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Abstract It is still a changing problem of choosing the most relevant ones from multiple
features for their specific machine learning tasks. However, feature selection provides an
effective solution to it, which aims to choose the most relevant and least redundant features
for data analysis. In this paper, we present a feature selection algorithm termed as semi-
supervised minimum redundancy maximum relevance. The relevance is measured by a semi-
supervised filter score named constraint compensated Laplacian score, which takes advantage
of the local geometrical structures of unlabeled data and constraint information from labeled
data. The redundancy is measured by a semi-supervised Gaussian mixture model-based
Bhattacharyya distance. The optimal feature subset is selected by maximizing feature rele-
vance and minimizing feature redundancy simultaneously. We apply our algorithm in audio
classification task and compare it with other known feature selection methods. Experimental
results further prove that our algorithm can lead to promising improvements.

Keywords Audio classification . Semi-supervised feature selection .Minimal redundancy .

Maximal relevance . Locality preserving . Constraint information . Bhattacharyya distance

1 Introduction

In the field of machine learning, especially in audio related fields, there are numerous features
for choices in model construction for each specific application. However, it is still a challeng-
ing problem that how we can choose the most relevant features to construct a more effective
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model. It may need very professional background knowledge, yet it can be solved by
automatic feature selection [39]. Feature selection produces features which are more discrim-
inative or easier for statistical modeling and hence promises higher accuracy by removing the
irrelevant and redundant features [17].

From class information utilizations, feature selection can be divided into three categories:
supervised [30], unsupervised [9, 10], or semi-supervised [33]. Supervised approaches need
lots of labeled data, and they are apt to ignore the internal structures of data whereas focus too
much on label information. Due to the absence of class labels, unsupervised feature selection
fails to extract more discriminative features which may yield worse performance. Semi-
supervised feature selection focuses on solving the small-labeled-sample problem [37], where
the amount of unlabeled data is much larger than that of labeled data. This type of algorithm
has attracted more attentions for its comprehensive considerations of label information and
data intrinsic structure characteristics.

From the perspective of selection strategy, feature selection are categorized as filter,
wrapper and embedded. The filter methods use scores or confidences to evaluate the relevance
of features to the learning tasks. There are various kind of filter based algorithms, for example,
Laplacian score (LS) [18], constraint score (CS) [36] and constraint compensated Laplacian
score (CCLS) [34]. The wrapper approaches evaluate the different subsets of features by some
specific learning algorithms and select the one with the best performance. The embedded
model techniques search the most relevant and effective features for models while their
constructions. The most common embedded methods are regularization-based [11], e.g.,
C4.5 [24] and LARS [12].

Since the filter methods are irrelevant to any specific classification or learning methods,
they have been widely used for their better generalization properties. However, it may be very
simple to select the top-ranked features only based on the feature relevance, because these
features could be correlated among themselves. In other words, the set of selected features
contains a certain redundancy, and this redundancy will degrade the learning perfor-
mances and complicate the models. Several studies have addressed influences of such
redundancy [2, 8, 35]. Among them, the most famous one is minimum redundancy
maximum relevancy (mRMR) algorithm [23] in which the features are selected by
simultaneously optimizing the minimum redundancy and the maximum relevance con-
ditions. For mRMR algorithm, either redundancy between features or relevance between
the features and the corresponding classes is measured by mutual information (MI).
However, when the values of feature vectors are continuous, both types of MI are
difficult to compute because it needs to calculate integral which limits the application
ranges of mRMR algorithm most in discrete data like genes.

In this paper, we propose a new feature selection algorithm which selects the optimal
feature set similar to mRMR. Rather than using MI to measure relevance and redundancy, a
novel semi-supervised relevance measurement named constraint compensated Laplacian score
(CCLS) is proposed and a semi-supervised Gaussian mixture model (GMM)-based
Bhattacharyya distance [5] is used as the score of minimum redundancy. In traditional
Laplacian score, the features are evaluated according to their locality preserving abilities.
Compared to unsupervised constructions of local and global structures in Laplacian score,
CCLS uses constraint information generated from a small amount of labeled data to compen-
sate these constructions. The GMM-based Bhattacharyya distance first classifies the unlabeled
data in training dataset according to the labeled data, and then a GMM is used to model the
data of each class. Finally, the redundancy is measured by the Bhattacharyya distance
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calculated from these GMMs. Because the relevance and redundancy measurements in our
algorithm are both semi-supervised, our algorithm is termed as semi-Supervised minimum
redundancy maximum relevance (SSMRMR).

We use SSMRMR in audio classification. In this application, there are dozens of features to
be utilized and we have to pick up effective ones or their combinations. The experimental
results proved that CCLS outperformed classical LS and CS and the GMM-based
Bhattacharyya distance was superior to the correlation-based or mutual information-based
redundancy measurements. Moreover, the SSMRMR could remove irrelevant features and
improve classification accuracy significantly.

The outline of this paper is as follows: definitions and notations are given in
Section 2. Section 3 enumerates several main methods used in feature selections. Then
we present our SSMRMR algorithm in Section 4. Section 5 depicts the backgrounds
of audio classifications, experimental setup and analysis results. Finally, the conclu-
sion is given in Section 6.

2 Definitions and notations

In this section, we will provide basic terminologies and notations which are necessary for the
understanding of subsequent algorithms.

