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Abstract Motion-Compensated Frame Interpolation (MCFI) is commonly used to
produce the fake high-frame-rate videos, and it can be regarded as a video forgery
operation from a broad sense. In this paper, we use the noise-level estimation to
expose MCFI operator, and exploit the periodicity of noise-level varying to propose
an effective automatic detection method. To guarantee the high detection accuracy, the
high-pass filtering and the spike enhancement are both employed to extract the peak
outliers in the Fourier domain. Depending on these outliers, we design the criterion of
credibility value to make a final decision. The extensive experiments evaluated on
hundreds of video sequences with different spatial resolutions and two parameter
configurations of H.264/AVC have shown that the validity of the proposed method,
which has the better detection accuracy for the MCFI method and the frame
repetition.
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1 Introduction

Video tampering is becoming much easier with rapid development of various video editing
tools such as VideoEdit Magic, therefore the forensics techniques are required to verify the
authenticity and integrity of digital video [9, 19, 22].

Digital video is the sequence of still images along the temporal dimension, and its
specific forgery is the frame-based manipulation. Until now, many research works has
always focused on the blind video inter-frame forensics of frame duplication, frame
deletion and frame adding [12]. The current frame-based tampering is only used to cover
the some key video clips, however, it is a special frame-adding operation that Frame Rate
Up-Conversion (FRUC) [1, 2, 15] to insert periodically several new frames into the
video sequence, which is proposed to improve the visual quality of low frame-rate video.
Forgers often use the FRUC to generate the faked high-frame-rate videos, especially for
videos over Internet. Therefore, the reports about detecting FRUC are increasing in
recent years. To the best of our knowledge, the pioneering work was proposed by Bian
et al. [4] to detect the video FRUC by using the periodic properties of inter-frame
similarity. However, their method can only effectively identify the fake high-frame-rate
video by frame repetition. Moreover, this work was further extended to investigate the
specific artifacts of those fake bitrate videos [5]. In the research field of FRUC, it is well
known that the one of the simplest techniques is the combination of adjacent video
frames, like that frame repetition or frame averaging. Although they have a good viewing
experience for static regions, the jittering or ghosting artifacts often occur because the
motion between successive frames is neglected. To improve the visual quality of video,
the forgers are more likely to perform the Motion-Compensated Frame Interpolation
(MCFI) [16, 17], which exploits the motion trajectories to interpolate the new frames.
Therefore, we need some advanced forensic techniques to defeat those fake high-frame-
rate videos produced by MCFI. Bestagini et al. [3] is firstly trying to detect the MCFI,
and their idea is derived from the discovery that the periodicity exists in the prediction
error between the forged video and its re-interpolated estimator. Their technique cannot
offer an automatic recognition system, and besides the re-interpolation, which is the core
of detection algorithm in [3], also introduces excessive computations. By the experience
that MCFI leads to edge discontinuity or over-smoothing artifacts around object bound-
aries, Yao et al. [20] proposed to measure the edge-intensity for the detection of MCFI
operation. Compared with the approach of [3], their work adds the automatic recognition
by exploiting the Kaufman adaptive moving average that defines an adaptive threshold to
distinguish the interpolated frames by MCFI from the original frames. The temporal
variation of edge-intensity is the external phenomenon resulting from the lack of the
high-frequency components in the interpolated frames. However, the existing advanced
MCFI methods can recover accurately the details of edge and texture for some video
sequences with few high-frequency components, which affects the accuracy of MCFI
forensics method in [20]. Therefore, instead of detecting the blur effects, we require more
some traces left by the key operation in MCFI to verify the forgery. In MCFI, the
interpolated frames are obtained by block-based average along with the motion trajecto-
ries. Considering that the noise inevitably exists in the video sequence, the averaging of
similar pixel values can weaken some noise level in the interpolated frame. Since the
interpolated frames are periodically inserted into the original frames, we can detect the
MCFI operator by exploiting the temporal periodicity of noise levels in video frames.
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In this paper, we propose a new video MCFI forensic method to analyze the detectable
effects introduced by an element of MCFI. The main contributions of this work can be
summarized as follows:

& We propose to expose MCFI operator by revealing the specific noise-level variation along
the time dimension of video sequence, and this effect results from the noise accumulation
of averaging the pixel values in the interpolation process.

& We use the noise-level variation to develop an automatic video MCFI detection method.
After a series of specialized Fourier spectrum processing, a robust hard-threshold operation
is exploited to make a decision. In addition, the proposed method is also suitable for the
frame repetition by adding a pre-processing operation.

The video database with a moderate capacity is constructed to test the accuracy of our
MCFI detection method, and the experimental results verify the high detection accuracy for
various MCFI methods.

2 Detectable effects in MCFI

2.1 MCFI overview

The basic elements of MCFI include the Motion Estimation (ME), Motion Vector Smoothing
(MVS) and Motion-Compensated Interpolation (MCI), and they form a flow to generate the
intermediate frame ft. between the previous frame ft.-1 and the following frame ft.+1 as shown in
Fig. 1. Based on the translational motion model, the ME performs the block matching
algorithm with different search schemes (e.g., full search, 3DRS search [10], etc.) between
ft.-1 and ft.+1 to compute the motion vector of each block in the intermediate frame ft., then the
MVS corrects the outliers existing in the estimated motion vectors along the spatio-temporal
direction. Finally, the MCI predicts the intermediate frame ft. in terms of the motion vectors
estimated by ME and MVS. Due to the non-stationary of video signal, it is not easy to
accurately estimate the motions of objects, therefore the most research works are trying to
improve the performance of ME and MVS, e.g., Dikbas et al. [7] selects the different
predictors of motion vectors to impose implicit smoothness constraints into the block-
matching algorithm, Yoo et al. [21] smoothes and refines both the forward and backward
motion vectors, and selects the reliable one as the final result. Even with various ME and MVS
strategies, the computing method of MCI in MCFI has few changes. Let ft.(x, y), ft.-1(x, y) and
ft.+1(x, y) denote the pixels in the intermediate frame, the previous and following frame located
at the spatial location (x, y), respectively, and the formulation of MCI can be presented as

