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Abstract Smart control access to any service is at the very basis of any smart city project.
Biometrics have been used as a solution for system access control, for many years now.
However, the simple use of biometrics can not be considered as final and perfect solution.
Most problems are related to the data transmission way between the medias, where the
users require access and the servers where the biometric data, captured upon registration,
are stored. In this paper, the use smart-cards is adopted as a possible effective yet efficient
solution to this problem. Palm-prints have been used as a human identifier for a long time
now. This biometric is considered one of the most reliable to distinguish a person from
another as its unique yet stable over time. In this work, we propose an efficient implemen-
tation of palm-print verification on smart-cards. For this implementation, the matching is
done on-card. Thus, the biometric characteristics are always kept in the owner’s card, guar-
anteeing the maximum security and privacy. In a first approach, the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) are improved using upward, downward, leftward
and rightward translations of the matched palm-codes. However, after thorough analysis of
the achieved results, we show that the proposed method introduces a significant increase
in terms of execution time of the matching operation. In order to mitigate this impact, we
augmented the proposed technique with an acceptance threshold verification, thus decreas-
ing drastically the execution time of the matching operation, and yet achieving considerably
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low FAR and FRR. It is noteworthy to point out that these characteristics are at the basis of
any access control successful usage.

Keywords Biometrics · Palm-print · Palm-code · Smart-card · Health-care · Security ·
Privacy

1 Introduction

Biometrics are studies of certain human physical or behavioral characteristics that are capa-
ble of distinguishing two different persons. There are certain properties that must be present
in the features so that they can be used as a biometrics. The most fundamental propriety is
that every person or at least the vast majority of people must possess this characteristic. This
property is called universality. Moreover, two persons must differ considering this charac-
teristic. This property is called distinguishibility. Furthermore, the characteristic should be
invariant with respect to time. This property is called it perdurability. Finally, the character-
istic should be measurable. This property is called collectability [18]. Currently, there are
many characteristics or organs used as biometrics. To name only few that are most com-
monly used, we can cite DNA, face, hand veins, fingerprint hand geometry, iris, palm-print,
voice, among many others. Biometrics are highly secure and convenient for identification
and/or verification of individual identity, as they can not be stolen or forgotten besides the
extremely high difficulty to be forged [13].

The main application of biometrics is related to access control, i.e. through the
verification of biometrics, a person can be granted or denied access to the guarded ser-
vice/information. In most cases, biometry have a big advantage when compared to other
kind of identity certification because only biometric characteristics can really guarantee the
authenticity of the claimant. Banking systems as well as healthcare systems often resort to
the use of passwords and alphanumeric codes for letters besides the use of a card to grant
an account access. Bothe systems must, at any cost, guarantee privacy, security, usability
and performance of the various functionalities available in the system. The implementation
of a biometric system considerably improves security against misuse. Despite the fact that
the use of biometrics is a solution that aims to increase security, the risk of fraud can not be
ignored. Many developers believe that the use of biometrics is the final and perfect solution
for all identification problems [10].

Besides the problems regarding security, there is also the acceptance problem by users.
The use of biometrics has been spreading rapidly and people are starting to think about
their own safety when they are asked to register their biometrics, indiscriminately in various
institutions. After all, their biometric details would be stored in many databases, which are
susceptible to attacks. In such a case, biometrics, which is unique and invariable over time,
could be forever compromised.

It is now well-established that the exploitation of smart-card based solutions aug-
mented with biometrics verification provide more privacy and security when compared to
a biometrics-only or smart-card-only solutions. With the biometrics details stored in the
card’s memory and performing the biometric match on-card, the privacy and security of
smart-card biometric authentication are enhanced as well as system performance. In this
paper, we study the approach that makes use of smart-cards together with biometrics aiming
at increasing the security of access control systems. The objective of the overall project is
to evaluate the possibility of using a multi-application smart-card that grants access by per-
forming biometric comparisons. Thus, it would be possible to use a single card for several
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institutions and biometrics would always be stored in a single card in the possession of the
owner. The biometrics details would be stored only in a unique smart-card and the matching
is processed on-card.

In this paper, we propose an efficient and secure implementation of user authentication
via palm-print verification. Palm-prints have been used as a human identifier for over 100
years and are still considered one of the most reliable ways to distinguish a person from
another, because of its stability and uniqueness [31]. However, only recently, studies about
using it as biometrics have emerged. Comparison of palm-prints, as described in [42], was
chosen to be implemented on smart-cards because it requires small amount of memory and
low computing effort to obtain the comparison results. It is noteworthy to point out that
preliminary results appeared in [39].

The rest of this paper is organized in 6 sections. First, in Section 2, we give a brief intro-
duction of biometrics main concepts. After that, in Section 3, we detail some important
issue about the implementation of biometrics verification in smart-cards. Then, in Section
4, we give an overview of relevant related work. There follows, in Section 5, we describe
the method used to obtain a palm-code for a given palm-print, define its proposed internal
representation and describe the proposed algorithm used to perform palm-code comparison
efficiently. Subsequently, in Section 6, we present and discuss the performance and effec-
tiveness of the proposed implementation. Last but not least, in Section 7, we draw some
conclusions and point out some future work.

2 Biometrics

Biometric technologies are defined as automated methods for identification and/or ver-
ification of unique features of a living being [2]. These can be physical or behavioral
characteristics. Biometrics are highly secure and convenient for identification or identity
verification of an individual. They can not be stolen or forgotten, besides the high difficulty
to be forged [13]. There are several existing biometrics. Fingerprint, iris, hand or facial
geometry, hand veins and voice are examples of physical characteristics while signing and
cadence of typing on keyboards are behavioral characteristics.

The choice of a particular biometrics must take into account many factors such as the
complexity of collection procedure, the performance of the technology, the entailed cost, the
profile and user culture. These factors may also affect the acceptance of biometrics. Table 11

shows a comparison between existing different biometrics in relation to the underlying
characteristics.

One of the key features for selecting the use of a specific biometrics is the distin-
guishibility that will directly impact the accuracy of the verification system. Taking into
consideration all the above aspects, the biometrics of fingerprint, iris and palm-print are the
most likely to be used in smart-card based system.

The palm-print is used as a human identifier for over 100 years now, and is still regarded
as one of the most reliable ways of distinguishing one person from another due to its stability
and uniqueness [31]. However, only recently that is being studied and implemented for
biometrics usage. This said, however, as it will be shown later in Section 4, there are already
few methods based on different approaches.