In this work, let the training dataset with N instances be X = {xi ∈ℝM| i = 1, 2, ⋯ ,N}.
LetF1 , F2 , ⋯ , FM denote the M features of X and f1 , f2 , ⋯ , fM denote the corresponding
feature vectors. Let fri denote the r-th feature of the i-th instance xi, i = 1 , 2 , ⋯ ,N, r = 1 , 2 ,
⋯ ,M. More specifically,

X ¼ x1; x2;⋯; xN½ � ¼
f 11 f 12 ⋯ f 1N
f 21 f 22 ⋯ f 2N
⋮ ⋮ ⋱ ⋮
f M1 f M2 ⋯ f MN

2
664

3
775 ¼ fT1 ; f

T
2 ;⋯; fTM

� �T ð1Þ

which means fr = [fr1, fr2, ⋯ , frN]
T and xi = [f1i, f2i, ⋯ , fMi]

T.
In semi-supervised learning, the training dataset X can be divided into two subsets. The first

contains data Xl = {x1, x2, ⋯ , xL} with labels Yl = {y1, y2, ⋯ , yL| yi = 1, 2, ⋯ ,C}, where C
is the number of classes and L is the number of labeled data. And the second one only has the
unlabeled data Xu = {xL + 1, xL + 2, ⋯ , xN}.

Define μl
r ¼ ∑ijxi∈Xl f ri=L is the mean of the r-th feature of the labeled data. Define μr and

μ cð Þ
r be the r-th feature means of the whole dataset and the c-th class respectively, σ2

r and

σ cð Þ
r

� �2
denote its corresponding variances. nc is the number of instances corresponding to

the class c.
For any pair of instances (xi, xj) in Xl, there are two types of constraints: must-link

(ML) and cannot-link (CL). The ML constraint is constructed if xi and xj have the
same class label, and the CL constraint is formed when xi and xj belong to different
classes. Then, according to ML and CL constraints, the data are grouped into two sets
ΩML and ΩCL, respectively.

From the consideration of data geometric structure, there are a set of pairwise instances
similarity measures which can be used to represent the relationships between two instances. In
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this paper, we choose the RBF kernel function to be the similarity measure for its unsupervised
property. The similarity wij between xi and xj is defined by:

wij ¼ e−
xi−x jk k2
2σ2 ð2Þ

where, σ is a constant and �k k 2 is the square of Euclidian norm.

3 Related work

In this section, we shall list a collection of scores which are bases for the score functions of our
framework. We illustrate both advantages and disadvantages of Laplacian score and constraint
score. Moreover, the framework of mRMR is presented.

3.1 Laplacian score

Laplacian Score is a recently proposed unsupervised feature selection method [18]. The basic
idea is to evaluate the features according to their locality preserving ability. If two data points
are close to each other, they belong to the same class with high probability. So the local
structure is more important than global structure in many machine learning problems, espe-
cially for classification tasks. The Laplacian score of the r-th feature is computed as follows:

Lr ¼
∑i; j f ri− f rj

� �2
Sij

∑i f ri−urð Þ2Dii
ð3Þ

where, ur ¼ ∑N
i¼1 f ri=N denotes the mean of the r-th feature of the whole data set, D is a

diagonal matrix with Dii =∑jSij, and S denotes the similarity matrix whose nonzero element is
the RBF kernel function defined in Eq. (2):

Sij ¼ wij if xi and x j are neighbors
0 otherwise

�
ð4Þ

where, xi and xj are neighbors which means that xi is among k nearest neighbors of xj or xj is
among the k nearest neighbors of xi.

In the score function in Eq. (3), the numerator indicates the locality preserving power of the
r-th feature, the smaller the better. The denominator is the estimated variance of the r-th
feature, the bigger the better. Thus, the criterion of LS for choosing a good feature is to
minimize the object function in Eq. (3).

Compared to other unsupervised feature selection algorithms [9, 10], the main advantage of
LS is its powerful locality preserving ability which can be thought of as the degree a feature
respects the nearest neighbor graph structure. However, there is some blindness when LS
constructs the local structure of data space without supervised information.

3.2 Constraint score

Constraint Score is a supervised feature selection algorithm which need small amount of
labeled data [36]. Firstly, the pairwise instances level constraints between any two data points,
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ML and CL constraints, are generated using the data labels, and the score function Cr is
computed as follows using these pairwise constraints:

Cr ¼
∑ xi;x jð Þ∈ΩML

f ri− f rj
� �2

∑ xi;x jð Þ∈ΩCL
f ri− f rj

� �2 ð5Þ

In this score function, a good feature means that two ML-constraint point pair
should be close to each other, CL-constraint point pair should be far away from each
other. So the constraint score of the r-th feature should be minimized. CS feature
selection algorithm is particularly applied to the cases where very few labeled training
data are available. In these cases, CS can select a reliable feature subset only based
on the limited training data. However, when there are large amount of unlabeled data
in the training set, how to use these unlabeled samples to improve performance is still
a challenge problem.

3.3 Minimum redundancy maximum relevancy

The mRMR algorithm focuses on MI-based feature selection. Given two random variables z1
and z2, suppose that p(z1), p(z2), and p(z1, z2) are their marginal and joint probabilistic density
functions. Their mutual information is defined as follows:

I z1; z2ð Þ ¼ ∫∫p z1; z2ð Þlog p z1; z2ð Þ
p z1ð Þp z2ð Þ dz1dz2 ð6Þ

The mRMR feature set is obtained by minimum redundancy condition and maximum
relevance condition simultaneously, either in quotient form:

max
Λ⊂Ω

∑ f i∈ΛI Y; f ið Þ
. 1

Λj j ∑ f i; f j∈ΛI f i; f j
� �	 
� �

ð7Þ

or in difference form:

max
Λ⊂Ω

∑ f i∈ΛI Y; f ið Þ− 1

Λj j ∑ f i; f j∈ΛI f i; f j
� �	 
� �

ð8Þ

where, Λ is the features subset under seeking and Ω is the set of entire candidate features. |Λ| is
the number of features in Λ. I(Y, fi) is the MI between the feature fi and its corresponding
classes Y. I(fi, fj) is MI between feature fi and fj.

