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Abstract A copy-move forgery detection scheme by using multi-scale feature extraction and
adaptive matching is proposed in this paper. First, the host image is segmented into the non-
overlapping patches of irregular shape in different scales. Then, Scale Invariant Feature
Transform is applied to extract feature points from all patches, to generate the multi-scale
features. An Adaptive Patch Matching algorithm is subsequently proposed for finding the
matching that indicate the suspicious forged regions in each scale. Finally, the suspicious
regions in all scales are merged to generate the detected forgery regions in the proposed
Matched Keypoints Merging algorithm. Experimental results show that the proposed scheme
performs much better than the existing state-of-the-art copy-move forgery detection algo-
rithms, even under various challenging conditions, including the geometric transforms, such as
scaling and rotation, and the common signal processing, such as JPEG compression and noise
addition; in addition, the special cases such as the multiple copies and the down-sampling are
also evaluated, the results indicate the very good performance of the proposed scheme.
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1 Introduction

With the fast development of computer technology and the popularity of software for image
processing, image forgery which greatly reduces the credibility of the digital images, is
becoming much easier to be achieved. Therefore, the image forgery detection has been
becoming more and more attractive in recent years. The copy-move forgery is to paste a
region / regions of an image into another part(s) of the same image. During the copy and move
operation, some image processing methods such as rotation, scaling, blurring, and compres-
sion are always applied to ensure the imperceptibility of the copied region(s); however, they
will increase the difficulties of forgery detection at the same time. On the other hand, since the
copy and move operations are executed in the same image, which means the noise component,
color characters and other important properties of the pasted region(s) are compatible with
which of the rest of the image. Therefore, some of the forgery detection methods based on the
related image properties are not applicable in this case. In past years, lots of methods have been
proposed for the copy-move forgery detection, of which two main categories of features are
usually employed: the block based features and the keypoint based features.

The block based algorithms [5–7, 11, 12, 14, 15, 17, 19, 20, 22, 24, 27, 28] are usually to
divide the host images into blocks, extract the block features, and find the tampered regions
from the matched blocks which have similar block features. Lots of block features have been
proposed and employed in the area of forgery detection. Popescu and Farid [22] applied the
Principal Component Analysis (PCA) method to reduce the feature dimensions. Luo et al. [19]
used the RGB color components and direction information as block features. Li et al. [15] used
Discrete Wavelet Transform (DWT) and Singular Values Decomposition (SVD) to extract
block features. Mahdian and Saic [20] calculated the 24 Blur-invariant moments as block
features. Kang and Wei [14] calculated the singular values of a reduced-rank approximation in
each block. Bayram et al. [5] used the Fourier-Mellin Transform (FMT) to obtain features.
Wang et al. used the mean intensities of circles with different radii around the block center as
block features in [27] and [28]. Lin et al. [17] used the gray average results of each block and
its sub blocks as the block features. Ryu et al. [24] used Zernike moments as block features.
Fridrich et al. [12] calculated the Discrete Cosine Transform (DCT) coefficients as block
feature. Bravo-Solorio and Nandi [7] calculated the information entropy as block features. Bi
et al. [6] used the Polar Complex Exponential Transform moments as block features. Although
the block based algorithms are effective in forgery detection, they have two main drawbacks:
1) the host images are usually divided into overlapping blocks of regular shape, therefore the
computational complexity of block matching will accordingly increase with image size; 2)
most of the existing block based algorithms cannot deal with significant geometrical trans-
forms very well.

On the other hand, the keypoint based algorithms [2, 3, 8, 13, 21, 25, 26, 29–31] are to
extract an appropriate selection of keypoint features that can guarantee the robustness against
geometrical transforms, and to match the keypoints to each other, to locate the tampered
regions. In [2, 8–10, 13, 21], the Scale Invariant Feature Transform (SIFT) [18] was used to
extract keypoint feature. In [26, 29], the Speeded Up Robust Features (SURF) [4] was used
instead of SIFT as keypoint features. In [25] DAISY have also been considered for feature
extraction for CMFD methods. Since the number of keypoints is much less than the number of
overlapping blocks, the computational complexity is comparatively less. However, most of
methods in this category could not achieve high precision rate while sustain high recall rate
[9]. Recently, several new copy-move forgery detection schemes that employ both block
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features and keypoint features have been proposed. Li et al. [16] first segmented the image into
semantically independent patches/blocks prior to keypoints extraction, then the matching
between the patches/blocks are found to locate the copy-move regions. In this case, the
keypoints extracted with SIFT can be regarded as block features since being extracted from
patches/blocks. Similarly, we proposed an adaptive over-segmentation and feature points
matching (ASFPM) method [23] for image forgery detection, which integrates the character-
istics of both block features and keypoint features. The ASFPM method was proved to be
superior to many state-of-the-art existing methods. In ASFPM, Discrete Wavelet Transform
(DWT) was employed to analyze the frequency distribution of the host image, to adaptively
determine the initial size of superpixel, however, when the host image consists of complex and
mixed content, for example, smoothed textures are mixed with detailed textures, the frequency
distribution calculated with DWT cannot determine the best initial size of superpixel, which
will cause bad segmentation and bring inaccurate detection results. In addition, when the host
image contains copied regions of different sizes, the ASFPM method will probably no longer
work well.