1Table is taken from [18], where L, M and H represent low, medium and high, respectively. The results are
based on the perception of the authors.
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Fig. 1 Print of a hand print

As illustrated in Fig. 1, the main features used on the palm-print biometrics are the main
lines and secondary folds. As well as fingerprint, palm-print also has lines and details that
can be used to distinguish between two individuals. Due to the size of a palm-print, the lines
and minutiae can only be used with high resolution sensor images. Still, some methods go
further and use the pores to make the distinction more precise.

A device used to acquire the palm-print images can be seen in Fig. 2. It is capable of
making the acquisition of 2D image and/or 3D map of a hand. The palm-print biometrics
does not have a great market penetration yet, but due to the results obtained by researchers,
soon can become a highly used biometrics.

3 Biometrics in smart-cards

This section defines the aspects that the implemented biometric systems are required to have
when using smart-cards. Nonetheless, recall that the focus of this work is study the feasi-
bility of implementing biometric comparisons processed in smart cards. Biometric systems
are basically composed of four components:

– A machine or mechanism responsible for the digital representation of the biometric
characteristics of a person;

(a) Acquisition equipment (b) Equipment in use

Fig. 2 Equipment used for acquisition of a palm-print
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Fig. 3 Registration of a biometrics in the smart-card

– A standard extraction tool that will be used in the comparison;
– A verification tool to match the stored pattern and the input pattern;
– An interface to output of the result.

Biometric systems operate in two stages: the storage of the pattern that will serve as a
basis for the comparison and the matching of the stored pattern and the input pattern.

Figure 3 illustrates the registration process, also known as enrollment. The sample of
the individual, who is card user, is captured. For each specific method will be used biomet-
rics (fingerprints for scanner, microphone for voice recognition, camera for face recognition
camera for iris recognition etc.). The collected data is then processed to extract the unique
characteristics of the user. The extracted biometric template that will be used in future
comparisons is stored on the card.

Figure 4 illustrates the biometric verification process, also known as matching. The appli-
cant’s biometric sample is captured similarly to the process made during enrollment stage.
The unique patterns of this sample are extracted and sent to the checker. The stored pattern
is retrieved from the card and sent to the checker, which then runs the verification pro-
cess, resulting in a score that establish whether both biometric samples are from the same
individual. Biometric system’s main purpose may be identification and/or verification. The

Fig. 4 Biometric verification.
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identification is the search for a person from a given biometric sample. This encompasses
large databases and requires high processing power. Indexing techniques for improving
search may be used to improve performance. On the other hand, verification is the valida-
tion done given two biometric samples, resulting in the identification whether the samples
belong to the same person. The biometric comparisons using smart-cards can occur in two
ways:

– Template on Card (ToC), where the user’s biometric sample is stored in the card’s
memory and the comparison is done externally on another machine. This requires cards
that only have memory, which are much cheaper thank cards that are endowed with a
micro-processor.

– Match on Card (MoC), where the user’s biometric sample is stored in the card’s mem-
ory and the comparison is also processed on the card. In this case, the smart card need
to include at least one processor. The low processing frequency and small memory size
included in nowadays smart-cards are the biggest obstacles in these implementations.
In this work, we propose an implementation MoC.

In a biometric system, when the stored sample is compared to the captured information,
a score of similarity is assigned and used to confirm the identity of an individual. When this
score is compared with a pre-defined threshold, two types of error rate can be observed:

– False Acceptance Rate (FAR), which indicates the rate of false entries or incorrectly
accepted fraudulent data.

– False Rejection Rate (FRR), which indicate the rate of correct individual entries that
were incorrectly rejected.

The supra-cited rates are extremely important in choosing the limit of the score that
should define the final decision of comparisons to be declared as false or true. When it
comes to embedded systems, an extremely important factor is also the choice of the algo-
rithm to be implemented. It is necessary to determine the complexity in terms of memory
usage and runtime.

4 Related work

The palm-print biometrics began to be studied recently, but it has shown a promising bio-
metric technology [44]. The palm is a very rich surface in terms of details, from the most
prominent, as the main lines, to the tiniest details, like the minutiae, as studied and used for
fingerprint, and even the palm pores.

In the case of comparisons in smart-cards, methods which use the tiny details, such as
minutiae and pores, are not interesting, because they entail high-resolution sensors. Also,
the number of extracted details is very large, requiring more processing in the comparison
phase. Therefore, we only focus on methods that use low resolution images i.e. less than
100 dpi.

Currently there are 3 main types of palm-print recognition approaches: holistic, based on
specific characteristics and hybrid.

4.1 Holistic approach

In this approach, the palm-print image is used as the basis of an extractor or holistic classi-
fier. Its use introduces two main problems: the representation of the image and the classifier



22678 Multimed Tools Appl (2017) 76:22671–22701

design. In the sequel, we briefly describe the most commonly used representations and some
existing classifiers.

Palm-print images can be represented both in the space domain as well as in transformed
domain, such as the frequency domain or using subspace among many others. The holistic
features can be extracted using these representations in several ways [1, 4, 8].

Concatenating columns of a palm-print image into a vector of many dimensions, a vari-
ety of linear and nonlinear subspaces can be explored for the extraction of the characteristics
[27, 36, 40]. Recently, stress analyzers have been developed treating the palm-print image
as a second-order tensor [14, 45]. Common digital image processing techniques allowing
the representation of a palm-print image were investigated. The Fourier transform, which
is a classical technique for image transformation, has been successfully applied to feature
extraction and classifier design [19, 25]. In [11], a multi-layer perceptron neural network
with back-propagation was initially applied for palm-print authentication. However, the
recognition of the palm is a typical multi-class learning problem, which is known to be very
difficult to be dealt with the back-propagation algorithm. In [26], modular neural network is
used to decompose the palm-print recognition problem into a series of smaller and simpler
sub-problems of two classes each.

4.2 Local characteristics based approach

The exists a number of characteristics of the palm-print that can be used for recogni-
tion. Table 2 provides a classification of the key characteristics, regarding of the resolution
required, collectability, perdurability and distinguishibility.

The main lines are not reliable to make a direct comparison, but they can be used for pre-
alignment of the palm-print images before a more detailed comparison takes place, as used
in [34]. Typically, the main lines are used in conjunction with other features to enhance the
reliability of the comparison final result.

The palm folds can stay unchanged for period of times, but they are not permanent like
the minutiae. For this reason, they are not useful in critical areas, such as criminology and
forensics. However, they can be used for recognition in real-time systems, yielding high
performance [32, 42].