Fig. 1 The basic framework of MCFI
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f t x; yð Þ ¼ α1⋅ f t−1 xþ vx; yþ vy
� �þ α2⋅ f tþ1 x−ux; y−uy

� �
; ð1Þ

where (vx, vy) and (ux, uy) represent the motion vectors pointing to the previous and following
frames in the horizontal and vertical directions, α1 and α2 are the weighting coefficients
inversely proportional to the distance from the interpolated frame to the original one, and their
values are less than 1 but their sum equals 1, e.g., when the up-sampling factor is 2, α1 and α2

are both set to be 0.5. From Eq. (1), we can see that the each pixel of interpolated frame is
computed by averaging the pixel values in the adjacent frames. However, the use of non-
overlapped block in MCI usually leads to blocking artifacts at block boundaries. To reduce
such artifacts, the Overlapped Block Motion Compensation (OBMC) and some adaptive
variants [6] are commonly introduced into MCFI, but these schemes cannot reform the linear
inherence of Eq. (1). Recently, it appears some works to present the non-linear MCI based on
the Multiple-Hypotheses ME (MHME) [11, 13]. Firstly, they uses the traditional MCI to
produce the multiple hypotheses of interpolated frame under the motion vector fields with
different block sizes, then the intermediate frame is combined by these hypotheses with
maximum a posterior probability according to the Bayesian interference. Based on the MCI
method of [13], the work of [11] further optimizes the interpolated results by using some post-
processing, e.g., texture optimization. By the summary on MCI methods, we can see that the
averaging of pixel values from Eq. (1) is a necessary operator in the various MCFI methods,
which give us an inspiration of exposing MCFI operation.

2.2 Gaussian noise accumulation in MCI

Because of the external circumstances and internal camera settings, the noise inevitably exists
in a video sequence all the time. As a consequence of the Central Limit Theorem [18] for a
large pixel number, the components of noise are commonly modeled as the a zero-mean
additive Gaussian distribution, i.e., each pixel value in the previous frame ft.-1 and the
following frame ft.+1 located at spatial location (x, y) can be represented as follows:

f t−1 x; yð Þ ¼ ot−1 x; yð Þ þ nt−1 x; yð Þ; ð2Þ

f tþ1 x; yð Þ ¼ otþ1 x; yð Þ þ ntþ1 x; yð Þ; ð3Þ
where ot-1 and ot+1 are respectively corresponding to the versions of ft.-1 and ft.+1 without the
Gaussian noise, the nt-1(x, y) and nt+1(x, y) independently obey the zero-mean Gaussian
distribution with unknown variance σ2. Given the Eqs. (2) and (3), the Eq. (1) can be
transformed as

f t x; yð Þ ¼ α1⋅ot−1 xþ vx; yþ vy
� � þ α2⋅otþ1 x−ux; y−uy

� �
þα1⋅nt−1 xþ vx; yþ vy

� �þ α2⋅ntþ1 x−ux; y−uy
� �

¼ ot x; yð Þ þ nt x; yð Þ
ð4Þ

with

ot x; yð Þ ¼ α1⋅ot−1 xþ vx; yþ vy
� �þ α2⋅otþ1 x−ux; y−uy

� �
; ð5Þ

nt x; yð Þ ¼ α1⋅nt−1 xþ vx; yþ vy
� �þ α2⋅ntþ1 x−ux; y−uy

� �
; ð6Þ
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where ot is the noise-free version of ft., nt is still a zero-mean additive Gaussian distribution.
We can derive the variance as

σ2
t ¼ D nt x; yð Þ½ � ¼ α2

1 þ α2
2

� �
σ2; ð7Þ

By Eq. (7), we can see that the MCI operator makes the variance of the interpolated frame
be α1

2 + α2
2 (< 1) times than one of its reference frame, e.g., when the up-sampling factor is 2,

σt
2 = 0.5σ2. In fact, the MCI can be regard as a special image averaging. It is well known to

average multiple exposures for static scenes to reduce noise variance. The pixel values of each
block are approximately constant along the motion trajectory, which is similar to the multiple
exposures for the same object. Therefore, the noise level is an important clue to reveal the
MCI-based interpolation operator. Based on this property, the noise level of each frame can be
used to detect the possible MCFI operator. We observe the varying pattern of noise levels in
video sequence to distinguish video forged by MCFI from the originals.

2.3 Noise-level estimation

Considering that the high dimensionality of video signal, we employ a simple and fast wavelet-
based technique, and it uses the Median Absolute Deviation (MAD) to estimate the Gaussian
noise level of each frame, which depends on the assumption that the MAD of the fine-scale
wavelet coefficients of image is proportional to the noise standard deviation [8]. Suppose a
noisy t-th frame ft. with additive Gaussian noise of the zero mean and unknown variance σt

2,
and its size is Ir × Ic with L = Ir × Ic pixels in total. We firstly decompose ft. by one-level fast
discrete wavelet transform to obtain the fine-scale coefficients, and estimate the noise standard
deviation as

̂σt ¼ 1

0:6745
�MAD ytð Þ; ð8Þ

in which yt is a column vector composed by the fine-scale coefficients. The MAD operation,
for any column vector x, is defined as the median of the absolute deviations from the median of
the vector, i.e.,

MAD xð Þ ¼ Median x−Median xð Þj jð Þ; ð9Þ

where Median (·) is a filter to get the median element from the input vector. The fast discrete
wavelet transform is realized byMallat algorithm [14], its filterbank implementation takes only
O(L) operations. The MAD requires only O(Llog2(L)) operators. Therefore, due to a low time
complexity, the wavelet-based technique is well-suited to estimating the noise levels of video
frames in batches.