For discrete (categorical) feature variables, the MI is easy and straightforward to be
calculated, because the integral operation is reduces to summation, and moreover the proba-
bility can be approximated by counting the instances of discrete variables in the data based on
ML criterion.

However, it is hard to compute the MI when the feature variables are continuous.
Because only based on a limited number of instances, it is difficult to compute the
integral in the continuous space. To solve this problem, one can either discretize the
continuous data before computing MI [28], or use density estimation method to
estimate MI approximately [19].
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4 Semi-supervised minimum redundancy maximum relevance feature
selection

In the following sections, we present the score of maximum relevance (constraint compensated
Laplacian score) and the score of minimum redundancy (GMM-based Bhattacharyya distance)
in our framework for feature selection. We also present the objective function of our algorithm
and its approximate solution.

4.1 Feature relevance

4.1.1 Score function

In order to take advantages of both LS and CS as well as to overcome their shortcomings, we
propose the constraint compensated Laplacian score algorithm [34]. The score function, which
should be minimized, is defined as follows:

ηr ¼
∑i; j f ri− f rj

� �2
Sij þN ij

� �
Σr þ Σb

r−Σ
w
r

ð9Þ

where,

N ij ¼

1−wij xi and x j are neighbors
and xi; x j

� �
∈ΩML:

−γwij xi and x j are neighbors
and xi; x j

� �
∈ΩCL:

λ xi and x j are not neighbors
and xi; x j

� �
∈ΩML:

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð10Þ

where, xi and xj are neighbors which means that xi is among k nearest neighbors of xj or xj is
among the k nearest neighbors of xi. γ and λ are the parameters set using the empirical values
of 0.9 and 0.5 respectively [34], Sij is the same as Eq. (4) and is computed using both labeled

and unlabeled data. Σr is the variance of the whole dataset X, Σw
r and Σb

r are inner-class
variance and inter-class variance of the labeled dataset Xl, respectively.

Σr ¼ ∑i f ri−μrð Þ2Dii ð11Þ

Σb
r ¼ ∑cnc μ cð Þ

r −μl
r

� �2
ð12Þ

Σw
r ¼ ∑cnc σ cð Þ

r

� �2
ð13Þ

And let Ψ = [ηr|r = 1, 2, ⋯ ,M] be the relevancy vector which represent the interior rele-
vance of feature series in each dimension.
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4.1.2 Spectral graph analysis

In this section, we can also give an alternative explanation based on spectral graph theory [7]
for the score function described above. The basic ideal of CCLS is that: a Bgood^ feature must
have strong locality preserving power, and a good global structure. Strong locality preserving
power means that the two local structures constructed by only using this feature or using the
complete feature set are consistent. A good global structure means that the instances of
different classes are far from each other while instances of the same class are close to
each other [18].

For locality preserving power, we first construct a similarity matrix to model the local
geometric structure in a semi-supervised method. And then the locality preserving power of
one feature can be regard as the degree it respects the similarity matrix. The detailed
procedures are as follows:

Firstly, we construct three graphs G, GM, and GC all with N nodes, which represent the
information of neighbors, must-link constraints and cannot-link constraints respectively. In
these graphs, the i-th node corresponds to the i-th instance xi. We put an edge between node i
and node j in G if xi and xj are close to each other, i.e. if xi is one of the k nearest neighbors of
xj or xj is one of the k nearest neighbors of xi, Gij = 1 . We put an edge between node i and
node j inGM if there is a must-link constraint between xi and xj, which means if (xi, xj) ∈ΩML,

GM
ij ¼ 1. Similarly, We put an edge between node i and node j in GC if there is a cannot-link

constraint between xi and xj, namely if (xi, xj) ∈ΩCL, GC
ij ¼ 1.

Once these graphs are constructed, we define the similarity matrix S whose elements are
defined as follow:

Sij ¼
1 if Gij ¼ 1 and GM

ij ¼ 1:

1−γð Þwij if Gij ¼ 1 and GC
ij ¼ 1:

λ if Gij ¼ 0 and GM
ij ¼ 1:

0 otherwise

8>><
>>: ð14Þ

And define the Laplacian matrix as L ¼ D−S, where D is the degree matrix with
Dii ¼ ∑ jSij. Then, we can develop the numerator term of ηr in Eq. (9) as follows:

T1 ¼ ∑i; j f ri− f rj
� �2Sij

¼ ∑i; j f 2ri−2 f ri f rj þ f 2rj
� �

Sij

¼ 2 ∑i; j f
2
riSij−∑i; j f riSij f rj

� �
¼ 2 fTrDf r− f

T
r S f

� �
¼ 2 fTr Lf r

ð15Þ

The global structure is modeled by variance Σr of the whole dataset X, and both inner-class

variance Σw
r and inter-class variance Σb

r of the labeled dataset Xl. To compute Σr, define
1 = [1, 1, ⋯ , 1], let

~f r ¼ f r−
fTrD1

1TD1
1 ð16Þ
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And according to [18],

Σr ¼ ∑i f ri−μrð Þ2Dii

¼ ∑i f ri−∑ j f rj
Djj

∑kDkk

� 
2

Dii

¼ ∑i f ri−
1

∑kDkk
∑ j f rjDjj

� 
2

Dii

¼ ∑i f ri−
fTrD1

1TD1

� 
2

Dii

¼ ∑i
~f
2

riDii

¼ ~f
T

rD~f r

ð17Þ

To compute Σw
r and Σb

r , a similarity matrix Sl is defined, whose elements are as follows:

Sl
ij ¼ 1

.
nc yi ¼ y j ¼ c

0 otherwise

(
ð18Þ

To simplify, we assume the instances are ordered according to their labels and the unlabeled

data points are appended after the labeled ones. Thus, Sl can be written as follows:

Sl ¼
Sl1
0
0

0
⋱
0

0
0
SlC

0

0 0

2
664

3
775 ð19Þ

where, Slc is a nc × nc matrix whose elements are 1/nc and 0 is a matrix whose
elements are all zero.