In [43], the 3D structure of the hand palm is used to increase the reliability of recognition
and invalidate attacks based on using false palm-prints. Even though, this representation
increases the complexity of data acquisition, when combined with the 2D texture, it becomes
highly very reliable and robust against fraud.

The use of minutiae has recently shown great potential in forensics and criminalis-
tics [17]. To work correctly, only minimal resolution images of 500dpi are needed. A

Table 2 Specific characteristics for palm-print recognition

Characteristic Resolution Collectibility Perdurability Distinguishibility

Main lines low high high low

Folds medium high medium high

3D medium low medium medium

Minutiae high medium high high

Level 3 very high low medium high
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great advantage of using minutiae is the possibility of carrying out recognition with high
reliability using only a small portion of the palm-print.

Level 3 features is the name given to the set of features that includes all of the above
as well as the tiny details of the palm-print, such as lines, pores and scars [16]. The use of
Level 3 features is even more important because only a part of the palm-print is used in the
identification process. However, the images must be of very high resolution i.e. higher than
1000dpi). It was established that only 20 to 40 pores are sufficient to identify an individual
[3].

As mentioned earlier, we considered only the methods that use low-resolution images.
So, we only consider algorithms that are based on the main lines and folds of the palm.
There are three main mechanisms for extraction and comparison. These are based on lines,
codes or texture descriptors of the palm.

In [38], the second order derivative of the Gaussian is used to represent the magnitude of
the line and the first order to detect the location of the line. All directional lines are combined
to form the final result. The problem with this approach is the fact that it is inevitable to
go through a process of alignment by rotation and translation during the comparison. This
process that requires a high processing time. To circumvent these problems and improve
performance, the extracted lines are dilated before the comparison.

The codes based methods use digital filters to convert the palm-print image into a
binary codes. The exploitation of these binary codes present advantages, such as low
memory requirements and swift comparison. Therefore, these codes have been very use-
ful in representing and comparing palm-prints. Inspired by the IrisCode [6], palm-code
method was developed in [42]. Initially, convolution of the palm-print image, using a 2D
Gabor filter, is obtained; then the real and imaginary resulting images are coded accord-
ing to their phase in a binary representation. To improve the performance of the method,
it is possible to extract several palm-codes, applying the Gabor filter’s transformation
following different orientations. Hence, the FusionCode method was developed [21]. It
allowed a significant reduction of the error rates. Recent advances in code based meth-
ods indicate that one of the most promising features for the palm-print recognition is the
orientation of the lines [22, 37]. Such methods have been able to achieve near-zero error
rates.

A typical palm-print texture descriptor divides the palm image into small blocks, com-
putes the mean, variance, energy or histogram associated with each of these blocks as local
characteristics [12, 24, 33, 35]. In [24], the palm-print image is divided into overlapping
blocks, the Discrete Cosine Transform coefficients associated with each block are then
computed, and their standard deviations are used to form a feature vector. Other texture
descriptors, such as power of the directional element and histogram of the local direction
have also been adopted in palm-print recognition [12, 35].

A dedicated hardware design for palm-print and palm-vein identification is presented in
[30]. The proposed design is implemented in FPGAs to prove its functionality and evaluate
its performance.

4.3 Hybrid approach

It has been argued that the human vision system uses both local characteristics and holis-
tic perception to recognize and identify objects of interest and it is expected that systems
with hybrid approaches of this kind are promising for recognizing palm-prints [44]. Hybrid
systems have two main applications: high recognition accuracy [23] and efficient iden-
tification of palm-prints [41]. Using both approaches for multiple representations of the
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palm-print, several strategies for fusion different types of characteristics can be used.
Decisions and scores can be exploited to denote the performance of comparisons [20].
In this purpose, a large number of approaches, using multiple palm-prints was intro-
duced in [23, 29]. In [23], three representations are extracted: Gabor, line and subspace
features. Then, a combination of the obtained results is used to deduce the comparison
scores. In [41], multiple levels for hand palm-print identification are used: hand geome-
try, which is labeled as level 1, energy overall texture, labeled as level 2, fuzzy features
of the lines, labeled as level 3, and local texture energy, labeled as level 4. These lev-
els are used in a hierarchical classification process. A guided search scheme is proposed
to achieve an efficient comparison. This method can be used for both recognition and for
identification.

5 Proposed palm-print verification on smart-cards

In the work reported in this paper, we used as a basis the method proposed in [42]. The
extraction of the palm-code of a region of interest of the palm-print image is done using
a 2D Gabor’s filter. The result of the convolution is a matrix of complex numbers and the
palm-code consists of two binary matrices representing the real and imaginary parts.

5.1 Extraction

In all types of biometrics, the extraction is one of the most important steps, because the
result obtained directly impacts the performance of the next steps as well as the final result
of the comparison. Section 5.1.1 explains in greater detail the delimitation of the area of
interest of the palm-print image and Section 5.1.2 details the method used for extraction of
the binary code.

5.1.1 Area of interest

In order to obtain the best results during the generation of the binary code, it is important
that the delimitation of the region of interest is always done in the same way in different
images, regardless of their quality. In [42] a coordinated system was elaborated so as to
perform the measurements using the joints of the fingers as reference points. There are five
main steps, as shown in Fig. 5 to delimit the area of interest:

– Step 1: Apply a low-pass filter, such as Gaussian, to the original image. Using an
intensity threshold in the resulting image to classify the pixels into white or black as
shown in Fig. 5b.

– Step 2: Get the edges of the joints of the fingers (F1xj , F1yj ) and (F2xj , F2yj ) using
a edge recognition algorithm, such as Sobel and Canny, as illustrated in Fig. 5c. The
junction between the ring and middle fingers is not extracted because it is not used in
the next steps.

– Step 3: Find the tangent between the two junctions. Consider (x1, y1) and (x2, y2) being
the points at (F1xj , F1yj ) and (F2xj , F2yj ), respectively. If the line y = mx+c passing
through these two points satisfies the inequalities Fiyj ≤ mFixj + c, for all values i

and j , as in Fig. 5d, this line will be the tangent between the two junctions.
– Step 4: The line passing through (x1, y1) and (x2, y2) will be the Y-axis palm coordinate

system. The line that is perpendicular to the Y-axis through the midpoint between the
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(c) Borders

(f) Area of interest

(a) Captured image (b) Binary image

(d) Reference system (e) Delimitation

Fig. 5 Reference system for extraction of the area of interest

two points will the X-axis, thus determining the origin of the coordinate system, as
shown in Fig. 5d.