In this paper, considering the weakness of the ASFPM method [23] as we mentioned, we
propose a novel multi-scale feature extraction and adaptive matching method to detect the
image copy-move forgery. In the proposed scheme, we integrate the characteristics of both
block features and keypoint features to achieve better detection results, like [16, 23]. First, we
segment the host image into non-overlapping patches of irregular shape in different scales;
then, we apply SIFT to extract feature points from all patches, to generate the multi-scale
features. An Adaptive Patch Matching algorithm is subsequently proposed for finding the
matching that can indicate the suspicious regions in each scale. Finally, the suspicious regions
in all scales are merged to determine the detected forgery regions. In the next section 2, we will
give the framework of the proposed copy-move forgery detection scheme and explain each
step in detail. In section 3, a lot of experiments are conducted to demonstrate the effectiveness
of the proposed scheme. Finally, the conclusions are drawn in section 4.

2 The proposed copy-move forgery detection scheme

The proposed scheme using multi-scale feature extraction and matching integrates the char-
acteristics of both block features and keypoint features and performs very well when there are
multiple copy-move objects/regions and especially when the objects/regions are of different
sizes and contain both smoothed and detailed textures. Figure 1 demonstrates the advantage of
the proposed multi-scale based method, compared with the ASFPM [23] which we have
proposed in our previous work. The compared results are estimated by precision and recall
rate: precision is defined as the ratio of number of correctly detected forged pixels to the
number of totally detected forged pixels; recall is defined as the ratio of number of correctly
detected forged pixels to the number of forged pixels in the ground-truth forged image. In the
first row of Fig. 1, (a) shows the forgery image ( image size:3888 × 2592), where three objects
of different sizes and different textures are copied and pasted; (b) shows its corresponding
ground truth image; (c) shows the detected results of the ASFPM method [23], from which the
detection accuracy is calculated as: precision=84.65%, recall=70.54%; and (d) shows the
detected results of the proposed multi-scale based scheme, from which the detection accuracy
is calculated as: precision=97.96%, recall=85.72%. In this case, it is obvious and perceptual
that the proposed scheme performs much better than the ASFPMmethod [23]. Similarly, in the
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second row of Fig. 1, another example (image size:2613 × 3900) is demonstrated. Two objects
of different sizes are copied and pasted in (e), (e) and (f) respectively show the forgery image
and ground truth image; (g) shows the detected results of the ASFPM method [23], with
detection accuracy as: precision=96.90%, recall=78.90%; and (h) shows the detected results
of the proposed scheme, with detection accuracy as: precision=96.21%, recall=98.67%. In
this case, the precision rates of the two methods are similar, however the proposed scheme
outperforms the ASFPM method [23] a lot in respect of recall rate.

Figure 2 shows the framework of the proposed scheme. First, the Multi-Scale Feature
Extraction (MSFE) algorithm is proposed and applied to the host image, to generate the Multi-
Scale Features (MSF). Then, the Adaptive Patch Matching (APM) algorithm is proposed and
applied to the MSF, to obtain the matched patch pairs; from which theMatched Keypoints (MK)
are obtained. Finally, according to MK, the Matched Keypoints Merging (MKM) algorithm
generates the detected forgery regions. In the remainder of this section, sections 2.1, 2.2 and 2.3
will explain the three proposed algorithms: MSFE, APM, and MKM, respectively, in details.

2.1 Multi-scale feature extraction algorithm

In the existing block based algorithms [5, 7, 14, 15, 17, 19, 20, 22, 24, 27, 28], the host image is
divided into the overlapping regular blocks (e.g. block size =16 × 16 in Fig. 3-(a)); then, the
forgery regions can be found from thematched blocks. Since, the forgery regions are not of regular
shapes (e.g. in Fig. 4-(a)), the detected forgery regions represented by the set of regular blocks are
usually inaccurate. In addition, when the size of host image increases, the computational time of
the block matching will be much more expensive. To address the above-mentioned problems, we
propose to segment the host image into non-overlapping irregular patches (e.g. in Fig. 3-(b)), and
then to find the forgery regions by matching the non-overlapping and irregular patches.