We select the 4-order symlets to compute the fine-scale wavelet coefficients. The five
512 × 512 test images Lenna, Barbara, Peppers, Goldhill and Mandrill are used to verify the
validity of the MAD noise estimation method. The true noise levels of σ, of which range is
from 5 to 200 by step 5, are used to contaminate the above test images, and then the average
estimated noise levels σ ̂ of all noisy test images are derived by Eq. (8). Figure 2 shows the
relation between the true σ and the estimated σ̂. It can be seen that the fitted curve by the real
points (σ, σ̂) is close to the ideal curve σ ̂ = σ, i.e., the estimated σ ̂ is nearly same with the true
σ. The average mean square error between the true σ and estimated σ ̂ is only 0.3232, which
proves that the MAD-based noise estimation has a better performance.
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3 Detecting MCFI

As described previously, several new frames will be inserted into the resulting video after
MCFI. It is expected that the noise level of the inserted frame will be smaller than that of its
neighbors, because the averaging of pixel values in the MCI operator makes the variance of the
reference frame be larger than the one of the interpolated frame. Due to the fact that these
inserted frames are presented periodically, the key issue of the detection method is to determine
whether there exists periodicity or not for those smaller noise levels in a suspected video clip.
Therefore, as shown in Fig. 3, the flow of our method consists of three stages: (1) to compute
the noise-level curve of suspected video; (2) to analyze the Fourier spectrum of noise-level
curve, and compute the credibility value by the high-pass filtering, spike enhancement and
extraction of peak outliers; (3) to set the threshold to distinguish the original video and those
up-converted video, i.e., if the credibility value is greater than this threshold, the video is
classified as a forged one, vice versa. More detailed descriptions on the method of detecting
MCFI and the time-complexity analysis are presented in the following subsections.

3.1 Computation of noise-level curve

In our work, we firstly perform the 4-order symlets based fast discrete wavelet transform to
obtain the fine-scale coefficients of each video frame at the first level, and then compute the
corresponding standard deviation of noise by using Eq. (8) and (9). The set of
{σ(t)|t = 1,2,…,N} is used to denote the noise-level curve of a given video, where σ(t) is the
standard deviation of the t-th frame ft. in video and N is the total frame number. If the t-th frame
is an interpolated frame by MCFI, the corresponding σt is expected to be smaller than those of
the adjacent frames. Moreover, it is also observed that such smaller values would occur
periodically.

Figure 4 illustrates the noise-level curve for both original and up-converted videos, in
which the original video clip is the raw YUV sequence Football with CIF format and 30 fps.

Fig. 2 Relation between the true σ
and estimated σ̂. The ideal curve
represents σ̂ = σ, and the real curve
represents the actual mapping
between σ and σ̂
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For the up-converted video clip, we firstly down-sample the raw YUV sequence from 30
fps to 7.5 fps, and then up-converted it into 30 fps again by using the MCFI method in
[21]. It can be seen that the original sequence has a smoothly varying noise level, but the
interpolated sequence shows the periodic artifact, which is detectable in the Fourier
domain.

3.2 Spectral analysis of noise-level curve

Considering that the periodic artifact is easy to be highlighted in the Fourier domain, we
analyze the Fourier spectrum of noise-level curve to measure the periodicity.

Firstly, we transform the noise-level curve into frequency domain by using Fast Fourier
Transform (FFT), and get the normalized frequency spectrums F(k). As shown in Fig. 5a, e. It
can be seen the spikes in the Fourier domain occurs only in the low-frequency range of original
video, but the up-converted video adds the three new spikes in the medium and high frequency
range. The spikes in the low-frequency range result from the smooth components of noise-
level curve, and the spikes in the medium and high frequency range implies the periodic
variance changing of inserted frames. Therefore, the high-pass filtering is then performed to
eliminate the low frequency components, i.e.,

Fig. 3 The flow chart of the
proposed detecting method
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FH kð Þ ¼ HFP F kð Þ; d½ � ¼ F kð Þ; d < k≤N−d
0 ; 0≤k≤d or N−d < k≤N

�
; ð10Þ

where FH(k) denotes the high-frequency coefficients of F(k), and d is the cut-off frequency.
The Fourier spectrums of original and up-converted videos after high-pass filtering are
presented in the Fig. 5b, f respectively. We can observe that no spike occurs in the Fourier
domain of original video, and the up-converted video retains only the spikes related to periodic

Fig. 4 Illustrations of noise-level curves for both original and up-converted Football videos. The blue curve
represents the original video at 30 fps without up-conversion; and the red curve represents the up-converted video
from 7.5 fps to 30 fps. Note that we use the MCFI method proposed by [21]

Fig. 5 Illustrations of the Fourier spectrum in the different analysis stages for Football in Fig. 4. The first row is
the different analysis stages of Fourier spectrum for the original video: a initial, b after high-pass filtering, c after
spike enhancement, and d after extracting peak outliers. The second row is the different analysis stages of Fourier
spectrum for the up-converted video: e initial, f after high-pass filtering, g after spike enhancement, and h after
extracting peak outliers
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artifacts. As shown in Fig. 5f, once the periodicity is determined, the up-sampling factor w can
be derived from the position f1 of the first spike in the normalized frequency domain as follows,

w ¼ 1

f 1
: ð11Þ

To avoid that Eq. (10) filters out the first spike, the parameter d should be smaller than f1.
Considering that the visual quality of up-converted video, the up-sampling factor w cannot be
too large, and the values 2, 4 and 8 are more common. Therefore, the d is set to ⌊0.12 ×N⌋ in
Eq. (11), where ⌊·⌋ denotes the floor operator.