– Step 5: The area of interest will be a sub-image of pre-defined size based on the coor-
dinate system, as shown in Fig. 5e. This sub-image is used to extract the binary code,
as shown in Fig. 5f.

5.1.2 Binary code of palm-print

The basis for comparison is the sub-image extracted with the aid of the coordinate system,
as described in Section 5.1.1. Direct comparison of the image with another image is very
susceptible to the light and quality of the captured image. Inspired by the work of Daugman
iris biometrics [6], Zhang [42] proposed using Gabor 2D filter for the extraction of the main
palm-print features. This filter neutralizes the brightness and quality differences, allowing
for a direct comparison.

Due to the existence of an available tool to extract the palm-code from a plam-print
image, we implemented in MATLAB the code of a Gabor 2D filter and the palm-code
extractor, as explained in the next two sections.

5.1.3 2D Gabor’s filter

Direct comparison of the extracted image with another image is very susceptible to bright-
ness and quality of that image. Inspired by Daugman’s work on Iris Biometrics [6], Zhang
[42] proposed using 2D Gabor filter to extract the main features of the palm-print. This fil-
ter allows to neutralize the difference in brightness and quality, bringing forth the possibility
of direct comparison.



22682 Multimed Tools Appl (2017) 76:22671–22701

The 2D Gabor function was proposed by Daugman [5, 7] as a simple model of the visual
cortex cells. It is based on the discovery of the crystalline organization of the principal
cells of the cortex in the brains of mammals [15]. The 2D Gabor function, as proposed by
Daugman, is a spacial bandpass filter that achieves the theoretical limit for a resolution the
associated to information in the 2D spatial and 2D Fourier domains.

Gabor [9] showed that there is a “quantum principle” for information: an association
of time-frequency domain for 1D signals must necessarily be quantified so that no signal
or filter can fit in an area that is less than a certain minimum area. This minimum area,
which reflects the inevitable trade-off between time resolution and frequency, has a lower
limit of the product, analogous to the Heisenberg uncertainty principle in physics. He found
that complex exponential modulated by a Gaussian provides a better result. Equation (1)
presents a general form of the 2D Gabor filter, used in [42], to extract the characteristics of
a palm-print.

G(x, y, θ, u, σ) = 1

2πσ2
exp

− x2+y2

2σ2 exp2πi(uxcosθ+uysenθ), (1)

wherein i = √−1, u i a the frequency of the senoidal wave, θ that controls the orientation
of the function and σ represents the standadrd deviation of the Gaussian function.

Figure 6a shows the real part of the 2D Gabor filter and Fig. 6b shows the imaginary
part. To make the filter more robust against brightness, it is transformed into zero CD (direct
current), applying (2).

G′[s, y, θ, u, σ] = G[x, y, θ, u, σ] −

n∑

i=−n

n∑

j=−n

G[i, j, θ, u, σ]

(2n + 1)2
, (2)

wherein (2n + 1)2 is the filter size. Due of the symmetry, the imaginary part of the filter
already has zero DC. Certainly, the success of the extraction of code depends on the choice
of parameters θ, u and σ. In [42], a process of refinement was applied to optimize these
parameters and found out that θ = π/4, u = 0.0916 and σ = 5.6179. These values were
used in the implementation of 2D Gabor’s filter, used in this paper.

(a) Real part (b) Imaginary part

Fig. 6 Response of the 2D Gabor’s filter to a pulse
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5.2 Palm-print comparison

After the application of the 2D Gabor filter, the result is an array of complex numbers. The
size of the array palm-code is set to 32×32. The coding last step takes into account only
the phase of each complex numbers. It generates two codes, one code for the resulting real
part and one for the imaginary part, observing only the information about the quadrant, in
which the complex number are mapped. If the real part of the imaginary number is greater
than zero, then the code will be set to 1, and 0 otherwise. The same logic is applied to the
imaginary part. The final result is defined by two arrays of 32×32 bits.

Figure 7 shows two examples of palm-code. Figures 7a and d show the area of interest,
as described in Section 5.1.1, of two images captured from the same palm. Note that the
second column shows the real part and the third column shows the imaginary part extracted
from their respective images. Once extracted the codes are compared.

The comparison between two palm-codes is performed by computing the Hamming dis-
tance (HD) between them. The Hamming distance between two palm-codes P : (PR, PI )

and Q : (QR, QI ) is defined in (3), wherein ⊕ is the binary XOR operator and N2 the
size of the real or imaginary part of palm-codes. It provides the percentage of different bits
between two palm-codes.

HDP,Q =

N∑

i=1

N∑

j=1
PR(i, j) ⊕ QR(i, j) + PI (i, j) ⊕ QI (i, j)

2N2
(3)

(a) Palm A (b) A’s Real part (c) A’s Imaginary part

(d) Palm B (e) B’s Real part (f) B’s Imaginary part

Fig. 7 Examples of palm-code extraction
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This result can be improved using a relative displacement between the two compared
matrices. This due the fact that often the error occurs because of a small phase shift between
the stored and input templates. In order to improve the effectiveness of the palm-code match-
ing process, we implemented both horizontal and vertical displacements as well as in both
directions, i.e. left and right.

Consider the binary code of the two palms A and B of Fig. 7. Figure 8 shows the result
of applying the XOR operation between them, where the pixels in white represent the points
where the codes differ.

Calculating the normalized Hamming distance, i.e., counting the white points and divid-
ing by the total of points, we found a distance of 12.99. This distance confirms the fact that
the two images were obtained from the same palm. Note that the Hamming distance can
vary from 0 to 100. Distances closer to 0 indicate high similarity between the compared
samples.

Often, the result of the comparison is not as close to 0 even when it is regarding images
from the same palm. This is mainly due to the different positioning of the hand during
image acquisition phase. Even a small difference can disrupt the identification process,
thus generating incorrect results. In order to mitigate the impact of this kind of problem,
we could perform additional checks when calculating the Hamming distance, varying the
relative position between the two binary matrix of the compared palm-codes. These vari-
ations may be implemented by performing displacements of bits of the palm-code in both
horizontal and vertical directions. For another example of palm-codes, Table 3 shows the
variation of the result of using some Hamming distance offsets (HD). Note that all possi-
ble horizontal movements are performed (leftward, none and rightward) combined with the
vertical displacements (downward, none and upward), totaling 9 possible cases. Through-
out the remainder of this paper, the verification performed regarding the displacement of 1
bit in every way possible will be termed as the comparison with 1-bit translation.

