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Abstract The increasing prevalence of digital technology brings great convenience to
human life, while also shows us the problems and challenges. Relying on easy-to-use image
editing tools, some malicious manipulations, such as image forgery, have already threat-
ened the authenticity of information, especially the electronic evidence in the crimes. As
a result, digital forensics attracts more and more attention of researchers. Since some gen-
eral post-operations, like widely used smooth filtering, can affect the reliability of forensic
methods in various ways, it is also significant to detect them. Furthermore, the determina-
tion of detailed filtering parameters assists to recover the tampering history of an image. To
deal with this problem, we propose a new approach based on convolutional neural networks
(CNNs). Through adding a transform layer, obtained distinguishable frequency-domain fea-
tures are put into a conventional CNN model, to identify the template parameters of various
types of spatial smooth filtering operations, such as average, Gaussian and median filtering.
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Experimental results on a composite database show that putting the images directly into
the conventional CNN model without transformation can not work well, and our method
achieves better performance than some other applicable related methods, especially in the
scenarios of small size and JPEG compression.

Keywords Digital forensics · Spatial smooth filtering · Convolutional neural network ·
Deep learning · Discrete Fourier transform · JPEG compression

1 Introduction

With the rapid development of digital technology and the popularity of digital devices, it
becomes more convenient to transmit or store digital images. Moreover, efficient image edit-
ing softwares are not only available to professional researchers, but also common people.
As a result, many computer vision-related studies on various general tasks such as image
segmentation [37, 38, 41, 42], image cropping [23, 40], image categorization [21, 36, 43,
45, 47], and object recognition [39, 46], have been carried out. Besides, some other issues
for specific applications have also been discussed, for example, rare category exploration in
medical diagnoses and financial security [22, 23]. Instead of these positive uses, some peo-
ple with ulterior motivations implement malicious manipulations, such as image forgery, to
tamper the authentic digital information, especially the electronic evidence in the crimes.
Therefore, the authenticity and integrity of images can not be taken for granted anymore
and many forensics-related challenges have arisen accordingly.

Generally, lots of forensic methods concentrate on intentional content forgeries of the
image, which mainly include copy-move forgery [7] and image splicing [1]. However, it is
also beneficial to explore more about the manipulating history of an image, including plau-
sible content-preserving operations, such as smooth filtering, compression [24], retargeting
[44] and contrast enhancement [30]. Among them, smooth filtering is applied widely for
blurring and denoising, as well as a post-processing technology used to decrease the relia-
bility of forensic tools. For example, Most copy-move and splicing forgeries employ smooth
filtering to reduce the discontinuity between the forged regions and the rest of the image, for
the purpose of appearing more realistic. Also some researchers try to diminish subtle traces
left by prior manipulations such as resampling [17] and JPEG compression [31], with the
help of smooth filtering. As a result, implementing identification of smooth filtering, espe-
cially the detailed filtering parameters, can yield useful information for forensic analysis by
exposing the history of manipulations.

In general, smooth filtering operations fall into two categories. One is linear, mainly
including average and Gaussian filtering, and the other is nonlinear, i.e., median filter-
ing. Considering that the spatial template filtering is the most representative method of
smooth filtering and have been studied in almost all the related researches, identification
of types and further detailed parameters (the window size to average and median filtering,
and the window size and σ to Gaussian filtering) will be very significant for smooth fil-
tering forensics. Notably, with the popularity of the internet and mobile terminals, many
images are usually transmitted or stored in a low-quality with the form of small size or JPEG
compression, therefore, such identification in this case is very practical and challenging.

Many related works confined to median filtering forensics [3–5, 11, 15, 18, 35, 49] have
been carried out. Yuan [35] proposed a combined feature called median filtering forensics
(MFF) for median filtering detection in the scenarios of JPEG compression and small size.
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Kang et al. [15] utilized a feature from the autoregressive (AR) model of median filter
residual (MFR) to improve detection performance for nearly saturated images. Chen et al.
[5] made an attempt to adopt a deep learning method based on the same MFR and achieved
significant improvement with a high-dimensional feature. We also proposed a novel low-
dimensional feature vector coined (annular accumulated points) AAP to realize the detection
of median filtering with a time-saving process in the previous work. All these methods
achieved good performance on differentiating median filtering images from original images
or images which have undergone other types of manipulations. However, these works did
not involve the distinguishment between each pair of types from, such as original, average
filtered, Gaussian filtered and median filtered images. Authors in [15] claimed that once a
forensic investigator has identified that an image has been median filtered, they may wish to
determine the window size used during median filtering. So they tried differentiating 3 × 3
median filtering from 5 × 5 and obtained good results. It also reflects the importance of
identifying the template parameters of filters.

Most existing approaches [4, 11, 15, 29, 35, 49] manually extract reliable features, and
then feed them into a classifier like the support vector machine (SVM), which has been
trained with lots of labeled images, for detection. Such manual settings may result in impre-
cise parameters optimization, which could degrade the performance. Instead, we try to adopt
deep learning thoughts to accomplish features learning and classification automatically with
iterative parameters update. Deep learning networks, such as deep autoencoders [33], deep
Boltzmann Machines [26] and Convolutional Neural Networks (CNNs) [20], have attracted
increasing attention due to their excellent performances in artificial intelligence. Among
them, CNNs-related methods show outstanding effectiveness in image classification and
character recognition, and some typical models could be referenced.