To highlight the spikes, the spike enhancement is performed to compute the enhanced result
S(k) as follows,

S kð Þ ¼ ∑
N−d

l¼dþ1
FH kð Þ−FH lð Þ�� ��; k ¼ d þ 1;⋯;N−d; ð12Þ

Figure 5c, g show respectively the enhanced results of original and up-converted videos. It
can be seen that the variations of their small spectrum values are smoother than ones of Fig. 5b,
f, especially for Fig. 5g, the three spikes look so remarkable in a stationary background, which
is more favorable to the automatic extraction of spikes. Finally, we extract the peak outliers
from the enhanced result to locate the position of spikes. The flow of extracting peak outliers is
summarized in Table 1. At the stage of initialization, the initial peak map P0(k) is generated by
forcing the non-peaks of enhanced result S(k) to be 0. In the main iteration, we regard the peak
values lager than 80% of mean value of peaks as the outliers, and neglect those smaller than
80% of mean value of peaks. Until the new outliers cannot occurs, the final peak map Pc(k) can
be determined. Figure 5d, h presents respectively Pc(k) of original and up-converted videos.
For the original video, the number of outliers is larger, and their magnitudes are smaller. For
the up-converted video, the three spikes are only retained at the special positions, and they
have the larger magnitudes. Therefore, we can use the number and magnitudes of peak outliers
to compute the credibility value as follows,

CV ¼ Max Pc kð Þ k ¼ 0; 1;⋯;Njf g
N c � E0

; ð13Þ

Table 1 The flow of extracting peak outliers

The Flow of Extracting Peak Outliers

• Initialization:
Generate the initial peak map P0(k) by forcing the non-peaks of enhanced result S(k) to be 0.

• Main Iteration: Increment i by 1 and perform the following steps:
(a) Compute the mean value Ei of peaks in Pi(k);
(b) Do hard-thresholding for Pi(k) as follows,

~Pi kð Þ ¼ Pi kð Þ;Pi kð Þ≥0:8Ei

0 ;Pi kð Þ < 0:8Ei

�
,

(c) If {~Pi kð Þ|k = 0,1,...,N}∩{~Pi−1 kð Þ|k = 0,1,...,N} = Ø, stop and set Pc(k)= ~Pi kð Þ. Otherwise, apply another
iteration.

• Output: The final peak map Pc(k) including only peak outliers is the ~Pi kð Þ after i iterations.
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where Max{·} denotes to get the maximum value of data set, Nc is the number of outlier set
{Pc(k)|k = 0,1,…,N}, and E0 is the average of peaks in P0(k). When the suspected video is the
up-converted video, due to the large magnitude and the small number of peak outliers, the CV
will be larger. However, when the suspected video is the original video, due to the small
magnitude and the large number of peak outliers, the CV will be smaller. By setting the
threshold T, if the CV is larger than T, the video is classified as a tempered one, vice versa. In
the proposed detection method, the threshold T is only a parameter, and it is important for the
accuracy of detection. Based on our experiments, T is set to be 1.45. The more details on the
setting of T will be provided in Section 4.2.

3.3 Variations for frame repetition

After some modifications, our method is still applicable to detect the up-converted videos by
frame repetition. The frame repetition uses only one adjacent frame to create the inserted
frame, which results in that the variances of inserted frames are same with the one of adjacent
frame. As shown in Fig. 6a, different from the smooth noise-level curve of original video, the
up-converted video by frame repetition has a step-like noise-level curve, of which the jump
occurs periodically. Therefore, before the spectral analysis, we firstly compute the gradient
field of noise-level curve as follows,

g tð Þ ¼ σ tð Þ−σ t−1ð Þ; t ¼ 1; 2;⋯;N ; ð14Þ

where σ(0) = 0. Obviously, the gradients in the smooth part of noise-level curve are zero.
In order to enhance the periodicity of gradient field, we reset the value 0 in g(t) to be the
value 1, i.e.,

g tð Þ ¼ 1 ; g tð Þ ¼ 0
g tð Þ; g tð Þ≠0

�
; t ¼ 1; 2;⋯;N ; ð15Þ

Figure 6b shows the gradient fields g tð Þ of both original and up-converted videos. It
can be seen that the gradient field of original video still changes smoothly, but there are
periodic intense jumps in the gradient field of up-converted video. After analyzing the
spectrum of g tð Þ, we get the peak outliers in Fourier domain for original and up-
converted videos as shown in Fig. 7a, b. It can be observed that, similar to the results
of detecting MCFI, the original video has the more small-magnitude outliers, but the up-
converted video retains only the three spikes. Therefore, we can make the detection
method described in Section 3.2 be suitable to the frame repetition by adding the
following pre-processing,

σ tð Þ ¼
σ tð Þ; 1 g tð Þ t ¼ 1;⋯;Nj

n o
< 0:1N

g tð Þ; 1 g tð Þ t ¼ 1;⋯;Nj
n o

≥0:1N

8<
: ; ð16Þ

where 1{·} denotes to get the number of value 1 in data set. The Eq. (16) means that if the
gradient field of noise-level curve contains lots of value 1, we regard that the noise-level curve
results from the frame repetition operation.
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3.4 Time-complexity analysis

As described above, the proposed method includes three stages, that is, noise-level
estimation of each video frame, spectrum analysis of noise-level curve, and computing

Fig. 6 Illustrations of noise-level curves and their gradient fields for both original and up-converted Football
videos. The blue curve represents the original video at 30 fps without up-conversion; and the red curve represents
the up-converted video from 7.5 fps to 30 fps by using the frame repetition. a Noise-level curves. b Gradient
curves of noise level
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the credibility value. We will discuss the time-complexity of the detection method in
this section. Assume that the video spatial resolution is Ir × Ic with L = Ir × Ic pixels in
total, and the frame number of a given video clip is N. Table 2 presents the time
complexity of each stage in the proposed method. It can be observed from Table 2 that
the time complexity of the proposed method mainly depends on the calculation of
noise-level estimation in stage one and the FFT in the stage two. In stage one, we use
Eq. (8) to compute the noise level of each frame, which costs the time complexity
O(NLlog2(L)). The FFT takes the most of computations in the stage two, thus the time
complexity of the stage two is O(Nlog2(N)). Due to the fact that the number Nc of peak
outliers is too small, the total time complexity of the proposed method is
O(NLlog2(L)) + O(Nlog2(N)), which means the computation time is related to the video
spatial resolution and frame number.