And define the Laplacian matrix as Ll ¼ Dl−Sl, where Dl are the degree matrix with

Dl
ii ¼ ∑ jSl

ij. Note that for each Slc, the raw sum is equal to 1, so

Dl ¼
Dl

1
0
0

0
⋱
0

0
0
Dl

C

0

0 0

2
664

3
775 ¼ IL 0

0 0

	 

ð20Þ

where, IL is a L × L identity matrix in which L is the number of the labeled data as given in the

Section 2, and Dl
c is a nc × nc identity matrix.
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Thus, the inner-class covariance Σw
r can be developed as follows:

Σw
r ¼ ∑cnc σ cð Þ

r

� �2

¼ ∑cnccov f cð Þ
r ; f cð Þ

r

� �
¼ ∑c f cð Þ

r

� �T
Dl

c−S
l
c

� �
f cð Þ
r

¼ fTr L
l f r ¼ ~f

l

r

� 
T

Ll~f
l

r

ð21Þ

where, f cð Þ
r is an N × 1 vector whose elements are as follows:

f cð Þ
ri ¼ f ri if yi ¼ c

0 otherwise

�
ð22Þ

and

~f
l

r ¼ f r−
fTrD

l1

1TDl1
1 ð23Þ

and the inter-class covariance Σb
r can be develop as follows:

Σb
r ¼ ∑cnc μ cð Þ

r −μl
r

� �2

¼ ∑c nc μ cð Þ
r

� �2
−2ncμ cð Þ

r μl
r þ nc μl

r

� �2� 


¼ ∑c
1

nc
ncμ cð Þ

r

� �2
−2μl

r∑cncμ
cð Þ
r þ μl

r

� �2∑cnc

¼ ∑c
1

nc
f cð Þ
r

� �T
11T f cð Þ

r −2Lμl
r þ L μl

r

� �2
¼ f cð Þ

r

� �T
Sl f cð Þ

r − f cð Þ
r

� �T 1

L
11T

� 

f cð Þ
r

¼ f cð Þ
r

� �T
Dl−Sl
� �

f cð Þ
r − f cð Þ

r

� �T
Dl−

1

L
11T

� 

f cð Þ
r

¼ ~f
l

r

� 
T

Ll~f
l

r− ~f
l

r

� 
T

Dl~f
l

r

ð24Þ

Thus,

T2 ¼ Σr þ Σb
r−Σ

w
r ¼ ~f

T

rD~f r þ 2 ~f
l

r

� 
T

Ll~f
l

r− ~f
l

r

� 
T

Dl~f
l

r ð25Þ

Subsequently, the CCLS can be computed as follows:

ηr ¼
2 fTr Lf r

~f
T

rD~f r þ 2 ~f
l

r

� 
T

Ll~f
l

r− ~f
l

r

� 
T

Dl~f
l

r

ð26Þ
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The whole procedure of the proposed CCLS is summarized in Algorithm 1. Now we
analyze the time complexity of Algorithm 1. Step 1 constructs the constraint set requiring
O(L2) operations. Step 2–3 build the graph matrices requiring O(N2) operations. Step 4–6
evaluate the M features based on graphs, requiring O(MN2) operations. Step 7 ranks the M
features according to their scores requiring O(M logM) operations. Thus, the overall time
complexity of Algorithm 1 is O(M × max (N2, logM)).

4.2 Feature redundancy

In this section, to evaluate the effectiveness of features, some measurements of redundancy
between features are introduced firstly. Then, our strategy to measure similarity between
features is given.

4.2.1 Measurements based on MI or correlation

Redundancy is usually characterized in terms of mutual information or correlation, in
which the former one is the most widely used measure matric. MI is defined as
Eq. (6), and as mentioned above, the MI is difficult to compute when at least one of
the features is continuous though there have been many researches [19, 28] focusing
on solving this problem.

If two features have a strong correlation between their values, it can be sure that they are
redundant to each other. Thus, it is natural to use feature correlation to measure redundancy.
Among the kinds of correlation coefficients, Pearson correlation coefficient is the most widely
used measure. For two features Fr and Fv, the Pearson correlation coefficient between them is
defined as follows:

r Fr; Fvð Þ ¼ ∑i f ri−μrð Þ f vi−μvð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i f ri−μrð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i f vi−μvð Þ2

q ð27Þ

The large |r(Fr, Fv)| means high correlation and redundancy. However, this coefficient can
only measure the linear correlation properties, which may cause more errors when the
relationship between features is non-linear.
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4.2.2 GMM-based Bhattacharyya distance

Besides MI and correlation, redundancy can also be measured by the distance function. For a
feature Fr can be regarded as a random variable, it’s easy to extract a probabilistic distance from
some parameters of the corresponding feature vector fr with the assumption of underlying
distributions. It has been observed that Bhattacharyya distance ismore effective than other distance
functions like Euclidean, Kullback-Leibler, and Fisher [3, 20]. Moreover, The Bhattacharyya
distance [13] has been used as a distance measure of vectors in feature extraction [6] and feature
selection [26, 32]. Here we focus on Bhattacharyya-distance-based redundancy measurement.

