kernel. The PSNR results obtained by the NLM Wiener-Wavelets and
NLM Wavelet domain perform little bit better for filtering high level of noise, this is due
in part to the goodness of these hybrid approaches which combine the image analysis in
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Table 1 PSNR results in dB for evaluating some NLM methods (Barbara image)

Method \σn 10 15 20 25 30 40

NLM Buades

h = 0.7σn 32.97 30.95 29.37 28.21 27.37 26.00

h = σn 33.55 31.48 29.83 28.51 27.39 25.75

h = 1.5σn 32.56 30.14 28.33 26.93 25.86 24.41

NLM h est.

h = 1.5h0 29.82 29.03 28.18 27.34 26.54 25.31

h = h0 32.12 30.40 28.87 27.56 26.42 24.65

NLM Hilb.

d = 2 30.87 29.33 28.08 27.06 26.23 24.90

d = 3 32.57 30.69 29.16 27.89 26.82 25.25

d = 4 32.95 30.80 29.15 27.84 26.79 25.07

NLM other

[22, 42] Tukey 33.82 32.11 29.82 28.53 27.43 25.67

[22, 42] Wave 33.76 31.86 29.42 27.97 26.74 24.90

NLM W-W

[28] – 31.17 30.47 29.55 28.33 –

NLM W

[45, 46] – – 30.27 – 28.27 –

NLM SAP

[14] 33.79 32.10 30.87 29.62 28.24 26.51

NLM PCA

(PH) [15] 34.55 32.32 30.92 29.68 28.56 26.98

BM3D PCA

[8] 34.96 33.19 31.89 30.87 30.01 28.50

the spatial and in the frequency domains (the centered lines in Tables 1 and 2 indicate that
[28] and [45, 46] have not reported PSNR results for the corresponding σn). More over,
the best performance is evidenced by the approaches 4, 5, and 6, changing the geometry
of the neighborhood and using the notion of patch wise filtering (collaborative filtering
using dimensionality reduction of the neighborhood or patches onto principal component
analysis). Particularly, the method BM3D SAPCA gives the best performance, whereas the
methods NLM SAP and NLM PCA (Patch based Hierarchical–PH) give competitive results
and are valuable since their computation times were the fastest (see last column of the
Table 6, for the case of the database TID2008).

In the same way, in Tables 3, 4, and 5 some other comparatives are shown with respect
to other test images such as Cameraman, Madril and Boats. In these cases, the performance
of the six approaches is similar comparing with Tables 1 and 2. Moreover, the approach
NLM SAP gives the better performance for values of σn > 20 (high level of noise) for
Cameraman and Boats images, whereas the performance of the BM3D SAPCA is generally
the best. The Mandril image case is interesting since it is rich of texture content and the
approaches performs a little bit different concerning the h value, for example NLM classic
method performs better for h = 0.7σn, obtaining a PSNR values near to those of the Tukey
Kernel and NLM SAP. Moreover, in the case of the classic NLM method (approach 1), it is
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Table 2 PSNR results in dB for evaluating some NLM methods (Lena image)

Method \σn 10 15 20 25 30 40

NLM Buades

h = 0.7σn 34.08 32.08 30.64 29.32 28.25 26.60

h = σn 35.05 33.21 31.42 30.24 29.26 27.66

h = 1.5σn 34.22 32.30 30.92 29.85 29.00 27.72

NLM h est.

h = 1.5h0 32.31 31.31 30.28 29.31 28.40 26.94

h = h0 33.38 31.14 29.45 28.16 27.10 25.44

NLM Hilb.

d = 2 32.85 31.47 30.35 29.40 28.58 27.19

d = 3 33.94 32.12 30.63 29.38 28.41 27.03

d = 4 34.01 31.81 30.11 28.95 28.01 26.54

NLM other

[22, 42] Tukey 35.28 33.00 31.51 30.38 29.43 27.93

[22, 42] Wave 35.13 32.78 31.25 30.10 29.15 27.71

NLM W-W

[28] – 32.73 32.13 31.17 30.20 –

NLM W

[45, 46] – – 31.67 – 29.47 –

NLM SAP

[14] 34.91 33.23 31.89 30.78 29.83 28.33

NLM PCA

(PH) [15] 35.39 33.38 32.21 31.07 30.20 28.70

BM3D PCA

[8] 35.77 34.10 32.91 31.90 31.07 29.75

interesting to see that the best performance was obtained for h = σn in general for almost
all the test images, these results of PSNR are similar or better with respect to those reported
in other woks in literature (see [37, 43, 45]), also the performance is competitive with those
results obtained using the approaches NLM SAP, and NLM PCA overall for some large
values of σn. For this experiment, one concludes that the best method was BM3D SAPCA,
followed by NLM PCA, and NLM SAP, which means that performance of hybrid NLM
based methods using patch wise filtering is excellent.