Considering that superpixel algorithms can group pixels into perceptually meaningful atomic
regions, in our algorithm, we employ the Simple Linear Iterative Clustering (SLIC) algorithm [1]
to segment the host image. SLIC algorithm adapts a k-means clustering approach to efficiently

(a) (b)

(e) (f)

(c)

(g)

(d)

(h)
Fig. 1 Demonstration of detection results of ASFPM method and proposed method. 1st column: the forgery
images; 2nd column: ground truth images; 3rd column: the detected regions of ASFPM method; and 4th column:
the detected regions of the proposed scheme
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generate superpixels, and superpixel adheres to boundaries very well. With SLIC, the host image
is segmented into the non-overlapping superpixels that are meaningful and are of irregular
shapes. The non-overlapping segmentation method can help to decrease the computational
expenses, compared with the existing overlapping block method; in addition, in most of the
cases, the irregular and meaningful regions can represent the forgery regions better than the
regular blocks. Figure 3 shows the different blocking/segmentation methods, where (a) shows
the overlapping and regular blocking method of the existing forgery detection algorithms and (b)
shows the non-overlapping and irregular segmentation method of the proposed scheme.

Multi-Scale Feature 

(MSF)

Multi-Scale Feature 

Extraction

Adaptive Patch Matching

Matched Keypoints (MK)

Input Host Image

Output: Detected Regions

Matched Keypoints Merging

Fig. 2 The framework of the proposed copy-move forgery detection scheme

(a) (b)
Fig. 3 Different blocking/segmentation methods. a Overlapping and regular blocking; (b) Non-overlapping and
irregular segmentation
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Most of the existing block based algorithms divided the host images only in single scale
with initially predefined block size; in that situation, if block size is too small, some forgery
regions will be missed, as shown in Fig. 4-(d); otherwise, if the block size is too large, some
error detected results will be introduced, as shown in Fig. 4-(b). To solve this problem, we
propose the multi-scale segmentation in our algorithm. Figure 4 shows the three-scale seg-
mentation and the corresponding segmentation result in each scale. In Fig. 4, (a) shows the
forgery image, where the region in sky-blue represents the original region, and the region in
blue represents the target copy-move region; (b), (c) and (d) respectively show the segmen-
tation results in three different scales. The patches highlighted in yellow indicate the matched
patches, while the points highlighted in blue indicate the matched keypoints.

As discussed above, the proposed MSFE algorithm segments the host image into the
patches with multiple scales; from each patch the feature points are then extracted. In recent
years, the feature points extraction methods such as SIFT [18] and SURF [4] are widely used
in the field of computer vision. SIFT and SURF were proved to be robust against the common
image processing operations such as rotation, scale, blurring, and compression; in conse-
quence, SIFT and SURF were also used as feature points extraction methods in most of the
existing keypoint based forgery detection algorithms. Christlein et al. [9] compared perfor-
mances of SIFT and SURF with the other 13 image feature extraction methods in the
comparative experiments, and the results indicate that the SIFT and SURF based methods
perform better than the others. Therefore, in this scheme, we choose SIFT with default
parameters as the feature extraction method to extract feature points as patch features.

Figure 5 shows the flowchart of the proposed MSFE algorithm. First, the host image is
blocked into the patches with the superpixel segmentation method; then, the feature points are
extracted from these patches. The whole process is repeated along with the decreasing of the

(b)

(d)(c)

(a)

Fig. 4 Three-scale segmentation demonstration. a The forgery image; (b, c) and (d) The segmentation results in
three different scales and the corresponding matched patches and the matched keypoints selected from the
matched patches
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size of segmentation, until feature points cannot be extracted any more in the corresponding
scale. Finally, the multi-scale feature MSF is generated, which includes the patches in each
scale and the corresponding feature points. The steps of the proposed MSFE algorithm are
explained in Algorithm I as follows.

Algorithm I: Multi-Scale Feature Extraction (MSFE) Algorithm 

Input: Host image; 

Output: Multi-Scale Feature MSF . 

STEP-1: Load the host image and initialize the initial scale 1n , the initial number of blocks

nB B , the initial set of patch feature
nPF , and the initial set of multi-scale feature 

MSF . 

STEP-2: Apply the SLIC algorithm to segment the input image into nB patches nP , 

1 2 3, , , ,
n

n n n n n
BP P P P P .

STEP-3: Apply SIFT algorithm to each patch to extract feature points nF , 

1 2 3, , , ,
n

n n n n n
BF F F F F .

STEP-4: Organize the set of patch feature ,n n nPF P F ; and the set of multi-scale feature 

MSF as nMSF MSF PF . 

STEP-5: Check the existence of the extracted feature points nF , if nF , 1n n , 

1

14n
n nB B , repeat STEP-2 to STEP-4; otherwise, output the set of multi-scale feature MSF , 

1 2, , , nMSF PF PF PF .

In STEP-1 of Algorithm I, the appreciate initialization of B can avoid segmenting the host
image into excessive scales. In the experiments, by experiments, theB is initially set as 200 when
the size of host image M × N is larger than1500×1500; otherwise, the B is initially set as 100.