Fig. 7 Illustrations of peaks outliers in Fourier spectrums of gradient fields. a Original video. b Up-converted
video

Table 2 Time complexity analysis of the proposed detection method

Stage Algorithm pseudo-code Time complexity

1 for frame number t = 1:N N×[O(L) + O(Llog2(L))] = O(NLlog2(L))
compute the fine-scale wavelet coefficients ys; O(L)
compute the noise level σ(t) by using Eq. (8);

end
O(Llog2(L))

2 compute the Fourier spectrum F(k) of σ(t) using Eq. (10); O(Nlog2(N))
extract the high-frequency coefficients FH(k) of F(k) using

Eq. (11);
O(d)

compute the enhanced result S(k) of FH(k) using Eq. (13); O(N-2d)
extract peak outliers set Pc(k) by using the flow in Table 1; O(N-2d)

3 compute the credibility value by using Eq. (14); O(Nc)

N is the frame number of a given video clip, L is the total pixel number of each video frame, d is the cut-off
frequency in high-pass filtering, and Nc is the number of peak outliers in Fourier domain

674 Multimed Tools Appl (2018) 77:663–688



4 Experimental results

In this section, various experiments are conducted to evaluate the performance of the proposed
method. Firstly, we construct a training video database to select the best threshold T, and then a
testing video database is constructed to evaluate the performance of the proposed method. The
up-converted video clips are produced by various FRUC algorithms, including the three MCFI
methods from [7, 11, 21] and two non-MCFI methods that the frame repetition and the frame
averaging. Afterwards, the detection accuracy of our method is compared with that of the
MCFI forensics method in [20]. Finally, we present the execution time of the proposed method
at the different video spatial resolutions under the following computer configuration:

CPU: Intel(R) Core(TM) i7–3770 @ 3.40 GHz 3.40 GHz
Memory size: 8 GB
OS: Microsoft Windows 7 64 bits
Coding: MATLAB Version 7.6.0.324 (R2008a)

4.1 Video database

Two video databases are required to select the important threshold T and evaluate the
performance of the proposed method respectively, in which the former is called as the training
video database, and the latter is called as the testing video database. As shown in Table 3, the
24 uncompressed YUV sequences1 with different contents constitutes the basic group of the
training video database and the testing video database, and their spatial resolutions are
respectively QCIF (176 × 144), CIF (352 × 288), 720P (1280 × 720) and 1080P
(1920 × 1080). These original video sequences can further be compressed by H.264/AVC
using the following two styles of configuration:

& Configuration 1 (Cfg. 1): the first frame is only the I frame and other frames are the P
frame, i.e., it exists no Group of Pictures (GOP), and the Quantization Parameter (QP) is
set to be 26, 28 and 30 respectively;

& Configuration 2 (Cfg. 2): insert one I frame every 10 frames, i.e. the length of GOP is 10,
and the QP is set to be 26, 28 and 30 respectively.

Due to the I frame having a good visual quality, and the periodicity of I frame has some
impacts on the accuracy of our method, which will be discussed in the experiments. The original
frame rate of all test video sequences and their compressed versions is 30 fps, and the up-
sampling factor w will set to be 2 and 4, e.g., for w = 2, the video sequences are firstly down-
sampled from 30 fps to 15 fps, and then up-sampled from 15 fps to 30 fps by using the 5 FRUC
algorithms including the MCFI methods of [7, 11, 21] and the non-MCFI methods that the frame
repetition and the frame averaging. In each video database, the video sequences without FRUC
form the Negative Set (NS), and the ones with FRUC form the Positive Set (PS). Above all, the
NS of each video database contains the 84 video sequences including 12 original videos and their
72 compressed versions with the Configuration 1 and 2, and the PS of each video database

1 The uncompressed YUV sequences are coming from the public website: http://media.xiph.org/video/derf/.
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contains the 840 video sequences because each negative instance in NS is corresponding to the 10
positive instances with various FRUC methods and up-sampling factors. Combined with the NS
and the PS, the two evaluation criterions that False Positive Rate (FPR) and False Negative Rate
(FNR) are used, in which the former is the proportion of incorrectly detected ones among all
negative instances, and the latter is the proportion of incorrectly detected ones among all positive
instances. The average detection accuracy is computed as [100-(FNR + FPR)/2] %.

4.2 Threshold setting

The threshold T serves as a criterion of credibility value to determine whether a video has been
tampered with MCFI, and it is an important parameter to guarantee the high accuracy of
detection. Figure 8 shows the distributions of the credibility values CVs of NS and PS in the
training video database. It is observed that the CVs of all negative instances are smaller than
the value of 2, but the nearly 93% values of up-converted videos are distributed over 2.
Therefore, we expect that the proper T should be less than 2.