5.2 PSNR results for database TID2008

The results obtained with the second proposed experiment concern the obtention of the
PSNR for low level of noise added to a collection or database TID2008 which has been
used recently as a good noise-free database with 25 images of very high quality [35]. The
main intention for this experiment is to show how much geometry of the noise-free images
is removed or preserved by the analyzed approaches. Table 6 shows the PSNR average of
the 25 images filtered for the best performing approaches. The classic NLM for h = σn,
NLM with Hilbert for d = 4 and Tukey kernels with h = √

6σn, NLM SAP, NLM PCA
(PH). and BM3D SAPCA. From the PSNR results it is clear that the worst approaches for
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Table 3 PSNR results in dB for evaluating some NLM methods (Cameraman image)

Method \σn 10 15 20 25 30 40

NLM Buades

h = 0.7σn 31.89 30.40 29.17 28.19 27.39 25.95

h = σn 31.90 30.64 29.67 28.76 27.87 26.17

h = 1.5σn 31.13 29.82 28.60 27.41 26.29 24.56

NLM h est.

h = 1.5h0 26.86 26.53 26.13 25.69 25.23 24.27

h = h0 29.67 28.67 27.58 26.59 25.66 23.95

NLM Hilb.

d = 2 28.09 27.45 26.78 26.11 25.47 24.33

d = 3 29.82 29.04 28.23 27.39 26.54 25.03

d = 4 30.68 29.61 28.52 27.52 26.57 24.97

NLM other

[22, 42] Tukey 33.18 31.32 30.23 29.58 28.08 26.44

[22, 42] Wave 33.07 31.13 30.06 29.41 27.80 25.85

NLM SAP

[14] 33.50 31.51 30.32 29.63 28.73 27.97

NLM PCA

(PH) [15] 33.67 31.29 29.75 28.64 27.70 26.16

BM3D PCA

[8] 34.48 32.25 30.72 29.61 28.75 27.48

low level of noise are the classic NLM and NLM with Hilbert kernel (loosing geometry and
smoothing textures), since for all the noisy cases (σn = 1, 3, 5) it is better do not perform
a filtering task. In the case of the Tukey kernel, it is shown that the low level noisy images
are well filtered preserving details an geometry, gaining in average 0.25 dB for noise level
of σn = 1, 1.68 dB for σn = 3, and 2.79 dB for σn = 5. Equally, for NLM SAP the average
gains were 0.45 dB, 1.91 dB, and 3.04 dB respectively, for NLM PCA (PH) average gains
were 0.69 dB, 2.18 dB, and 3.57 dB, and finally for BM3D SAPCA the average gains were
1.04 dB, 2.76 dB, and 3.87 dB, giving the best performance, preservation of geometry and
textures. Here, it is important to comment that for σn = 0 this last approach fails, which
is an interesting drawback provided that for almost all the noisy images its performance
is remarkable (the centered line in Table 6, means that any numerical value was obtained,
while Inf means an infinite value in dB).

5.3 Results from the subjective point of view

On the other hand, evaluating the subjective aspect of the approaches, Figs. 1 to 9 show
some visual results of the denoising task for some benchmark images previously presented
in Section 5.1. Figure 1 shows the filtering results of the Barbara image with a level of noise
such that σn = 20. From Figs. 2 and 3 one can appreciate better the filtering of two zoomed
zones in the scene of Barbara (crops of the full image), the books at the back top-left, and
the leg and arm at the bottom-left, in this two figures one compares the best results obtained
from all simulated approaches. Some other visual results are also given for the images of
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Table 4 PSNR results in dB for evaluating some NLM methods (Mandril image)

Method \σn 10 15 20 25 30 40

NLM Buades

h = 0.7σn 30.34 28.47 27.01 26.03 25.30 24.42

h = σn 30.36 28.14 26.59 25.18 24.18 22.86

h = 1.5σn 28.87 26.20 24.55 23.49 22.77 21.88

NLM h est.

h = 1.5h0 26.27 25.61 24.94 24.30 23.72 22.76

h = h0 29.19 27.67 26.47 25.46 24.57 23.13

NLM Hilb.