In its simplest formulation, the Bhattacharyya distance between two Gaussian distributions
gr∼N mr;Σrð Þ and gv∼N mv;Σvð Þ is defined as follows:

DB gr; gvð Þ ¼ 1

8
mr−mvð ÞT Σr þΣv

2

	 
−1
mr−mvð Þ þ 1

2
ln

Σr þΣv

2

����
����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σrj j Σvj jp ð28Þ

where,N mr;Σrð Þ represents a multi-dimensional Gaussian distributions with mean vectormr

and covariance matrix Σr:

N mr;Σrð Þ ¼ 1

2πð ÞM
0
=2 Σrj j1=2

exp −
or−mrð ÞTΣ−1

r or−mrð Þ
2

( )
ð29Þ

and or is the random variable and M′ is its dimension. So does N mv;Σvð Þ.
The feature Fr (or Fv) is naturally treated as a random variable which follows single

Gaussian distribution which mean (mr or mv) and variance (Σr or Σv) can be estimated from
fr (or fv). Then, the Bhattacharyya distance DB(gr, gv) can be used to measure the redundancy
between Fr and Fv.

However, it remains in doubtwhether it is suitable to approximate the distribution ofFr by single
Gaussian, because Fr contains data of at least two classes. Thus, a GMM-based Bhattacharyya
distance to measure the feature redundancy is proposed, which can be stated as follows:

(1) The unlabeled data in Xu is classified by using the nearest neighborhood (1-NN)
classifier based on the labeled data in Xl. Then, the Blabels^ of the unlabeled data is
Yu = {yL + 1, yL + 2, ⋯ , yN| yi = 1, 2, ⋯ ,C}.

(2) For the r-th feature Fr, we normalize its feature vector fr to be a new vector f
0
r with zero

mean and unit variance:

f
0
r ¼

f r−μr1

σr
ð30Þ

(3) Suppose F
0 cð Þ
r is the r-th normalized feature of class c, we use a GMM estimated from

f
0 cð Þ
r ¼ f

0
ri yi ¼ cj

n o
to approximate its distribution:

F
0 cð Þ
r ∼ ∑

K cð Þ

k¼1
ω cð Þ
r;kg

cð Þ
r;k ð31Þ

where, K(c) is the number of Gaussians in the GMM for class c which is determined

according to the number of instances in f
0 cð Þ
r . ω cð Þ

r;k is the weight of the k ‐ th mixture

Multimed Tools Appl (2018) 77:713–739 723



component, and g cð Þ
r;k∼N m cð Þ

r;k ;Σ
cð Þ
r;k

� �
is the Gaussian distribution of the k ‐ th mixture

component. Thus, the distribution of the r-th normalized feature F
0
ris:

F
0
r∼∑

c

1

C
∑
K cð Þ

k¼1
ω cð Þ
r;kg

cð Þ
r;k ð32Þ

(4) For any feature pairs (Fr, Fv), the redundancy between them is defined as follows:

θrv ¼ ∑
c

1

C
∑
K cð Þ

k¼1
∑
K cð Þ

κ¼1
ω cð Þ
r;kω

cð Þ
r;κDB g cð Þ

r;k ; g
cð Þ
v;κ

� �
ð33Þ

Define the redundancy matrix Θ whose element Θrv is as follows:

Θrv ¼ θrv r≠v
0 r ¼ v

�
ð34Þ

4.3 The complete framework of SSMRMR

In this section, we will give a view of the complete framework of SSMRMR. Moreover, we
will present the incremental search which obtains a near-optimal solution efficiently.

4.3.1 The objective function

Similar to mRMR, SSMRMR obtains the optimal feature set by maximum feature relevance
and minimum feature redundancy simultaneously. Thus, the objective function of SSMRMR is
defined as follows:

min
Λ⊂Ω

∑ f r∈Λη
0
r−

1

Λj j ∑ f r ; fv∈ΛΘ
0
rv

� �
ð35Þ

where, η
0
r ¼ ηr=max Ψð Þ and Θ0

rv ¼ Θrv=max Θð Þ. The normalization of these measurements is
done to reduce the effect of differences in magnitude between feature relevance and redundancy.

4.3.2 Incremental search algorithm

The time complexity is O(M|Λ|) when the exact solution of the optimization in Eq. (35) is
obtained. However, the incremental search algorithm can be used which obtains the near-
optimal features with O(M ⋅ |Λ|) search. The algorithm steps are as follows:

(1) The feature with the minimum constraint compensated Laplacian score is obtained as the
first optimal feature:

f1 ¼ argmin
f r⊂Ω

ηr ð36Þ

and Λ1 ¼ f1f g.
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(2) To select the m-th feature, the corresponding incremental algorithm optimizes the
following condition:

fm ¼ argmin
f r⊂Ω−Λm−1

η
0
r−

1

m−1
∑ f v∈Λm−1

Θ
0
rv

� �
ð37Þ

where, Λm − 1 is the optimal feature set with m − 1 features.
(3) Iterate step 2 until an expected feature number R have been obtained.

4.3.3 Complete framework

The whole procedure of SSMRMR algorithm is summarized in Algorithm 2. The relevancy
vector and redundancy matrix are computed by using CCLS algorithm and GMM-based
Bhattacharyya distance. Then, the optimal feature set is selected by using first-order incre-
mental search algorithm.

5 Experimental study

In this Section, we firstly illustrate several features which have been widely used in audio
classification. Then we evaluate the performance of relevance and redundancy measurements
respectively. At last, we test our feature selection approach in audio classification.

5.1 Audio classification

Audio segmentation is a type of methods which split an audio stream into segments of
homogeneous content. Given a predefined set of audio classes, some methods segment audios
by executing iterative steps of segmentation and classification jointly, which means classifi-
cation is embedded in audio segmentation in these methods. Assuming that an audio signal has
been divided into a sequence of audio segments using fixed window segmentation, our works
focus on categorizing these audio segments into a set of predefined audio classes. Although

Multimed Tools Appl (2018) 77:713–739 725



there may be some differences between the traditional definition of audio classification and
that in our work, the essential issues are the same.