In the aforementioned example, the best result of 19.50, i.e., the shortest distance
occurred using the horizontal displacement 1 bit leftward with no vertical displacement
against 33.44 in the case where no translations are not applied . Note that the horizontal
possible displacements of 1 bit leftward, none and rightward are listed as horizontal dis-
placement of −1, 0 and +1 bit, respectively, while and the vertical displacements of 1 bit
downward, none and upward are referred to as −1, 0, +1 bit. Similarly, the comparison can

(a) Real part (b) Imaginary part

Fig. 8 Result of the Xor’s application
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Table 3 Comparison with 1-bit
translation Shift HD (%)

Horizontal Vertical

leftward −1 downward −1 28.40

leftward −1 none 0 19.50

leftward −1 upward +1 32.88

none 0 downward −1 28.07

none 0 none 0 33.44

none 0 upward +1 44.70

rightward +1 downward −1 40.06

rightward +1 none 0 45.26

rightward +1 upward +1 50.36

be done considering the translation of 2 bits, which will consider all possible combinations
of offsets −2, −1, 0, +1 and +2 for the horizontal and vertical axes, totalizing 25 possible
cases. This is explained in further details with an illustrative example in the next section.

5.3 Algorithms for palm-code comparison

The palm-code is represented by two matrices of 32 × 32 bits: one for the real part and the
other for the imaginary part. Thus, the total size to store the template is 2 × 32 × 32 = 2048
bits or 256 bytes. Because of the limit of a single transmission within Java Card, which is
of 128 bytes, the transfer of the code is be done in two transmission steps. It is noteworthy
that there is no problem in terms of memory storage of the code because current smart-cards
offer over 100kb EEPROM and 1 to 3Kb RAM.

The JavaCard does not allow the use of 2-dimensional arrays. Therefore, the palm-code
is allocated in vector for future comparisons. Bytes are compared using the XOR operator
using 128 iterations to go through all the bytes that compose the palm-code. The number of
bits with value 1 is counted and the accumulated result is divided by the total number of bits.
This division results in a decimal number. However, float variable are not allowed. The most
sophisticated variable type is short (2 bytes). In order to mitigate the problem of accuracy,
the dividend is multiplied by 100 before final division, as described in (3), thus resulting in
a Hamming distance with an accuracy of two digits. Note that the maximum value of the
dividend is 2048 and thus 204800 after multiplication by 100. This leads to an overflow
problem because variables of type short can vary within [−32768, +32767]. To remedy to
this new issue, the dividend is multiplied by 10 while divider is divided by 10 before the
final division occurs. Thus, the maximum value of the dividend is 2048/10 = 20.480 and
the divider value is 2048/10 = 204, avoiding any kind of overflow. After this maneuver,
the division will provide the Hamming distance as a percentage.

Algorithm 1 computes the Hamming distance of the proposed modifications, where N2

is the size of the matrix that is stored as a vector of shorts with 64 positions, T is the binary
code stored in the card and I is the binary code of the individual who is requesting authenti-
cation. The palm-code has a real part and an imaginary that are represented as (TR,TI ) and
(IR, II ), respectively.
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Algorithm 1 Computing hamming distance of two palm-codes

Require: Input palm-codes: I and template palm-code: T
Ensure: Hamming distance between I and T: H

1: Nbits := 0
2: for i := 1 → N2 do
3: xored := TR(i) ⊕ IR(i)

4: Nbits := Nbits + bitsCount (xored)

5: xored := TI (i) ⊕ II (i)

6: Nbits := Nbits + bitsCount (xored)

7: end for;
8: Nbits := 10 × Nbits

9: H := Nbits/204

The bit counting performed in Algorithm 1 (lines 4 and 6), can be implemented in several
ways. The simplest, most intuitive yet most inefficient way consists of using a loop wherein
the count is done for every bit that is equal to 1. This always requires 16 iterations. For a
fast comparison, we devised Algorithm 2, in which the number of iterations coincides with
that of bits equal to 1.

Algorithm 2 bitsCount : Efficient counting of 1-bits

Require: xored

Ensure: Total number of 1-bits in xored

1: bitsCount := 0
2: while xored �= 0 do
3: xored := xored AND (xored − 1)

4: bitsCount := bitsCount + 1
5: end while;

Thus, it is not always necessary to make 16 iterations to reach the final result. In the
case where there are no bits equal to 1, no iteration occurs and the returned result is zero.
This counting method reduces the comparison run time. We can infer that the complexity of
Algorithm 1 two palm-codes represented by 2 NxN matrix each is O(N2). However, the
1-bit counting procedure usually does the job in less than 16 iterations, assuming a normal
distribution in short variables, it requires 8 iterations in average, which is half the time the
straightforward counting requires.

As explained in Section 5.2, it is possible to translate the compared palm-codes to
improve the result of the comparison. The implementation of comparison with bit transla-
tion takes into account the memory allocation strategy. It views the palm-codes as a set of
vectors instead of matrices. The translation is done assuming that every set of consecutive
32 bits is the beginning of a new line. Also, it is noteworthy to point out that the number
of compared bits is equal to 32 × 32 × 2 = 2048 when no translation is used. However,
this number decreases when translations occur. For instance, applying a rightward trans-
lation of 1 bit and no vertical translation, the number of the compared bits is reduced to
31 × 32 × 2 = 1984.

Note that after the displacements in the vertical direction, the comparison of the resulting
palm-codes is still based on the comparisons of short integers. However, the displacement
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of the horizontal direction are done using the bit-shift operations � and 	, requiring the
comparison of bits belonging to different short integers.

The 1-bit translation consists of performing displacement − 1 to 1 bit in both the hori-
zontal and vertical directions, resulting in nine comparisons of palm-codes. To improve the
performance of the comparisons with 1-bit translation, we consider all the vertical trans-
lations for each of the possible horizontal translations. This prevents the execution of bit
displacement of the same line of the binary code several times. Although it requires three
times the memory used to allocate the auxiliary variables that accumulate temporary results,
it is not too expensive, because for more bit translation, more temporary counters must be
used.