2.2 Adaptive patch matching algorithm

After generatingMSF, we need to locate the matched patch pairs in each scale. In most of the
existing block based algorithms, the block matching generates specific block pairs only if there
are many other matched pairs in the same mutual position, assuming they have the same shift
vector. When the number of matched block pairs, which have same shift vector, exceeds a
user-specified threshold, the matched block pairs that contribute to that specific shift vector
will be identified as the regions that probably have been tampered. In that situation, the
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threshold is related to the regions that can be identified; the larger threshold may cause some
not-so-closely matched blocks missing, while the smaller threshold may bring more false
matched blocks. Therefore, the threshold highly relates with the performance of the forgery
detection algorithms, and how to determine the just right threshold becomes an important issue.

An Adaptive Patch Matching (APM) algorithm which aims at improving the existing
matching process is proposed by adaptively determining the threshold. Figure 6 shows the
flowchart of the APM algorithm. In the ith scale (i ∈ {1, ⋯ , n}), the number of matched
keypoints of each patch pair is calculated according to PFi = {Pi, Fi} and the correlation
coefficient map CCi is generated; then the corresponding patch matching threshold TPi is
determined adaptively; the matched patch pairs MPi are located by TPi; and finally the
matched keypoints MKi are selected from MPi. The steps of the proposed APM algorithm
are explained in Algorithm II as follows.

Algorithm II: Adaptive Patch Matching (APM) Algorithm

Input: Multi-Scale Feature MSF;

Output: Matched Keypoints MK.

STEP-1: Load the Multi-Scale Feature 1 2, , , nMSF PF PF PF , where n means the number of 

scales; ,n n nPF P F is the set of patch feature.

STEP-2: In each scale, calculate the numbers of matched keypoints between each two patches, 

which are defined as correlation coefficient of the corresponding patch pair; and thus generate the 

correlation coefficient map 1 2, , , nCC CC CC CC .

STEP-3: According to CC , adaptively calculate the value of patch matching threshold as

1 2, , , nTP TP TP TP .

STEP-4: According to the corresponding matching threshold TP , locate the matched patch pairs 

MP as 1 2, , , nMP MP MP MP .

STEP-5: Extract the matched keypoints MK in MP as 1 2, , , nMK MK MK MK .

In STEP-2 of Algorithm II, the keypoints are matched using the best-bin-first algorithm
with their Euclidian distance; which means that a keypoint fa is matched to the keypoint fb only
if they can meet the following condition:

d f a; f bð Þ⋅TK≤d f a; f ið Þ ð1Þ

Where d(fa, fb) means the Euclidian distance between the keypoints fa and fb, and it is defined
in (2); d(fa, fi) means the Euclidian distances between the keypoints fa and all other keypoints,
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Superpixel 

Segmentation

Feature Extraction

Input: Input Image

Patches: Pi

Output:

MSF={PF1,…,PFn}

Feature 

Extracted ?

Features: Fi

Go to next 

scale

N

Y

Fig. 5 Flowchart of the Multi-Scale Feature Extraction (MSFE) algorithm

Input: MSF={PF1,PF2, ,PFn}

Correlation Coefficient Map Generation 

Matched Keypoints Extraction

Matched Patch Pairs Location 

Patch Matching Threshold Calculation

Output: Matched Keypoints

Fig. 6 Flowchart of the Adaptive Patch Matching (APM) algorithm
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and it is defined in (3). TKis the keypoints matching threshold; when TK becomes larger, the
matching accuracy will be higher, but meanwhile the ratio outliers will be higher accordingly,
which will cause greater miss probability. Therefore, in the experiments, we set TK = 2 by
experiments to provide a good trade-off between matching accuracy and miss probability.

d f a; f bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa−xbð Þ2 þ ya−ybð Þ2

q
ð2Þ

d f a; f ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa−xið Þ2 þ ya−yið Þ2

q
; i ¼ 1; 2; :::n; i≠a; i≠b ð3Þ

Correlation coefficient means the number of matched keypoints between the two patches.
Assuming there are Bi patches in the ith scale, we can generate t = Bi(Bi − 1)/2 correlation
coefficients, which form the correlation coefficient mapCCi. After generatingCC = {CC1,
CC2, … ,CCn}, we need to calculate the patches matching threshold TP as stated in STEP-
3 of Algorithm II. The procedures of the adaptive calculation of the patch matching threshold
TP in each scale are explained as follows in Algorithm III.

Algorithm III: Adaptive Patch Matching Threshold Calculation

STEP-1: Sort the correlation coefficients in ascending order as 

1 2 3_ , , , ,i i i i i
tCC S CC CC CC CC , where i means in the 

thi scale, and t means the 

number of correlation coefficients in the corresponding scale, ( 1) / 2i it B B ; and filter out the 

repeated correlation coefficients as 
1 2 3_ , , , ,i i i i i

fCC F CC CC CC CC , where 

( 1) / 2i if B B .

STEP-2: Calculate the first derivative of _ iCC F , ( _ )iCC F ; the mean value of the first 

derivative vector, ( _ )iCC F ; and the second derivative of _ iCC F , 2 ( _ )iCC F . 