d = 2 26.15 25.10 24.30 23.66 23.15 22.34

d = 3 28.32 26.78 25.60 24.74 24.13 23.21

d = 4 29.53 27.66 26.47 25.57 24.84 23.70

NLM other

[22, 42] Tukey 30.45 28.71 27.29 25.11 23.93 22.55

[22, 42] Wave 29.65 28.25 27.15 25.05 23.95 21.90

NLM SAP

[14] 30.46 28.69 27.37 26.59 25.12 22.68

NLM PCA

(PH) [15] 32.27 29.70 27.84 26.50 25.47 23.86

BM3D PCA

[8] 32.32 29.97 28.17 26.89 26.07 24.54

Cameraman and Boats, for both images the filtering is led by considering AWGN with
σn = 30 (see Cameraman in Fig. 4 and Boats in Fig. 7). Also, the resulting denoised images
are compared with respect to the original image (free of noise), in some zooming zones in
the scenes of the Cameraman and Boats images, the head of the man, arms and the camera
in Fig. 5, and the buildings suited at the bottom-right of the camera’s tripod in Fig. 6, the
lighthouse of the port in Fig. 8 and into the largest boat next of a man where one can see the
name of the boat in Fig. 9.

The subjective or visual results obtained using NLM Tukey, NLM PCA and BM3D
approaches seems to perform as directional filters, observing Figs. 1, 4, and 7, allowing to a
better reconstruction of some details of high frequency into the scenes, where for example,
the shadow of the table projected into the arm of Barbara is good restored, also some high
frequencies of the pants of Barbara are well recuperated (see Figs. 3c, e, and f), in the case of
NLM PCA one can see an over-representation and NLM SAP gives a better smoothed visual
result (see sub-figure 3d). The same aspects are present in the image of the bookcase, where
some shapes have been best preserved, this is appreciated at the bottom-right side of the
bookcase, the books, the objects over the table and some details in the wall (see Figs. 2c, e,
and f). Also, for the zooming in Figs. 5, 6, 8 and 9, one can see in the Cameraman image and
in the Boats image, that the effects of the reconstruction are more clear for all the obtained
results with the different approaches. In the case of the head of the Cameraman one can see
that the edges are well preserved with the NLM Tukey, the same symptom is presented for
the buildings, the lighthouse of the port and the back’s name of the boat. As previously com-
mented, even if the PSNR of the classic NLM is good in general, the recuperated images
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Table 5 PSNR results in dB for evaluating some NLM methods (Boats image)

Method \σn 10 15 20 25 30 40

NLM Buades

h = 0.7σn 33.09 31.39 30.02 28.89 27.95 26.44

h = σn 33.19 31.47 30.14 29.06 28.14 26.71

h = 1.5σn 31.89 29.95 28.44 27.27 26.43 25.20

NLM h est.

h = 1.5h0 29.45 28.75 28.02 27.31 26.63 25.39

h = h0 31.90 30.14 28.65 27.45 26.39 24.64

NLM Hilb.

d = 2 30.26 29.04 28.07 27.22 26.52 25.39

d = 3 32.11 30.67 29.49 28.54 27.72 26.29

d = 4 32.77 31.06 29.66 28.53 27.58 26.01

NLM other

[22, 42] Tukey 33.57 31.53 30.19 28.79 28.01 26.08

[22, 42] Wave 33.37 31.23 29.76 28.20 27.16 25.68

NLM SAP

[14] 33.49 32.08 30.71 30.04 29.53 28.35

NLM PCA

(PH) [15] 33.94 31.96 30.65 29.57 28.73 27.34

BM3D PCA

[8] 34.73 32.78 31.43 30.42 29.15 28.20

are little over smoothed in the case of high frequency objects (see sub-figures 5b, 6b, 8b
and 9b), whereas the NLM SAP approach tries to preserve the details but at the same time it
smooths the noise components, giving a little over smoothing of the high frequency details

Table 6 Average PSNR results in dB for evaluating some NLM methods for the database TID2008 (25
images), and average computation times of each method

Method \σn 0 1 3 5 Times (sec.)