Figure 9 illustrates the translation process in a palm-code, showing only 6×32 bits. Note
that a complete palm-code has 32 lines. Consider the set of red rectangles as the input palm-
code and the set of black rectangles being the stored one. Each inner rectangle represents
an a vector entry (a short integer) of 16 bits, amounting to 32 bits per line. In the first
iteration, as in Fig. 9a, no translation is done horizontally. Therefore, no bit shift operation
is required. The second iteration, as in Fig. 9b, uses the leftward shift operation of 1 bit and
the third iteration applies a rightward shift operation also of 1 bit. When translations of 2
bits are considered, we will have 2 extra iterations for 2-bit translations: one leftwards and
the other rightwards. Moreover, we will also have 2 extra stages in each iteration for 2 -bit
translations: one upwards and the other downwards. Thus, there will be 5 iterations of 5
stages each, summing up 25 possibilities.

Figure 9c shows a blue highlight representing one of the short integer inputs, of the vector
stored after applying the rightward bit shift operation. The extraction of the bits that form a
given cell is performed only once. In the same iteration, comparisons are executed for the
three cases of vertical translations.

6 Performance results

The aim of this work is to use the smart-card to process the matching operation and thereby
increase the security level. During the card configuration, the palm-code of the owner is

(a) First iteration (b) Second iteration (c) Third iteration

Fig. 9 Hamming distance with translations
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transmitted to the card so that it is stored for future matching upon access requirement.
To access the service being protected by the biometry, the card-holder must provide its
palm-code, as an input, to confirm his/her identity through the computation of the Ham-
ming distance to the stored template. For implementation purposes, we used the Java Card
platform.

The images used to evaluate this work were taken from the database of Polytechnic
University of Hong Kong and is available in [28]. The database contains 8000 samples of
palm-print images of 400 different hands.

6.1 Palm-print database

The images used for performance evaluation are from the database of the Polytechnic Uni-
versity of Hong Kong and is available in [28]. The database includes 8000 samples of
palm-prints of 400 different hands.

The samples were obtained through two acquisition sessions, with 10 samples acquired
in the first session and 10 in the second. The average time between two sessions is one
month to allow any possible changes to occur. The process of delimitation and cutting to
obtain the area of interest presented in Section 5.1.1 was conducted by the university, being
available only the final images of the area of interest of each sample.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Samples from palm-print images extracted from database POLYU
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Figure 10 shows a number of samples obtained from the palm-prints of different hands.
These smaples are part of the database. All images are in gray scale and have a resolution
of 128×128 pixels. Although the database has both 2D and 3D image acquisition, this work
is focused on the images of 2D acquisition because the implemented algorithm does not
consider the data from the 3D acquisition.

The results are presented in terms of the proximity defined as 100 − H , wherein H is
the Hamming distance. This metric indicates the percentage of similarity between the two
compared palm-codes. In order to test and validate the proposed implementation on the
smart-card, we compared 10 samples of 20 different hands selected randomly from the used
database.

6.2 Direct comparison

The first test consists of comparing palm-codes without any displacement. Figure 11a shows
the distribution of the results of authentic vs. false comparisons. In order to be able to present
both distributions of true and false comparisons in the same illustration, the distributions
were normalized with reference to the total relevant comparisons.

From the data shown in Fig. 11a we can conclude that false comparisons are harmon-
ically concentrated between proximities 40 and 60, while the authentic comparisons are
distributed between 45 and 95, with higher concentration between 80 and 90. The ideal
result occurs when the two curves do not intersect. This illustration can help choosing a
threshold to be applied to declare authentic comparison results, i.e. originating from the
comparison of the same palm.

Figure 11b shows the test results in a more elaborate way. For each choice of proximity,
the illustration shows that the FRR and FAR, as defined in Section 3. The most appropriate
threshold for the proximity, which separates the comparisons of the approved comparisons
from the other ones can also be made from the data as depicted in this illustration. Note
that in order to improve the system security, it is essential that different individuals are not
mixed up. So, the FAR should be as small as possible, but without much impact on the FRR.
In the illustration, we highlight two important points: the point at which the percentages are
equal (ERR) and the point where FAR is less than 0.1 %, which defines a safe FRR. Thus,
Figure 11b highlights the ERR of 5.73 % and the safe FRR of 10.44 %. The second point
is the most interesting for a secure system, which means that, if the choice of the proximity
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Fig. 11 Comparison results when no translation is allowed
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Fig. 12 Comparison results when a translation of 1 bit is allowed

of 68 % as access threshold, the result would be that at every 1000 comparisons of different
hands, only one would be considered authentic while an individual would have 90 % chance
of be granted the access in each trial.

6.3 Comparison with translations

As discussed in Section 5.2, the proximities can be decreased if bit displacements are car-
ried out in one of the palm-codes before the comparison. The impact obtained when using
applying translations of 1 and 2 bits will be discussed next.

Figure 12 shows the chart of the proximity distributions of all performed comparisons
when translations of 1 bit in any possible directions, as well as the corresponding FAR
and FRR of the obtained results. Note the number of possible translations sums up to 9
distinct combinations. In this case, the percentage of equal error rate dropped to EER =
0.17 %, compared to ERR = 5.73 % in the case of direct comparison ı.e. without translation
only. Moreover, the secure FRR dropped to 0.39 %. compared to FRR = 10.44 % in the
case of direct comparisons only. Thereby, we validate the possibility of making use of the
translation of bits to improve the result of the comparison.
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Fig. 13 Comparison results when a translation of 2 bit is allowed
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As explained earlier, aiming at a higher improvement, it is possible to consider the trans-
lation of more bits. Figure 13 shows the chart of the proximity distributions of all performed
comparisons with translations of up to 2 bits in any possible directions, as well as the cor-
responding FAR and FRR of the obtained results. Note the number of possible translations
sums up to 25 distinct combinations: 16 comparisons augmented with the 9 combinations
corresponding to the translations of 1 bit.

The chart of Fig. 13a shows an ideal distribution, wherein the results for authentic com-
parisons and those for false ones are totally separated. This allows for a perfect choice of
the acceptance threshold. It is noteworthy to point out that the distribution of the prox-
imity results regarding authentic comparisons is concentrated between 75 and 95. An
interesting yet expected point is that the distribution of the results related to false com-
parisons became narrower with the increase of the number of translated bits. With direct
comparisons only (i.e. no translation allowed), this distribution is concentrated between
40 to 60, while for comparisons, which allow the translation of 1 bit, this interval is
narrowed to 45 to 60, and finally in the case of allowing a translation of 2 bits, the inter-
val is further narrowed to 50 to 60. Furthermore, it is noteworthy to observe that for
each tentative, there is chance to improve the comparison result. However, false com-
parisons do not achieve proximities higher that 60 %. Moreover, as shown in Fig. 13b,
both important points EER and FRR are 0. This indicates that this biometry is getting
closer and closer to perfection, meaning that there will be no errors during palm-code
comparisons of distinct individuals and yet there will no failure in authentic tentatives
either.