STEP-3: Select the correlation coefficients _ i
jCC F , of which their second derivative is larger 

than the mean value of the corresponding first derivative vector, as defined in (4).

2 ( _ ) ( _ )i i
jCC F CC F (4)

STEP-4: Extract the minimum value from _ i
jCC F and set its correlation coefficient value as 

the corresponding patch matching threshold iTP .

∇2 CC Fi
j

� �
> ∇ CC Fið Þ ð4Þ

Figure 7 shows the demonstration of patch matching threshold calculation. In Fig. 7, (a1)
shows the forgery image; (a2) shows the plot of the sorted and filtered correlation coefficients
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of the ith scale of forgery image, which are calculated with STEP-1 of Algorithm III; and (a3)
shows the plots of the first derivative, the second derivative, and the mean of first
derivative of the ith scale of forgery image, which are calculated from (a2) with STEP-
2 of Algorithm III. According to STEP-3 and STEP-4 of Algorithm III, the corresponding
threshold is calculated and located in (a3), represented by the red point. Meanwhile, (b1)
shows the original image without forgery; (b2) shows the corresponding plot of the sorted
and filtered correlation coefficients of the ith scale; and (b3) shows the corresponding
plots of the first derivative, the second derivative, and the mean of first derivative of the
ith scale, which are calculated from (b2). It can be easily seen that we cannot get the

(a2)

(b1) (a1)

(b2)

(a3) (b3)

Fig. 7 Demonstration of patch matching threshold calculation. (a1) Forgery image; (a2) Plot of the correlation
coefficients after sorting and filtering, of the forgery image, in the ith scale; (a3) Plots of the first derivative, the
second derivative, and the mean of first derivative, calculated from (a2); (b1) Original image; (b2) Plot of the
correlation coefficients after sorting and filtering, of the original image, in the ith scale; (b3) Plots of the first
derivative, the second derivative, and the mean of first derivative, calculated from (b2)
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matching threshold from the non-forgery image, when using the proposed Adaptive
Matching Threshold Calculation algorithm. After calculating the patch matching threshold
of each scale adaptively, we can locate the matched patch pairs in each scale if their
correlation coefficients are larger than the corresponding matching threshold. From those
matched patches in each scale, we selected the matched keypoints to form the Matched
Keypoints (MK).

2.3 Matched keypoints merging algorithm

After obtaining the matched keypoints MK, we need to determine the forgery regions by
turning the independent pixels/keypoints into regions. Figure 8 shows the flowchart of the
MKM algorithm. First, the host image is segmented into small superpixels; then, MK are
replaced by the small superpixels to form the suspected forgery regions. The size of small
superpixels is related with the size of the host image; when the host image is of higher
resolution, the size of small superpixels will be larger. In our test dataset, the average size is
approximate3000 × 2000, therefore, we set the size of small superpixel as 20 by experiments.
Next, the suspected forgery regions in all scales are merged. If the suspected forgery regions
are merged together by using ‘OR’ operation, the miss rate of the forgery detection will be
reduced, however, the probability of error detection will be bigger, Fig. 9-(c) and (d) demon-
strate the results of this case. Therefore, we need to filter out some regions which may be
wrongly detected during the merging process. In all scales, we count the pixel appearing times

Small Superpixels Replacement

Morphology Processing

Matched Keypoints Merging

Output: Detected Regions

Input: Matched Keypoints

Suspected 
Forgery Regions

Merged 
Regions

Fig. 8 Flowchart of the Matched Keypoints Merging (MKM) algorithm
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as T = {tmin, tmin + 1, … , tmax} , where tmax is the maximum value of the pixel appearing times
in all scales, tmax ≤ n. Because the host images are different, the T is considered as a random
sequence, and the probability of random variable is regarded as the normal distribution.
Consequently, the mean μ and the standard deviationσ of random sequence Tcan be respec-
tively calculated by using (5) and (6).

μ ¼ 1

max−min
∑
max

i¼min
ti ð5Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

max−min
∑
max

i¼min
ti−μð Þ2

s
ð6Þ

Considering the property of normal distribution that the area of μ − 2σ range in the normal
distribution curve is 95%, we choose μ − 2σ as the merging threshold to filter out the wrongly
detected pixels. When the appearing time of the pixel is smaller than the merging threshold
μ − 2σ, the corresponding pixels will be discarded. Therefore, the suspected forgery regions
in all scales are merged using (7), and at the same time, some of the wrongly detected
regions can be discarded. Figure 9 shows the demonstration of merging results of the suspected
forgery regions.