Figure 1 illustrates the process of audio classification. In an audio classification system,
every audio signal is first divided into mid-length segments which duration range from 0.5 to
10 s. After this, the selected features are extracted for each segment using short-term
overlapping frames. The sequence of short-term features in each segment is used to compute
feature statistics, which are used as inputs to the classifier. In the final classification stage, the
classifier determines a segment-by-segment decision.

In audio analysis and classification there are dozens of features which can be used.
Moreover, many novel feature extraction methods are proposed constantly [14, 25, 40]. In
this paper, some classical and widely used acoustic features are selected for feature selection
sources. Widely-used time-domain features [15] include short-term energy [22], zero-crossing
rate [29], and entropy of energy [16]. Common frequency-domain features include spectral
centroid, spectral spread, spectral entropy [21], spectral flux, spectral roll-off, MFCCs, and
chroma vector [1].

In our system, the audio segment has been divided into 500 ms sub-segments without
overlapping. And then, these sub-segments are split into overlapped 32 ms short-term frames
with 10 ms frame shift, resulting 50 frames for each sub-segment. The 35 dimensional short-
term feature vectors (shown in Table 1) are extracted from short-term frames. For each sub-
segment, the mean and standard deviation of the corresponding 50 short-term feature vectors
are computed and concatenated together, resulting 70 dimensional mid-term feature vectors
which are used for classification.

5.2 Data and experimental setup

Experiments were performed using audio signals under telephone channel. Thus, each audio
segment may contain speech, non-speech or silence, with more detailed classes as shown in
Fig. 2. ‘Speech’ indicates direct dialogues between the calling and called users, when the call is
connected, while ‘silence’ implies the segment with comfort noise. ‘Non-speech’ can be sub-
classified into four types: ring, music, song, and other. ‘Ring’ contains the single-tone, dual-

Mid-term Statistics Mid-term Statistics Mid-term Statistics

Classification

Short-term Feature Short-term Feature Short-term Feature

0.5s Segment 0.5s Segment 0.5s Segment

Fig. 1 The audio classification framework
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tone, or multi-tone used for dialing or waiting warning. ‘music’ and ‘song’ are the waiting
music before the call is connected or the environmental noise when the phone is in call. ‘Other’

Table 1 Classification accuracy of different features

Short-term Feature Mid-term Feature Accuracy

Types Dimension Types Dimension

Zero-crossing Rate 1 Mean 1 73.73
STD 1 74.86
Mean and STD 2 75.10

Short-term Energy 1 Mean 1 45.81
STD 1 46.03
Mean and STD 2 69.41

Energy Entropy 1 Mean 1 71.86
STD 1 69.10
Mean and STD 2 74.99

Spectral Centroid 2 Mean 2 79.19
STD 2 74.49
Mean and STD 4 84.79

Spectral Entropy 1 Mean 1 69.33
STD 1 74.27
Mean and STD 2 76.86

Spectral Flux 1 Mean 1 79.21
STD 1 69.09
Mean and STD 2 77.86

Spectral Roll-off 1 Mean 1 71.80
STD 1 74.20
Mean and STD 2 74.13

MFCCs 13 Mean 13 84.26
STD 13 86.44
Mean and STD 26 87.66

Harmonic 2 Mean 2 69.99
STD 2 82.90
Mean and STD 4 83.13

Chroma Vector 12 Mean 12 83.49
STD 12 83.87
Mean and STD 24 83.73

All 35 Mean 35 81.07
STD 35 85.97
Mean and STD 70 86.04

Audio
Speech Nonspeech

Silence

Ring

Music

Song

Other

Fig. 2 The audio classes in
telephone channel
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includes special sounds, such as laugh, barking, coughing, or other isolated sounds. To be
specific, the mixed segments (speech over music) are not allowed.

The database used here has been collected and manually labeled by Tsinghua University. It
contains about 7 h audios with 837 real telephone recordings. The speaker in each recording is
different, so does the waiting music. And the corpus consists of 204.4 min ‘speech’ data,
12.7 min ‘ring’ data, 6.3 min ‘music’ data, 6.6 min ‘song’ data, and 1.2 min ‘other’ data.

According to the label, an audio signal, which contains speech or non-speech, is divided
into several 0.5 s segments. For each segment, all features mentioned in section 2 are extracted
based on the short-term analysis, and the dimension of short-term feature is 35. The frame
length and frame shift size are 32 ms and 10 ms, respectively. Then the two mid-term statistics,
mean and standard deviation, are drawn per feature, therefore, the dimension of mid-term
statistics vector is 70.

For feature selection, we choose 2000 speech segments and 2000 non-speech segments,
with only 400 randomly chosen labeled segments. The γ value is set to 0.9 and λ = 0.5. We
compare CCLS with existing unsupervised Laplacian Score, as well as supervised Constraint
Score, Constrained Laplacian Score (CLS) [2], spectral feature selection (Spec) [38], and
ReliefF [27]. The GMM-based Bhattacharyya distance is compared with MI-based and
correlation-based measurements. We use a development dataset containing 200 speech seg-
ments and 200 non-speech segments to choose the optimal feature subset. And in the test
dataset, there are 500 speech segments and 500 non-speech segments.

In all experiments, the k-nearest neighborhood (KNN) classifier with Euclidean distance is
utilized for classification after feature selection and k = 5. To avoid the influence of the
classifier, the training datasets of the classifier for all experiments are kept the same.

Table 2 Averaged accuracy of different algorithms. (400 labeled segments)

Alg. Spec ReliefF LS CS CLS CCLS

Ave. 85.26 ± 4.66 86.41 ± 2.79 85.32 ± 3.07 84.62 ± 2.92 83.40 ± 4.56 88.46 ± 3.67
Opt. 89.97 90.90 89.08 88.95 88.27 91.14
Num. 23 19 33 39 47 26
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Fig. 3 Accuracy vs. different
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We use accuracy (Acc), average accuracy (Ave), optimized accuracy (Opt), and optimized
number of feature (Num) to evaluate the performance of algorithms. The definitions are as
follows:

Acc ¼ N correct

N total
� 100% ð38Þ

where, Ncorrect is the number of segments which are classified correctly, and Ntotal is the total
number of both speech segments and non-speech segments, namely Ntotal = 1000.