Based on the above analysis, we set T with different values, where ranges from 0.05 to 2
with a step size of 0.05. To find the best threshold T, the NS and PS in the training video
database are randomly split into the two non-overlapping subsets equally, i.e., one subset is
used for training and another is used for testing. Afterwards, depending on the framework of

Table 3 The basic group of the training video database and the testing video database

Spatial Resolution Training Video database Testing Video Database

QCIF (176 × 144) ice, pairs, harbour city, crew, soccer
CIF (352 × 288) hall, akiyo, coastguard, stefan, carphone foreman, football, tennis, mobile, news
720P (1280 × 720) mobcal, stockholm ducks_take_off, park_joy
1080P (1920 × 1080) sunflower, rush_hour blue_sky, tractor

Fig. 8 The distributions of the credibility values CVs of NS and PS in the training video database
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cross-validation, we apply the different T values on the training subset to train a reliable
threshold under the principle of maximizing the detection accuracy, and evaluate the trained
threshold on the testing subset. We repeat the above process ten times and find that the best
threshold determined by the training subset is steady for every iteration as shown in Fig. 9a.
The ten detection accuracies evaluated on the testing subset are presented in Fig. 9b. It can be
seen that the average detection accuracies are all above 97.8% with some deviations, in which
the maximum one is 99.6% when the threshold T is 1.45. Based on these experimental results,
the threshold T is set to be 1.45 in the proposed method.

4.3 Evaluation on MCFI

Table 4 presents the average detection accuracies of the proposed method for various MCFI
operators from [7, 11, 21]. It can be seen that the average detection accuracies for these up-
converted videos by [7] and [21] are 100%, which proves that our method can successfully
identify the up-converted videos by those MCFI methods equipped with the linear MCI
operator (i.e., Eq. (1)). However, [11] performs the non-linear MCI to jointly generate the
interpolated frames based on the motion vector fields with difference densities, and then uses
the texture optimization to further improve the interpolated results, which interferes with the
noise accumulation in Eq. (1). Therefore, we can observe from Table 4 that the average
detection accuracies on total video sequences are 98.22% and 88.89% for up-sampling factor
w = 2 and 4 respectively, especially for these up-converted videos compressed with Cfg. 1, the
average detection accuracy is only 86.11% when the up-sampling factor w is set to be 4, which
proves that our method can lose some precision for those MCFI methods equipped with the
non-linear MCI operator and some post-processing. Though some failures occur when detect-
ing the MCFI of [11], it can be seen from the last row of Table 4 that the average detection
accuracy of the total testing database on all MCFI methods is still up to 99.41% and 96.23%
for w = 2 and 4 respectively, which verifies the validity of the proposed method for the MCFI
operator. Figure 10 shows the analysis results of the proposed method for original and up-
converted videos with compression parameters of QP = 30 and GOP = 10, and the test video
sequences are respectively are crew, news, park_joy and tractor. Firstly, we can see from
Fig. 10a that it exists no salient peaks in the Fourier domain of those videos without MCFI, but

Fig. 9 Results of cross validation. a The best thresholds for ten iterations of training. b Detection accuracies for
ten iterations of testing
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some moderate-magnitude peaks occur regularly for the news and tractor sequences with slow
motions, which results from the periodic insertion of I frames. By Fig. 10a–e, it is observed
that the analysis results have the salient spikes for the forged videos with MCFI of [7, 21], and
they cannot be impacted by the insertion of I frames. However, for the up-converted videos by
[11], we can see from Fig. 10f, g that the magnitudes of spikes for several test video sequences
are cut down, which results in a low credibility value as so to cause the mistakes. Though some
forged videos with MCFI of [11] have the weaker periodicity of noise-level curve, we still
observe visually the peak outliers in Fig. 10f, g so as to make a correct judgment.

4.4 Evaluation on non-MCFI

Our detection can be still used to identify the up-converted videos by the non-MCFI methods
including the frame repetition and the frame averaging, and the average detection accuracies
are presented in the Table 5. It can be seen that the average detection accuracies for these up-
converted videos by the frame repetition are 100%, which proves that our method can
successfully identify the frame repetition operator. Figure 11a, b show also the analysis results
for the frame repetition, and we can see that it exists the salient spikes. However, for the frame
averaging, some failures occur in the PS of test video database, especially for the conditions of
compression configuration 2 and w = 4, the average detection accuracy decreases to 80.55%.
Figure 11c shows the analysis results for frame averaging when w = 2, and we can observe that
the spikes are still obvious. However, as shown in Fig. 11d, the interference with the
magnitude and the position of spikes is strong in the analysis results for frame averaging
when w = 4. The bad performance for detecting the frame averaging results from the non-
stationary local statistical characteristics of pixel values along the time axis, i.e., the pixel
values at the same position on the time axis change quickly, therefore the statistical distribu-
tions of these pixels have the larger differences, which will lead to the failure of Eq. (7). Due to
the fact that the statistical characteristics of the temporal neighboring pixels has locally

Table 4 Average detection accuracies (%) of the proposed detection method for various MCFI operators

MCFI Method Style of Test Video FPR (%) FNR (%) Detection Accuracy (%)

15 fps to 30
fps (w = 2)

7.5 fps to 30
fps (w = 4)

15 fps to 30
fps (w = 2)

7.5 fps to 30
fps (w = 4)

Dikbas et al. [7] Uncompressed 0 0 0 100 100
Compressed with Cfg. 1 0 0 0 100 100
Compressed with Cfg. 2 0 0 0 100 100
Total 0 0 0 100 100

Yoo et al. [21] Uncompressed 0 0 0 100 100
Compressed with Cfg. 1 0 0 0 100 100
Compressed with Cfg. 2 0 0 0 100 100
Total 0 0 0 100 100

Jeong et al. [11] Uncompressed 0 0 8.33 100 95.84
Compressed with Cfg. 1 0 0 27.78 100 86.11
Compressed with Cfg. 2 0 8.33 22.22 95.84 88.89
Total 0 3.57 22.62 98.22 88.69

Total Uncompressed 0 0 2.28 100 98.86
Compressed with Cfg. 1 0 0 9.26 100 95.37
Compressed with Cfg. 2 0 2.78 7.41 98.61 96.30
Total 0 1.19 7.54 99.41 96.23
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stationary along with the motion trajectory, the interpolated frame by the linear MCI has a
significant decrease of noise level when compared with ones of adjacent frames. Considering
that the frame averaging has a poor interpolated quality than those of [7, 11, 21] as shown in
Fig. 12, the forger cannot often use it to up-convert videos, therefore we do not require to be
particularly concerned with the low detection accuracy for frame averaging.