In Fig. 9, (c)(i), (d)(j) and (e)(k) display the suspected forgery regions in three scales, which
indicate that the proposed multi-scale method will bring some wrong regions; while (f)(l)

(a) (b) (c) (d) (e) (f)

(g) (h) (l)(j) (k)(i)
Fig. 9 The demonstration of the suspected forgery regions merging results. a, g The forgery images; (b, h) The
copy-move forgery regions; (c, i), (d, j), (e, k) The suspected forgery regions in three different scales; and (f, l)
The merged regions
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display the detected regions after the merging process, where the inaccurately detected regions
have been successfully removed.

g x; yð Þ ¼
1 μ−2σ≤ ∑

n

i¼1
f i x; yð Þ≤ tmax

0 0≤ ∑
n

i¼1
f i x; yð Þ < μ−2σ

8>><
>>: ð7Þ

Where g(x, y) are the merged regions; fi(x, y) represents the suspected forgery regions in the
ith scale; n is the number of scales; and μ − 2σ is the threshold that is used to filter out the
inaccurately detected pixels.

In the last step of MKM algorithm, we apply the close morphology operation to generate
the final regions. The structural element we use in the close operation is defined as a circle
whose radius is related to the host image size. The close operation fills the gap in the merged
regions, while keeps the shape of the regions.

3 Experiments and discussions

In this section, the experiments are conducted to evaluate the effectiveness and robustness of the
proposed copy-move forgery detection scheme. In the following experiments, the benchmark
database[9] which consists the realistic copy-move forgeries is used to test the proposed scheme.
Figure 10-(a1) ~(e1) shows a selection of images from the database. The dataset comprises 48

Fig. 10 The copy-move forgery detection results of the proposed scheme. The 1st row: the five selected images
in the dataset; 2nd row: ground truth images; 3rd row: The detected forged regions
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uncompressed PNG true color images. The average size of forgery regions is about 6% of each
image. These images have a size of 3000×2300 pixels. The copied regions are of categories of
living, nature, man-made and even mixed, and they range from smooth to highly texture; the
copy-move forgeries are created by copying, scaling and rotating semantically meaningful image
regions. JPEG compression and down-sampling are also added on the forgery images; in
addition, the combined transformations and multiple copies forgeries are included in the image
dataset. Therefore, we choose this dataset to objectively evaluate our scheme. Figure 10 shows
the copy-move forgery detection results of the proposed scheme. In Fig. 10, the figures in the first
row are the forgery images selected from the dataset; the second row displays the ground truth;
and the third row displays the detected forgery regions.

In order to evaluate the performance of the proposed scheme, the two characteristics precision
and recall [9] are calculated using (8) and (9) respectively. We also give the F score [9], which is
defined in (10), as a measure which combines the precision and recall in a single value.

precision ¼
Ω∩Ω

0
��� ���

Ωj j ð8Þ

recall ¼
Ω∩Ω

0
��� ���

Ω
0�� �� ð9Þ

Where Ω means the set of forgery regions detected by the proposed scheme for the dataset;
and Ω' means the set of all forgery regions for the dataset.

F ¼ 2� precision� recall
precisonþ recall

ð10Þ

To reduce the effect of random samples, the average precision/recall is computed over all
the images in the dataset. Since Christlein et al. [9] have particularly recommended all
benchmark methods, we use the dataset they provided and compare our experimental results
with several state-of -the-art algorithms: the SIFT based detection method [9], which combined
the methods of [2, 21]; the SURF based detection method [9]; Zernike moments based forgery
detection method [24]; the method proposed by Bravo [8]; the SBFD method proposed in [16];
and the ASFPM method [23] which we have proposed in our previous work. We mainly
compare the performances of our scheme with the state-of -the-art algorithms under different
scenarios: the plain copy-move forgery; the forgery with distortion by various attacks includ-
ing: scaling, rotation, Gaussian noise addition JPEG compression, and even combined attacks;
the multiple copies forgery and the down-sampling forgery. The following sections 3.1, 3.2,
and 3.3 demonstrate the detection results.

3.1 Detection results under plain copy-move forgery

Basically, we firstly evaluate the proposed scheme when under the ideal condition, that is the
plain copy-move forgery. We have 48 original images and 48 forgery images, where one to one
copy-move forgery is implemented. The detection methods distinguish the original images from
the forgery images in this case. We evaluate the scheme at both pixel level and image level, and
Tables 1 and 2 show the detection results of the 96 images at the image level and the pixel level,
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respectively.While pixel-level metrics are useful to assess the general localization performance of
algorithmwhen the ground-truth data is available, and at pixel level, the precision and recall rates
are calculated by counting the number of pixels in the corresponding regions; the image level
decisions are particular interest to the automated detection of manipulated images, and at image
level, precision is the probability that a detected forgery is truly a forgery, while recall is the
probability that a forgery image is detected. In general, higher precision as well as higher recall
indicates the superior performance. In Tables 1 and 2, the results in bold indicate the results of the
proposed scheme and the results in bold and italic indicate the best ones. It can be easily seen that
our scheme can achieve 90.57% precision and meanwhile 100% recall, which performs better
than the most of existing state-of-the-art methods at image level, except the Zernike moments
basedmethod [24] which can achieve precision up to 92.31% and recall up to 100%.Meanwhile,
the advantage of the proposed multi-scale detection method is particularly prominent at pixel
level, when comparing with the existing state-of-the-art methods, as indicated in Table 2. The
proposed method achieves precision up to 95.22% and recall up to 90.6%, which is much better
than the existing state-of-the-art methods. The results indicate the good accuracy of our proposed
copy-move forgery detection scheme by using multi-scale feature extraction and matching.