Ave ¼ 1

M
∑
M

R¼1
Acc Rð Þ ð39Þ

where, the mid-term feature dimension is M = 70, R is the number of selected features, and
Acc(R) is the accuracy when using the selected R features for classification.

Opt ¼ maxAcc Rð Þ ð40Þ
and

Num ¼ arg
R

maxAcc Rð Þ ð41Þ

The Num measurement is used to evaluate the redundancy of selected feature sets.

5.3 Experimental results

Ten types of short-term features extracted are listed in Table 1. Two statistics, mean and
standard deviation (STD), are used as the mid-term representation of the audio segments.
Table 1 shows the classification accuracies of different features for audio classification. The
top 3 best features are MFCCs, chroma vector, and spectral centroid and the worst feature is
short-term energy. Moreover, using all of these features does not improve but rather decreases
the accuracy, as seen by comparing results using MFCC with that of all features, which
indicates that there is redundant and even contradictory information among the features. Thus,
it is valuable to use feature selection as a preprocessing module.

Table 3 Performance of supervised and semisupervised methods with 200 labeled segments

Algorithms Spec ReliefF CS CCLS

Ave. 83.33 ± 3.94 85.53 ± 5.92 81.06 ± 3.34 87.62 ± 3.50
Opt. 87.20 89.24 87.68 91.64
Num. 57 35 55 40

Table 4 Performances of supervised and semisupervised methods with 800 labeled segments

Algorithms Spec ReliefF CS CCLS

Ave. 86.76 ± 2.82 88.47 ± 4.69 87.24 ± 3.48 89.72 ± 3.71
Opt. 89.49 92.27 91.45 92.71
Num. 55 18 23 25
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5.3.1 Feature relevance

To further illustrate the effectiveness of CCLS, it is compared with several established feature
selection methods, which include Spec, ReliefF, LS, CS and CLS.

Table 2 gives comparisons of the averaged accuracy, optimized accuracy and the
optimized number of features. In addition the value after the symbol ‘±’ denotes the
standard deviation. It indicates that the performance is significantly improved by using
the first d features selected from the ranking list of features generated by feature selection
algorithms. It means that there is redundant and even contradictory information among
original feature space, and feature selection algorithm can remove irrelevant and redun-
dant features effectively.

The CCLS is superior to other evaluated methods not only in terms of averaged accuracy
but also in terms of optimized accuracy. On the other hand, the CLS has the lowest averaged
accuracy and optimized accuracy.

Figure 3 shows accuracy vs. number of selected features. It can be seen that the perfor-
mance of CCLS is significantly better than that of Spec, Laplacian Score, Constraint Score and
Constrained Laplacian Score. The results supports that combining supervised information with
data structures to evaluate the relevance of features is very useful in feature selection.
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To explore the influence of the numbers of labeled segments on the performance of
the algorithm, different numbers of labeled data are used. The averaged accuracies,
optimized accuracies and the optimal numbers of features of such methods on the
condition of 200 and 800 labeled segments are summarized in Table 3 and Table 4
respectively. Comparing Table 2 with Tables 3 and 4, it is easy to conclude that the
performance improves when the number of labeled data segments increases from 200 to
800. The CCLS is best in terms of averaged accuracy and optimized accuracy regardless
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Fig. 5 The base waveforms of
waveform database generator data
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of the number of labeled segments. The optimal feature number of ReliefF is always
smaller than others. This may indicate that there are some redundant features in the
optimum feature set selected by CCLS method.

Figure 4 shows the plots of accuracy vs. the number of selected features and the amount of
labeled data. However, it should also be noticed that the performances of CCLS and ReliefF do
not drop rapidly when decreasing the number of labeled data to 200, while the CS and Spec
algorithms are unable to select relevant features.
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Fig. 7 The feature redundancy based on mutual information. The mutual information is computed using
Gaussian kernel-based estimator [31]
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5.3.2 Feature redundancy

To examine the effectiveness of GMM-based Bhattacharyya distance in measuring feature
redundancy, some experiments have been done on the Waveform Database Generator (Version
2) Data Set [4]. This data set contains 5000 40-dimensional instances from 3 classes. Each
class is generated from a combination of two of three base waveforms, h1(t), h2(t), and h3(t).
Figure 5 shows graphs of these base waveforms.

To generate a instance xi, a single uniform random number u ∼U(0, 1) and 40 normal
random numbers et∼N 0;σ2ð Þ, t = 1 , 2 , ⋯ , 40 are generated. Then, xi is generated by
combining two of the three base waveforms as follow:

xi ¼ uh1 þ 1−uð Þh2 þ e ð42Þ
where, for class 1, h1 = [h1(t)] and h2 = [h2(t)]. For class 2, h1 = [h1(t)] and h2 = [h3(t)] are

selected to generate instances. For class 3, h1 = [h2(t)] and h2 = [h3(t)] are used similarly. And
e = [et|t = 1, 2, ⋯ , 40]T. In all cases, there are many irrelevant features, almost half of them,
which can be removed to achieve the best performance. This not only improves classification
accuracy, but also reduces the time complexity of classification.

Obviously, the features f1 , f21 , f22 , ⋯ , f40 in this data set are white noise features for all of
the corresponding values of base waveforms are 0. They are uncorrelated to each other or other
relevant features. In other words, the redundancy corresponding to noise feature is quite low
while using Pearson correlation coefficient as the measurement, shown in Fig. 6.