4.5 Performance comparison

We compare the proposed detection method with the work in [20], and Table 6 summaries
their average detection accuracies for various MCFI and non-MCFI operators. It can be seen
that when detecting the MCFI methods, the method of Yao et al. [20] has the poorer

Fig. 10 Analysis results of the proposed method for original and up-converted videos with compression
parameters of QP = 30 and GOP = 10: a original, b up-converted by [7] with w = 2, c up-converted by [7]
with w = 4, d up-converted by [21] with w = 2, e up-converted by [21] with w = 4, f up-converted by [11] with
w = 2, and g up-converted by [11] with w = 4. In each subfigure, the test videos are crew, news, park_joy and
tractor from left to right
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performance compared with the results of our detection method, e.g., its average detection
accuracy of detecting the MCFI methods [7, 21] with the linear MCI operator can only be up to
be 87.50%. However, our method perfectly identifies authenticities of all test video. For the
MCFI method [11] with non-linear MCI operator, the average detection accuracies of [20] on
total video sequences are 70.84% and 83.93% when the up-sampling factor w is set to be 2 and
4 respectively, and these results still have some gaps compared with the detection accuracies of
our method. As shown in Table 7, when detecting the original video sequences, the failure rate

Fig. 10 (continued)

Table 5 Average detection accuracies (%) for the frame repetition and the frame averaging

Non-MCFI Method Style of Test Video FPR
(%)

FNR (%) Detection Accuracy (%)

15 fps to 30
fps (w = 2)

7.5 fps to 30
fps (w = 4)

15 fps to 30
fps (w = 2)

7.5 fps to 30
fps (w = 4)

Frame Repetition Uncompressed 0 0 0 100 100
Compressed with Cfg. 1 0 0 0 100 100
Compressed with Cfg. 2 0 0 0 100 100
Total 0 0 0 100 100

Frame Averaging Uncompressed 0 0 0 100 100
Compressed with Cfg. 1 0 2.78 30.56 98.61 84.72
Compressed with Cfg. 2 0 2.78 38.89 98.61 80.55
Total 0 2.38 29.76 98.81 85.12
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of method in [20] is 25%, (i.e., FPR = 25%), and lots of failures also occurs when detecting the
up-converted video sequences with MCIF methods. The high failure rates in NS and PS both

Fig. 11 Analysis results of the proposed method for the up-converted videos with compression parameters of
QP = 30 and GOP = 10: a up-converted by the frame repetition with w = 2, b up-converted by the frame
repetition with w = 4, c up-converted by the frame averaging with w = 2, d up-converted by the frame averaging
with w = 4. In each subfigure, the test videos are crew, news, park_joy and tractor from left to right

Fig. 12 Visual results on the 15th interpolated frame of Foreman sequence with different FRUC algorithms: a
the ground truth of the interpolated frame, b interpolated by [7], c interpolated by [21], d interpolated by [11], and
e interpolated by the frame averaging
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reduce the detection accuracy of [20], and these larger accuracy losses proves that the
Kaufman adaptive moving average proposed by [20] cannot still extract a robust adaptive
threshold from the edge-intensity curve of suspected video sequence, and the edge losses in the
interpolated frames might not be an effective clue to detect MCFI operator. For non-MCFI
methods, it can be seen from Table 6 that the method of [20] has a low detection accuracies on
all test videos for the frame repetition, and Table 7 also presents the FNR values of [20] are
larger than 83.33% when detecting the up-converted videos with frame repetition, which
indicates that the method of [20] is suitable to detecting the frame repetition. However, the
method of [20] has the better performance when detecting the up-converted videos with frame
averaging, e.g., when the up-sampling factor w is set to be 4, the method in [20] outperforms
our method, and its average detection accuracy on total test videos can be up to 87.50%.
Table 7 presents FNR values of [20] are 0% for any style of test video, i.e., the method of [20]
can perfectly identify the authenticities of the up-converted videos with frame averaging.

4.6 Execution time results

Table 8 shows the average execution times of the proposed method and [20] for the test videos
at the different spatial resolutions. The length of all test videos is 100. We can see that the
average execution time of two detection methods will increase as the spatial resolution
increases, e.g., when detecting a video sequence with QCIF format, our method and [20]
requires 0.44 s and 0.59 s respectively, and when detecting a video sequence with 1080P
format, our method and [20] requires 46.63 s and 32.60 s respectively. From the last row of
Table 8, it can be seen that the average runtime of each frame on all spatial resolutions is only

Table 6 Average detection accuracies (%) of the existing detection methods for various MCFI and non-MCFI
methods

Forgery Method Style of Test Video Detection Accuracy (%)

15 fps to 30 fps (w = 2) 7.5 fps to 30 fps (w = 4)

Yao et al. [20] Proposed Yao et al. [20] Proposed

Dikbas et al. [7] Uncompressed 75.00 100 87.50 100
Compressed with Cfg. 1 73.61 100 83.34 100
Compressed with Cfg. 2 75.00 100 83.34 100
Total 74.41 100 83.93 100

Yoo et al. [21] Uncompressed 83.34 100 87.50 100
Compressed with Cfg. 1 81.95 100 87.50 100
Compressed with Cfg. 2 81.95 100 87.50 100
Total 82.13 100 87.50 100

Jeong et al. [11] Uncompressed 70.84 100 83.34 95.84
Compressed with Cfg. 1 70.84 100 83.34 86.11
Compressed with Cfg. 2 70.84 95.84 84.72 88.89
Total 70.84 98.22 83.93 88.69

Frame Repetition Uncompressed 45.84 100 37.50 100
Compressed with Cfg. 1 41.67 100 37.50 100
Compressed with Cfg. 2 44.44 100 37.50 100
Total 43.45 100 37.50 100

Frame Averaging Uncompressed 87.50 100 87.50 100
Compressed with Cfg. 1 87.50 98.61 87.50 84.72
Compressed with Cfg. 2 87.50 98.61 87.50 80.55
Total 87.50 98.81 87.50 85.12
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0.170 s for our method, and the method of [20] requires 0.124 s to detect a frame, which
proves that the our method cannot increase excessive calculations while improving the
detection accuracy when compared with the method of [20].