PSNR (Noise) Inf 48.15 38.78 34.54

NLM Buades

h = σn Inf 37.94 35.24 34.44 82.72

NLM Hilb.

d = 4 35 33.61 33.25 32.72 84.91

NLM Tukey

h = √
6σn Inf 48.40 40.46 37.33 80.74

NLM SAP

[14] 332.81 48.60 40.69 37.58 10.81

NLM PCA

(PH) [15] 318.71 48.84 40.96 38.11 4.31

BM3D PCA

[8] – 49.19 41.54 38.41 123.44



1220 Multimed Tools Appl (2018) 77:1205–1235

and textures (see sub-figures 5d, 6d, 8d and 9d), particularly for the case of the Fig. 8d the
cross over the dome of the lighthouse has been vanished. Finally, the performance of NLM
PCA and BM3D SAPCA is remarkable, in the most of situations is over to 1 dB with respect
to NLM SAP (over to 2 dB with respect to classic NLM method), but contrary to NLM SAP
approach it gives an over representation (rare patch effect) of the high frequencies and mod-
els better the textures (see sub-figures 5e, 6e, 8e and 9e), whereas BM3D SAPCA gives the
better preservation of edges and texture (see sub-figures 5f, 6f, 8f and 9f). One can say, that
obtained results with NLM SAP are between NLM PCA (PH) and BM3D SAPCA, even
if in the most of the situations (see sub-figures 5d, 6d, 8d and 9d) it presents some smooth
effects due to the ringing effects annulment. In general, BM3D SAPCA approach gives the
best results according to the edge preservation and texture modeling, but the computation
times were the longest (see Table 6).

In general, one can see that the denoisig is very similar for the case of the three images
(the same symptom for objective results obtained in Section 5.2 for lower level of noise).
Particularly, the results obtained with the classic NLM and NLM Tukey are in the low range
of the state of the art methods (approaches 4, 5, and 6), their performance is satisfactory
compared with the excellent performance of the NLM SAP, the NLM PCA (PH) fast algo-
rithm and the BM3D SAPCA. As in the case of the Barbara image, for the Cameraman and
Boats images, BM3D SAPCA and NLM PCA permit a good preservation of some high fre-
quency details which one can see in the original images, whereas the obtained results with
the classic NLM seems to be a little over smoothed and with a ringing effect. Finally, one
can see that for all approaches the reconstruction of some details is really a hard challenge
(for high level of noise), for example the cables of the boats found in the original scene of
the Boats image are lost in almost all the denoised images, the same reconstruction prob-
lem is presented in the Cameraman image, where the textures of the land are almost lost.
In all conducted experiments, the size of the search region for approaches 1, 2, and 3 was
I = [−5, 5]×[−5, 5], and the size of the patch windows or neighborhood was Ni = 3×3.
The results obtained for other test images were similar and coherent with respect to those
obtained for the Barbara, Cameraman and Boats images.

At this stage, answers to the asked questions in the introduction section could be given.
The change of a weighting robust function instead of the exponential function could improve
the classic NLM method, this has been shown when using the Tukey and Wave func-
tions. Moreover, the change of the geometry of the searching region and the patch wise
filtering ideas have led to approaches that give significant improvements to the classic
NLM method. According to some state of the art methods, future works in NLM meth-
ods are related to meliorations in the sense of steerable filtering where one can consult
recent propositions made by Deledalle [14] and Maleki [31], robust filtering [20], and
some others [37]. In particular, we are interested in applications of NLM methods in
optics to ameliorate the filtering performance of fringe patterns and ESPI phase-maps
[21].

6 Disscusion

According to the results obtained in Section 5 from the comparison of six different
appraches, and other results that have been obtained in the adequacy of these methods for
phase maps filtering, generaly NLM filtering can provide results of robustness, competing
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Results for NLM PCA (PH) filtering
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Results for BM3D SAPCA filtering
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Fig. 1 Results for Barbara as a test image: (a) Barbara image free of noise (Noisy image using Normal pdf
with σn = 20), (b) Filtered image using Buades proposition with h = σn, (c) Filtered image using Tukey
kernel with h = √

6σn, (d) Filtered image using NLM SAP, (e) Filtered image using NLM PCA (PH), (f)
Filtered image using BM3D SAPCA
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Fig. 2 Results for a zoom of Barbara, books in back: (a) Original books; (b) Filtered books using Buades
NLM, (c) Filtered books using Tukey kernel, (d) Filtered books using NLM SAP, (e) Filtered books using
NLM PCA (PH), (f) Filtered books using BM3D SAPCA

with other recent filtering methods like directional filtering as the one presented in [21].
The recent hybrid algorithms are based on the change of the kernel, the geometry of the
neighborhood and include collaborative filtering stage. The dimensionality reduction of the
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filtered left leg NLM PCA (PH)
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Fig. 3 Results for a zoom of Barbara, left leg in front: (a) Original left leg and part of the arm; (b) Filtered
left leg using Buades NLM, (c) Filtered left leg using Tukey kernel, (d) Filtered left leg using NLM SAP, (e)
Filtered left leg using NLM PCA (PH), (f) Filtered left leg using BM3D SAPCA

neighborhood or patches onto principal component analysis (PCA) improves the perfor-
mance of the classic NLM, since the methodology can model far better the geometries and
textures of images (NLM SAP, NLM PCA, and BM3D SAPCA).
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Fig. 4 Results for Cameraman as a test image: (a) Cameraman image free of noise, (b) Filtered image using
classic NLM (Noise with σn = 30), (c) Filtered image using Tukey kernel with h = √