Similarly, the mutual information-based measurement faces the same defect as Pearson
correlation, shown in Fig. 7.
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Table 5 The Number of Noise Feature Among the First 19 Features Selected by the mRMR Algorithm

Redundancy MI Bhattacharyya

Number 2 (f1andf30) 0
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Figure 8 shows the graph of GMM-based Bhattacharyya distance measurement. In this
graph, the larger value means smaller redundancy. It is easy to see that the redundancy related
to noise feature is large enough, so it will be helpful for noise feature removal. Moreover,
comparing Fig. 8 with Figs. 6 and 7, it’s not difficult to find the results in the region with
vertices at about (6, 13), (6, 16), (9, 13), (9, 16) are quite the contrary. Figure 6 and Fig. 7 show
that the redundancy values among these features are the highest while Fig. 8 indicates that
these redundancy values are lowest. It is mainly because that the correlation among these
features caused by the random variable is non-linear which cannot be represented properly by
correlation-based or MI-based measurements. And the redundancy measurement proposed in
this paper can prevent this type of problem.

We randomly choose 100 instances for each class from this dataset as training data.
The MI between the feature and targeted classes is estimated using the nearest-
neighbor method [28] and the MI between features is computed by Gaussian kernel-
based estimator [31]. The GMM-based Bhattacharyya distance is calculated without
Step 1 for all instances are labeled data.

Figure 9 shows the plots of mRMR algorithm with different redundancy measurements for
accuracy vs. different numbers of selected features. It can be seen that the performance with
GMM-based Bhattacharyya distance measurement is better than that with mutual information-
based measurement. Table 5 shows the number of noise feature among the first 19 features. It
can be concluded from these experimental results that mutual information-based measurement
cannot represent the redundancy properly when the data set is affected by the random variable,
which leads the algorithm to tend to preferentially choose the noise feature.

Table 6 Performance Comparison of mRMR, CCLS, and SSMRMR Algorithm(400 labeled segments)

Algorithms mRMR CCLS SSMRMR

Ave. 85.93 ± 3.70 88.46 ± 3.67 88.63 ± 3.55
Opt. 90.09 91.14 91.65
Num. 22 26 18

0 10 20 30 40 50 60 70
0.7

0.75

0.8

0.85

0.9

0.95

Selected Features

A
cc

ur
ac

y

CCLS

mRMR

SSMRMR

Fig. 10 Accuracy vs. different
numbers of selected features using
mRMR, CCLS, and SSMRMR
feature selection algorithm

734 Multimed Tools Appl (2018) 77:713–739



5.3.3 Combination of feature relevance and redundancy

In this section, we will illustrate the performance of SSMRMR feature selection algorithm
through a set of contrast experiments. In this first scenario, we compare the performance of
mRMR, CCLS, and SSMRMR algorithms. In addition, we compare performances of
SSMRMR with different number of labeled data.

Table 6 and Fig. 10 show the performance comparison among mRMR, CCLS, and
SSMRMR algorithms. It can be seen in Table 6 that in terms of averaged accuracy gains,
CCLS increases 2.53 percentage points and SSMRMR increases 2.7 percentage points,
compared with mRMR algorithm. SSMRMR is better than CCLS with only 0.17 percentage
points. However, in terms of optimized number of features, SSMRMR decreases 8 features
compared with CCLS, which means redundancy elimination can help achieve a higher degree
of dimensionality reduction without accuracy decrease.

Figure 10 shows three curves of classification accuracy vs. different number of selected
features. We can see that both the curves of CCLS and SSMRMR (black and blue) outperform
the curve of mRMR (red). But the SSMRMR’s curve increases more rapidly and achieves
good performance with a small number of features.

Figure 11 shows the plots of average accuracy vs. different number of labeled data. It can be
concluded that the average accuracy increased with the addition of labeled data, but wouldn’t
continue to increase when the labeled data reach a certain amount. Moreover, it is obvious that
SSMRMR algorithm outperforms other algorithms significantly.

After the optimal feature subset has been selected, the classification is done on test data set.
The results are listed in Table 7. From Table 7, it is easy to find the optimal feature subset
selected from develop dataset can help improve the performance in test dataset. Through
CCLS and SSMRMR still outperform other algorithms, the accuracy differences between
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Table 7 Accuracy of different algorithms on test dataset. (400 labeled segments)

Algorithms Spec ReliefF LS CS CLS CCLS SSMRMR

Accuracy 88.87 90.24 89.77 89.02 87.35 91.06 91.11
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algorithms are relatively small. However, the average accuracy of SSMRMR is much high
than other algorithm, which means there are enough alternative optimal feature subsets of
different feature numbers can be used, and we needn’t worry about that the selected optimal
feature subset perform good only in develop dataset.

6 Conclusion

In this paper, we present a feature selection algorithm under the framework of mRMR
algorithm. Rather than using mutual information to measure relevance and redundancy, a
new score function named CCLS was developed to evaluate the relevance of features and the
GMM-based Bhattacharyya distance was used to measure the redundancy between features.
The CCLS algorithm evaluated feature relevance by making full use of locality preserving
ability and constraint preserving power. The GMM-based Bhattacharyya distance evaluated
redundancy more appropriately and is easier to extract than MI. SSMRMR optimized the
minimum redundancy condition and the maximum relevance condition simultaneously and
obtain better performance not only in classification accuracy but also in dimensionality
reduction.

However, there are still some limitations in our experiments. The audio data used in our
experiments is collected from telephone channel where the audio types are simple and without
the mixed segments (speech over music). Audio classification and segmentation under broad-
cast channel are more challenging for the complex audio types, lower signal-to-noise ratio, and
lots of mixed segments. Thus, How to extend our work to broadcast channel will be the focus
in the further work.
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