6.4 Processing time analysis

Although the comparison result is important for validating the implementation performance,
it is not the only result that is worthy of analysis. The runtime due to a comparison is
another very important factor as it will determine the waiting time of an individual at every
authentication attempt.

The total time for a comparison takes into account the complete transmission of the
palm-codes and the processing time required to compute the Hamming distance. Compar-
isons with translation of bits can be done to achieve optimal error rates but certainly the
corresponding processing time has increases the execution time of a comparison. The trans-
mission time and storage in the smartcard EEPROM of each part of the palm-code is about
850 ms. Two transmissions must be made to store the whole code. Thus, the total stor-
age time is 1700 ms. This time is relatively high compared to the time of transmission
and storage in the RAM of the part of the palm-code to be compared, which about 185
ms. Although relatively slow, the time required during the storage in the card EEPROM is
not significant since it is a process that is performed only once during the lifetime of this
card.

Figure 14 allows us to analyze the execution time of the comparisons when no translation
is allowed. Figure 14a depicts the the execution time distribution for all the performed 40
thousands comparisons, which include 2 thousands authentic cases and 38 thousands false
cases. As before, the results are normalized (percentages) are used so as to include all the
processing times in the same chart. Figure 14b illustrates the relationship between the exe-
cution time and the obtained comparison result. It can be observed that the execution time
of authentic comparisons varies between 440 and 560 ms while that of false comparisons
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Fig. 14 Execution time when no translation is allowed

varies between 500 and 580 ms. Note that in general, authentic comparisons take smaller
time to be declared than false ones.

Similarly, Figure 15 allows us to analyze the execution time of the comparisons when
translations of 1 bit are allowed. Once again, the tendency of the execution times regard-
ing authentic comparisons, which varies between 1350 and 1800 ms, are smaller than the
required times to determine false comparisons, which varies between 1650 and 1950 ms.
Furthermore, from Fig. 15b, it can be clearly observed that the authentic and false compar-
isons are more separated with respect to proximity than in the case wherein no translation
is allowed, as illustrated in Fig. 14b.

The charts of Fig. 16 show distinctively that the execution times regarding authentic com-
parisons are smaller than those regarding false comparisons. From Fig. 16a, it is noteworthy
to point out that there exists two distinct concentrations of execution times for authentic
vs. false comparisons. Furthermore, form Fig. 16b, the separation between the two kind of
comparisons is more neat than in the previous analyzed cases.

Another interesting characteristic to be observed is the relationship between the decrease
in comparison time and the increase of the proximity measure. This relationship is due to
the bit counting algorithm used (see Algorithm 2). The algorithm requires less iterations to
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Fig. 15 Execution time when a translation of 1 bit is allowed
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Fig. 16 Execution time when a translation of 2 bit is allowed

count the bits of inputs that are more similar in terms of the proximity measure, resulting in
a smaller execution time. In Fig. 16, observe that the points in Figure that are associated with
proximity of 100 % are the samples that compared with themselves. These comparisons
were used for the only purpose to confirm the the comparison of more similar samples are
completed in the smaller time.

Table 4 shows the means and standard deviations of the execution times of the compar-
isons without translation vs. with translations of 1 and 2 bits. Figure 17 compares the average
execution times, considering the three analyzed scenarios (i.e. no translations or translations
of 1 or 2 bits allowed). It is noteworthy to point out that average execution time when trans-
lations of 2 bits are allowed is almost 7× bigger than that obtained when no translations are
allowed. However, the average execution times when only translations of 1 bit are allowed
is only 3× bigger than that obtained when no translations are allowed. Due to the fact that
biometric systems based on smartcards require an answer in real time, the translation of 2
bits can be considered as too slow even though it offers very reduced error rates.

Figure 17 presents a comparison chart the average execution times. The average execu-
tion time of the comparisons with translations of 2 bits is nearly 7× larger than the average
execution time without translation while with the translation of 1 bit, the time increases
approximately 3×. As biometric systems using smart-cards require a real-time response,
the translation of 2 bit presents a negative factor in spite of the fact that it causes reduced
error rates. IN the next section, we provide a viable solution to make a reasonable trade-off
between correct comparison result and its underlying execution time.

Table 4 Execution time of comparisons varying the number of translated bits

#Translated bits Authentic comparison False comparison

Mean (ms) Std. Dev. Mean (ms) Std. Dev.

0 489 22 538 8

1 1520 74 1783 37

2 3725 109 4127 79
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Fig. 17 Execution time of
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6.5 Comparison with a acceptance threshold

The results presented so far indicate that a smart-card is able to execute a biometric-based
method of the palm-print and provide a high performance and high reliability. Nonetheless,
it can be weighted whether the given system should prioritize the speed of comparison or
the low error rates. From the analysis of the results and in order to mitigate the impact of the
execution time, it is possible to use comparisons with translation to achieve the lowest error
rates, but imposing an acceptance threshold so that the processing of various displacements
of bits can be halted in case of a positive authentication and thereby reducing the overall
runtime.

The acceptance threshold is a specific value of proximity, from which the comparisons
are considered to be correct, i.e. after reaching a predefined proximity, the smart card will
have to compare the outcome and may terminate the execution, returning the available
result. The definition of the acceptance threshold can only reduce the execution time of
authentic comparisons, but does not affect the execution time of false comparisons since, in
this case, the execution would not be interrupted. Comparisons with no translation perform
the Hamming distance computation only once, so cannot be interrupted. The acceptance
threshold was implemented for comparisons with translation of 1 and 2 bits. Here, only the
execution times are shown since no improvement would be achieved in terms of comparison
results.

The choice of the acceptance threshold is based on the comparison results obtained for
when translations of 0, 1 and 2 bits are allowed. The comparison results obtained when
translation of 2 bits are allowed, as shown in Fig. 13b, indicate that false comparisons do
not occasion proximities greater than 65. Valuing security, this proximity value is used to
set up the acceptance threshold.