6σn, (d) Filtered
image using NLM SAP, (e) Filtered image using NLM PCA (HP), (f) Filtered image using BM3D SAPCA

On the other hand, in most of the comparison cases it is frequently used the hypothesis
of Gaussian noise, since it is easy to generate, and it is always known the standard deviation
σn used to generate it, which is also a parameter related with the bandwidth h used by NLM
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Fig. 5 Results for a zoom of Cameraman, head and arm of man: (a) Original head; (b) Filtered head using
classic NLM, (c) Filtered head using Tukey kernel, (d) Filtered head using NLM SAP, (e) Filtered head using
NLM PCA (HP), (f) Filtered head using BM3D SAPCA

filtering (h = k0σn). However, in practice σn is always unknown, or the noise distribution
is non Gaussian in some applications and then it is essential to estimate the noise level or a
noise variance function as proposed in [6, 9, 35, 36]. For example, NLM has been adapted
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Fig. 6 Results for a zoom of Cameraman, buildings in bottom right: (a) Original buildings; (b) Filtered
buildings using classic NLM, (c) Filtered buildings using Tukey kernel, (d) Filtered buildings using NLM
SAP, (e) Filtered buildings using NLM PCA (HP), (f) Filtered buildings using BM3D SAPCA

for fringe and ESPI phase-map denoising, where the noise is considered of speckle type; in
this case we could not adapt the BM3D SAPCA for the ESPI phase-map denoising, and also
comparison is made with respect of other proposed method (Continuous Wavelet Transform
– CWT) introduced in [21].
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Results for BM3D SAPCA filtering
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Fig. 7 Results for Boat as a test image: (a) Boat image free of noise, (b) Filtered image using classic NLM
(Noise with σn = 30), (c) Filtered image using Tukey kernel with h = √

6σn, (d) Filtered image using NLM
SAP, (e) Filtered image using NLM PCA (HP), (f) Filtered image using BM3D SAPCA
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Fig. 8 Results for a zoom of Boat, lighthouse port: (a) Original lighthouse; (b) Filtered lighthouse using
classic NLM, (c) Filtered lighthouse using Tukey kernel, (d) Filtered lighthouse using NLM SAP, (e) Filtered
lighthouse using NLM PCA (HP), (f) Filtered lighthouse using BM3D SAPCA



Multimed Tools Appl (2018) 77:1205–1235 1229

Original boat name

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(a)

filtered boat name NLM

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(b)
filtered boat name NLM Tukey

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(c)

filtered boat name NLM SAP

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(d)
filtered boat name NLM PCA (PH)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(e)

filtered boat name BM3D SAPCA

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(f)

Fig. 9 Results for a zoom of Boat, the name and back of the largest boat: (a) Original boat name; (b)
Filtered name using classic NLM, (c) Filtered name using Tukey kernel, (d) Filtered name using NLM SAP,
(e) Filtered name using NLM PCA (HP), (f) Filtered name using BM3D SAPCA
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7 Conclusions

A review and comparison of different NLM approaches for digital image filtering have
been conducted in the present paper. The performance of classic NLM filtering could be
improved when changing the kernel, the use of three different kernels has been analyzed
(Hilbert, Tukey, and Wave). Particularly, it has been shown that for the case of the NLM
Tukey kernel it gives a better denoising results than classic NLM. On the other hand, the
excellent performance given by recent hybrid approaches such as NLM SAP, NLM PCA
(PH), and the BM3D SAPCA lead to establish that significantly improvements to the classic
NLM could be obtained. Particularly, the BM3D SAPCA approach gives the best denoising
results, however, the computation time was the longest. According to this last case, if one
is restricted by the time of computation the NLM SAP and NLM PCA (PH) denoising are
good options to be selected depending on the type of images. If the images are rich on
textures NLM PCA (PH) is recommended, if images have more edges and homogeneous
regions than textures the NLM SAP is then recommended.
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Mecánica y Eléctrica (ESIME), IPN, in january 2008. His main interests are statistical signal processing in
communications, digital image processing, and optical metrology applications.



Multimed Tools Appl (2018) 77:1205–1235 1235
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