3.2 Detection results under various attacks

Besides the one to one plain copy-move forgery, we also test our proposed scheme when the
copied regions are attacked by various attacks including geometric distortions, image degra-
dations, and even combined attacks. That means, the forgery images are generated by using
each of the 48 images in the dataset, and the copied regions are attacked by attacks as follows:

1) Scaling

The copied regions are scaled with the scale factor varies from 91% to 109%, with the step as
2%, as shown in the 1st row of Fig. 11. In this case, we need to test totally 48 × 10 = 480 images.

Table 2 Detection results of the
plain copy-move forgery at the
pixel level

The italic entries indicate the best
results

Pixel level precision ( % ) recall ( % ) F ( % )

SIFT [9] 60.80 71.48 65.71
SURF [9] 68.13 76.43 72.04
Zernike [24] 95.07 87.72 91.25
Bravo [8] 98.81 82.98 89.34
SBFD [16] 84.90 54.095 65.16
ASFPM [23] 89.195 83.73 86.38
Proposed Scheme 95.22 90.6 92.85

Table 1 Detection results of the
plain copy-move forgery at the im-
age level

The italic entries indicate the best
results

Image level precision ( % ) recall ( % ) F ( % )

SIFT [9] 88.37 79.17 83.52
SURF [9] 91.49 89.58 90.52
Zernike [24] 92.31 100.0 96.00
Bravo [8] 87.27 100.0 93.20
SBFD [16] 70.16 83.33 76.18
ASFPM [23] 96 100.0 97.96
Proposed Scheme 90.57 100.0 95.05
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Fig. 11 Detection results under various attacks. (a1) ~(a3) Scaling; (b1) ~(b3) Rotation; (c1) ~(c3) Gaussian
Noise addition; (d1) ~(d3) JPEG Compression; and (e1) ~(e3) Combined transforms. The first column displays
the precision, the second column displays the recall and the third column displays the F score
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2) Rotation

The copied regions are rotated with the rotation angle varies from 2° to 10°, in step of 2°, as
shown in the 2nd row of Fig. 11. In this case, we need to test totally 48 × 5 = 240 images.

3) Gaussian Noise Addition

The image intensities are normalized between 0 and 1 and added zero-mean Gaussian noise
with standard deviations of 0.02, 0.04, 0.06, 0.08 and 0.10 to the inserted snippets before splicing,
as shown in the 3rd row of Fig. 11. In this case, we need to test totally 48 × 5 = 240 images.

4) JPEG compression

The JPEG compression is applied to the forgery images and original images, with the
qualify factor varies from 100 to 20, with the step as -10, as shown in the 4th row of Fig. 11. In
this case, we need to test totally 48 × 9 = 432 images.

5) Combined transforms

Six combined transforms are applied into the copied regions to evaluate the proposed
scheme, as shown in the 5th row of Fig. 11. In Fig. 11-(e1)~(e3), ‘cmb1’ indicates the
combined attack includes scaling with factor as 101%, rotation with angle as 2°, JPEG
compression with quality factor as 80; ‘cmb2’ indicates the combined attack includes scaling
with factor as 103%, rotation with angle as 4°, JPEG compression with quality factor as 75;
‘cmb3’ indicates the combined attack includes scaling with factor as 105%, rotation with angle
as 6°, JPEG compression with quality factor as 70; ‘cmb4’ indicates the combined attack
includes scaling with factor as 107%, rotation with angle as 8°, JPEG compression with quality
factor as 65; ‘cmb5’ indicates the combined attack includes scaling with factor as 120%,
rotation with angle as 20°, JPEG compression with quality factor as 60; and ‘cmb6’ indicates
the combined attack includes scaling with factor as 140%, rotation with angle as 60°, JPEG
compression with quality factor as 50. In this case, we use totally 48 × 6 = 288 images.