From Table 8, we can observe that the detection speed of our method is not satisfactory,
especially for the high-definition video. Therefore, we expect to reduce the computational
complexity while guaranteeing a high detection accuracy. A simple approach is to perform our
detection method on small spatial windows for each frame, i.e., cropping the original frames and
using these smaller frames to estimate noise-level curve. For this purpose, we evaluate our method
on the CIF video sequences using a square spatial window ranging from 10 × 10 to 200 × 200

Table 7 FPR and FNR values (%) of the existing detection methods for various MCFI and non-MCFI methods

Forgery Method Style of Test Video FPR (%) FNR (%)

15 fps to 30 fps
(w = 2)

7.5 fps to 30 fps
(w = 4)

Yao et al.
[20]

Proposed Yao et al.
[20]

Proposed Yao et al.
[20]

Proposed

Dikbas et al. [7] Uncompressed 25.00 0 25.00 0 0 0
Compressed with Cfg. 1 25.00 0 27.78 0 8.33 0
Compressed with Cfg. 2 25.00 0 25.00 0 8.33 0
Total 25.00 0 26.19 0 7.14 0

Yoo et al. [21] Uncompressed 25.00 0 8.33 0 0 0
Compressed with Cfg. 1 25.00 0 11.11 0 0 0
Compressed with Cfg. 2 25.00 0 11.11 0 0 0
Total 25.00 0 10.74 0 0 0

Jeong et al. [11] Uncompressed 25.00 0 33.33 0 8.33 8.33
Compressed with Cfg. 1 25.00 0 33.33 0 8.33 27.78
Compressed with Cfg. 2 25.00 0 33.33 8.33 5.56 22.22
Total 25.00 0 33.33 3.57 7.14 22.62

Frame Repetition Uncompressed 25.00 0 83.33 0 100 0
Compressed with Cfg. 1 25.00 0 91.67 0 100 0
Compressed with Cfg. 2 25.00 0 86.11 0 100 0
Total 25.00 0 88.11 0 100 0

Frame Averaging Uncompressed 25.00 0 0 0 0 0
Compressed with Cfg. 1 25.00 0 0 2.78 0 30.56
Compressed with Cfg. 2 25.00 0 0 2.78 0 38.89
Total 25.00 0 0 2.38 0 29.76

Table 8 Average execution times of the existing detection methods for the test videos at the different spatial
resolutions

Spatial Resolution Execution Time

Total Time (s) Time (s/frame)

Yao et al. [20] Proposed Yao et al. [20] Proposed

QCIF (176 × 144) 0.59 0.44 0.005 0.004
CIF (352 × 288) 1.49 1.69 0.015 0.016
720P (1280 × 720) 15.11 20.16 0.151 0.199
1080P (1920 × 1080) 32.60 46.63 0.326 0.462
Avg. 12.45 17.23 0.124 0.170
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pixels. Figure 13 shows the detection accuracy and execution time averaged on the all testing
video sequences when the different up-sampling factors are used. We can see that the average
detection accuracy gradually increases as the window size increases, and there is a low exaction
time when using a smaller window. Indeed, a big window contains the more pixel samples, thus
the estimator of noise level is closer to the truth. On the other hand, using a smaller window, the
number of pixel samples is limited, and the analysis on noise-level curve leads to some incorrect
results. However, a moderate window size can both guarantee a high detection accuracy and a low
computational complexity, e.g., when window size is 100, the average detection accuracy is more
than 90%, and it only requires 0.2 s to detect a CIF video sequence. Besides, we notice that for the
different up-sampling factors, our method seems to be so robust to spatial cropping.

5 Conclusions

In this paper, we propose an effective method to expose the fake high-frame-rate videos forged by
MCFI. Based on the discovery that the MCFI interpolates the new frames by averaging the pixel
values of adjacent frames, the specific noise-level variation in the interpolated frame is used to
expose the possible MCFI operator. These inserted frames are presented periodically, and
therefore our detection method is to determine whether there exists periodicity or not for those
smaller noise levels in a suspected video clip. To automatically identify the up-converted videos,
some spectrum analysis tools are performed to extract the salient spikes in the Fourier domain,
and then we use these salient spikes to design the criterion of credibility value. Finally, depending
on this criterion, a robust hard-thresholding is used to make a decision. The experimental results
evaluated on the test video sequences at different spatial resolutions have shown the effectiveness
of the proposed method. The average detection accuracy can be up to 100% for these up-
converted videos by the MCFI method and frame repetition in uncompressed and H.264/AVC
format. Besides, the proposed method has a low computational complexity, and its average
execution time of each frame is only 0.170 s for some common spatial resolutions.

The proposed method determines the threshold parameter through the cross-validation in
training video database, and however the limitation of the training set will also suppress the
widely application of our method. Therefore, an adaptive threshold setting is required to be

Fig. 13 Average detection accuracy and execution time for different window size (in pixels) when using the
different up-sampling factors: a average detection accuracy, and b average execution time
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studied in the future, and a possible solution may be some ideas similar to the spectral
segmentation used in the spectral clustering.
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