The utilization of the acceptance threshold will not change the test results. Therefore,
we chose new samples fro the database to perform the test whose results are presented in
this section. For this purpose, we used 20 samples of 2 different palms, summing up 400
samples and 160,000 comparisons, wherein 8,000 comparisons are authentic and 152,000
false ones. The distribution of the achieved results, when translations of 1 bit are allowed, are
shown in Fig. 18a, wherein the straight vertical line indicates the used acceptance threshold.
Figure 18b shows the relation between different proximity values and the corresponding
FAR and FRR.
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Fig. 18 Comparison result with acceptance threshold when a translation of 1 bit is used

For the chosen acceptance threshold, FAR is 0 % and the corresponding FRR is 3.55 %.
The increase in terms of error rate regarding the testes when translations of 1 bit are allowed
are due to the random selection of the new samples. This represents a small error rate and
considered safe regarding false comparisons. It is possible to observe in both charts, a sud-
den increase in the curve slope immediately after the chosen acceptance threshold, thus
validating the existence of an acceptance threshold since, starting form that point, there is
no more result improvement. Figure 18b indicates that it is possible to decrease the accep-
tance threshold without big impact on the authentication result. Note that the point where
FRR is the same as FAR is 1.62 % and the safe FRR occurs at 2.99 %

Figure 19 presents the charts that show the distribution of the execution times during
comparisons when translations of 1 bit are allowed with acceptance threshold. It is easy
to observe in the chart that are 3 clusters of time to indicate the accepted values and each
comparison. As the false comparisons are all denied they are in the cluster with longer
execution time while accepted authentic comparisons are clustered in two groups with lower
execution times. The average execution time for authentic comparisons is of 868ms with
a standard deviation of 249 while the average execution time for false comparisons is of
1744ms with a standard deviation of 37. The latter is similar to the time of the comparisons
with translation 1 bit, as expected.
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Fig. 19 Execution time with acceptance threshold when a translation of 1 bit is used
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Fig. 20 Comparison result with acceptance threshold when a translation of 2 bit is used

Figure 20 depicts the charts regarding the proximity distribution and FAR vs. FRR when
comparison allow translations of up to 2 bits as well as the acceptance threshold. For the
chosen acceptance threshold, FAR is 0 % and the corresponding FRR is 3.55 %, which
coincide with those achieved in the case with translations of 1 bit.

Figure 21 shows the chart related to the runtime comparisons when translations of up 2
bits are allowed as well as the acceptance threshold. There are 5 clusters representing the 5
iterations that actually took place during the comparison process. It is possible to observe
that few comparisons performed the last two iterations. The average execution time in the
case of authentic comparisons is of 1217ms. When compared to the average execution time
of comparisons when translations of 1 bit are allowed without acceptance threshold, which
is 1520ms, it can be concluded that the benefit is significant compared to the processing
cost.

Figure 22 evaluates the impact of the acceptance threshold usage on the execution times
obtained. For the authentic comparisons, the execution times of the comparisons with trans-
lation of 1 or 2 bits have shown considerable improvement when using the threshold of
acceptance. In the case of an actual utilization, it is expected that only the card-holder

0 5 10 15 20
500

1000

1500

2000

2500

3000

3500

4000

Number of comparisons/total

E
xe

cu
tio

n 
tim

e 
(m

s)

Authentic
False

(a) Execution time

40 60 80 100
500

1000

1500

2000

2500

3000

3500

4000

Proximity

E
xe

cu
tio

n 
tim

e 
(m

s)

Authentic
False

(b) Proximity vs execution time

Fig. 21 Execution time with acceptance threshold when a translation of 2 bit is used
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Fig. 22 Execution time of comparisons with threshold varying the number of translated bits

attempts an authentication. Therefore, the execution time for authentic comparisons has
a greater relevance in relation to false comparisons. However, false comparisons cannot
impose a very high runtime because it has a negative impact on the acceptance of the tech-
nology of smart-card with biometrics. Taking this into consideration, comparisons with
translation of 1 bit and acceptance threshold would be declared as the best option to use in
a practical application.

Last but not least, it is noteworthy to point out that no comparison with third party
implementation is possible to intellectual property protection on commercial palm-print
verification on smart-cards. Note that any other kind of implementation either on general
purpose or deicated hardware would be somehow biased.

7 Conclusions

This study was motivated by the growing need for ever more robust security systems. Bio-
metrics are known as high reliability security tools as well as smart cards, which have been
inserted into multiple segments to add new functionalities with security. Therefore, these
are two security-related technologies being used together to give rise to an even more robust
tool.

The Java Card technology was chosen because of its vast documentation, various tools
and community that could aid is in the development process. The proposed implementa-
tion followed a common flow, i.e. selection of the algorithm; database selection; algorithm
implementation; debugging, testing and performance evaluation.

Comparison of palm-print implemented in a smart-card achieved good results both in
terms of execution time and effectiveness. The Hamming distance is used to compute the
similarity between the stored and input palm-codes. This allowed us to establish a reliable
evaluation metric regarding the proximity of the two codes. Using the translations of the
palm-code, it is possible to achieve an EER 0 %, i. e. using a specific acceptance threshold,
there would be no error in comparison results. In other words, all false comparisons will
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be detected and all true comparisons will be accepted. However, the use of translations
causes an increase in execution time. To mitigate the impact of this problem, a threshold of
acceptance is proposed. The result is returned once the limit is reached. The results showed
that the use of 1-bit translation is sufficient to achieve reduced execution times. Using this
strategy, it was possible to improve the average execution time from 1520 ms to 868 ms in
comparisons with 1-bit translation. For comparisons with 2-bit translation, which reached
the EER rate of 0 %, the average execution time was about 3725 ms with no acceptance limit
and 1217 ms when the acceptance threshold is imposed. The safe FRR achieved the case
of palm-code comparisons when 1-bit and 2-bit tanslation with acceptance threshold are
almost the same, indicating that the use of 1-bit translation is sufficient to ensure reasonable
security levels.

Furthermore, regarding the execution time and the accuracy of the implemented algo-
rithms in conjunction with the exploited databases, the biometrics of the palm-print can be
considered ideal, as it achieves comparison times shorter than 1 s and still reaches a flase
rejection rate of less than 5 % yet this value can reach 0 %, when increasing slightly the
comparison execution time.

As a future work, other types of biometrics may be studied in order to verify the possi-
bility of the implementation in a smart-card. As a multi-application card, it is possible that
the same card offers more than one type of biometric verification. The implementation of
merging of different biometrics can also improve system security.
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