The detection results under various attacks are displayed in Fig. 11, where the results
indicated in blue show the results of the proposed scheme and the results of three columns
indicate the precision rate, recall rate and F score, respectively. In Fig. 11, (a1) ~(a3) show the
results under the scaling, where the x-axis indicates the scale factor; (b1) ~(b3) show the results
under the rotation, where the x-axis indicates the rotation angle; (c1) ~(c3) show the results
under the Gaussian Noise addition, where the x-axis indicates the standard deviations; (d1)
~(d3) show the results under the JPEG compression, where the x-axis represents the quality
factor; and (e1) ~(e3) show the results under the combined transforms. Furthermore, we
compare the proposed scheme with the existing state-of-the-art methods: the SIFT based
detection method [9], indicated in green; the SURF based detection method [9], indicated in
red; the Zernike moments based forgery detection method [24], indicated in rose-red; the
method proposed by Bravo [8], indicated in blue-sky; the SBFD method proposed in [16],
indicated in black; and the ASFPM method [23] which we have proposed before, indicated in
yellow. The results of the methods are indicated in lines of different colors as displayed in
Fig. 11. It can be seen from the first and second rows, all the recall, precision, and F score of
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the proposed scheme are greater than 90%, which indicates that the proposed scheme performs
much better than the existing state-of-the-art forgery detection methods under the geometric
transforms. As well, the proposed scheme performs well under the common signal processing
such as Gaussian Noise addition and JPEG compression, as shown in the third and fourth
rows. Note that, although our recall rates are worse than which of the SBFD method, the F
scores are better than it under the Gaussian Noise addition and the JPEG compression. In
Fig. 11-(e1) ~(e3), the proposed scheme is evaluated under six combined attacks we defined. It
is obviously that the proposed scheme performs much better than the other methods.

3.3 Detection results under multiple copies and down-sampling

Besides the plain copy-move forgery and the forgeries attacked by various attacks, we also
evaluate the proposed scheme when the forgery images have multiple copies. In order to test
the multiple copies forgery, we have copied an 64 × 64 image region five times and moved
them to the random locations in the image itself. Table 3 shows the comparison of the detection
results in this scenario. It can be easily seen that the proposed scheme outperforms the most of
existing detection methods except the method proposed by Bravo [8] which can achieve
precision up to 88.75%, however, our scheme can achieve much higher recall. The results
indicate the good performance of the proposed multi-scale feature extraction and the adaptive
matching for copy-move forgery detection.

Considering that the performance of forgery detection algorithms usually matters with the
quality of the resources, we evaluate the proposed scheme and compare it with the mentioned
state-of-the-art methods under the down-sampling, as shown in Fig. 12, where (a), (b) and (c)
display the precision, recall and F score, respectively. We scale down all the images in the
plain copy-move forgery in step of 20%. Note that the parameters of detection methods are
globally fixed to avoid over-fitting. In Fig. 12, the x-axis means the down-sampling factor and
the results in blue indicate which of the proposed scheme while the results in other colors

Table 3 Detection results under
the multiple copies forgery

The italic entries indicate the best
results

Pixel level precision ( % ) recall ( % ) F ( % )

SIFT [9] 11.37 4.95 6.90
SURF [9] 37.49 21.86 27.62
Zernike [24] 83.15 22.00 34.79
Bravo [8] 88.75 58.27 67.58
ASFPM [23] 50.91 47.63 49.22
Proposed Scheme 58.2 73.2 64.83
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Fig. 12 Detection results under the down-sampling. a precision; (b) recall; (c) F score
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indicate which of the above-mentioned state-of-the-art methods. The proposed scheme per-
forms much better than the existing methods in this case.

4 Conclusion

With the help of the digital processing programs, images can be easily manipulated to create non-
existing situations, which diminishes the credibility and value of images presented as evidence in
the court or media. As one can expect, the situation will get worse, when the tools that perform
the forgeries will move from research labs to commercial software. So, we must explore a
method to provide a decisive answer whether an image contains image forgery. In this paper, we
propose a novel multi-scale feature extraction and adaptive matching method to detect the copy-
move image forgery. In the proposed scheme, first, we segment the host image by SLIC in multi-
scale, to generate multi-scale patches; then we apply SIFT to patches in all the scales, to extract
feature points. Next, the Adaptive Patch Matching algorithm is subsequently proposed for
finding the matching which can indicate the suspicious forged regions in each scale. And finally,
the suspicious regions in all scales are merged and some morphological operations are applied to
generate the detected forgery regions. In general, we have four main contributions in the
proposed scheme: 1) we replace the overlapping blocks of regular shape in traditional forgery
detection algorithms, with individual irregular patches, which can better partition the host images
into non-overlapping blocks. 2) We segment the host image into patches in multiple scales, from
which the feature points are extracted respectively. The proposed multi-scale feature extraction
method can extract more accurate feature points. 3) Instead of artificially setting the patch
matching threshold in advance, we propose to adaptively calculate the matching threshold for
better feature recognition. And 4) during the post-processing, we propose to use the predefined
small superpixels to replace the matched keypoints and we apply some morphology operations
into the merged regions to generate more accurately detected forgery regions.

Experimental results show that the proposed scheme performs much better than the existing
state-of-the-art copy-move forgery detection algorithms, even under various challenging
conditions including: the geometric transforms, such as scaling and rotation; and the common
signal processing, such as JPEG compression and noise addition. In addition, the special cases
such as the multiple copies and the down-sampling are also evaluated and the results indicate
the very good performance of the proposed scheme. We may focus on applying multi-scale
approach to other kind of forgery such as splicing or other kind of media such as video and
audio in the future work.
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