In this paper, we propose a modified framework based on a conventional CNN model
[20]. By adding a transform layer in front of the conventional model, which is similar to the
schemes in [5, 34], we reveal the distinctions between different types of smooth filtering
operations based on the frequency-domain characteristics, which are usually more conspic-
uous than those in the spatial domain. Experimental results verify the effectiveness of our
method and show it outperforms the state-of-the-art works, which have been proposed for
median filtering detection and could be applicable in smooth filtering forensics. Besides,
our method remains useful in the more practical and challenging cases of small size and
JPEG compression.

2 Proposed method

2.1 Spatial smooth filtering

Spatial smooth filtering are widely applied in digital image processing. As shown in Fig. 1a,
by moving a h×h (h is odd) square window throughout the givenM×N image, each output
in the position of the green pixel, is obtained based on its surrounding pixels in the dashed
green window, and the red one denotes the repeated step. For linear smooth filtering, such
as average and Gaussian filtering, it could be interpreted as a convolution-based operation,
formulated as,

f (x, y) =
∑

i,j

wi,j · g(x, y) (1)
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Fig. 1 a shows the smooth filtering operation in the spatial domain; the template of the b 3×3 average filter
and c 3 × 3 Gaussian filter with σ = 0.5, respectively

where wi,j denotes the weights in the template, (i, j) ∈ {−h−1
2 , ..., h−1

2 } and (x, y) ∈
{1, 2..., M}× {1, 2..., N}. Figure 1b and c show the templates of 3× 3 average filtering and
3 × 3 Gaussian filtering with σ = 0.5, respectively.

And for nonlinear median filtering, the expression is as follows,

f (x, y) = median
(
g(x + i, y + j)

)
(2)

2.2 Frequency-domain response

Initially, we put the images themselves directly into the conventional CNN model, but it
could not work well (detailed results will be presented in Section 3.2.2). Because there are
few perceptible differences to be captured between the original and different filtered ver-
sions of the image, as shown in Fig. 2, the analysis had better resort to discernible patterns
by implement some transformation operations.

We will explore the patterns introduced by various types of filtering operations in the
frequency domain. Fig. 3 shows frequency-domain response amplitudes from original, aver-
age filtered, Gaussian filtered and median filtered version of the same image as Fig. 2,
respectively. For easy-observing, the low-frequency region is shifted to the center part. It
can be observed that the frequency-domain figures from average and Gaussian filtered ver-
sion exhibit distinct patterns, compared with the original version. Moreover, for the same
type of filtering, varied template parameters produce different forms, since the smooth-
ing degree varies. However, as a nonlinear smoothing operation, median filtering presents
fewer discernible patterns, and its frequency response depends on the properties of the input
image. As a result, we introduce the empirical frequency response (EFR) [14] to further

(a) (b) (c) (d)

Fig. 2 An original image (a), and its (b) 5 × 5 average filtered version, 5 × 5 Gaussian filtered (σ = 1)
version and (c) 5 × 5 median filtered version
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Fig. 3 An original image (a), and its frequency-domain response amplitudes of different versions: b original
c 3×3 average filtered, d 5×5 average filtered, e 3×3 Gaussian filtered (σ = 0.5), f 5×5 Gaussian filtered
(σ = 1), g 3 × 3 median filtered, and h 5 × 5 median filtered

reveal the characteristics in the frequency domain of different types of filtered images for
identification.

The EFR of median filtering is defined as,

EFR(ω) = O(ω)/I (ω) (3)

where I (ω) denotes the spectrum of an original image and O(ω) is the spectrum of its
median filtered version.

The EFR could show the changes before and after filtering. Figure 4 presents an example
of respective EFRs of median, average and Gaussian filtering, where each curve is obtained
by computing one-dimensional EFR of each row and then average the EFRs from all the
rows in an image; The results of median filtering agree with the simulation experiments
performed in [12]. It can be also observed that the EFR curve of average filtering appears
oscillatory trailing, and the curve of Gaussian filtering decreases as the frequency increases
in general. As is known, the spectral responses of moving median filtering and moving aver-
age filtering for frequencies of ω ≤ 2π/h (where h denotes the size of the filter template)
are highly similar. However, in the ω > 2π/h region, the curve is very irregular because of

(a) (b)

Fig. 4 EFR curves from three different types of a 5 × 5 and b 3 × 3 filtered versions
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interferences from different frequencies [32]; Some components in this region are retained
while others are weakened.

Above analyses indicate that median filtering could also bring detectable distinct
characteristics into the frequency domain.

2.3 Modified CNN architecture

Hubel and Wiesel [13] proposed the receptive fields through the investigations on the cat’s
visual cortex in 1962. About twenty years later, the Japanese researcher Fukushima [8]
introduced this concept to construct a neural network model called neocognitron, and it is
generally regarded as the origin of CNNs. Different from a conventional fully connected
network, CNN uses the concept of local receptive fields to achieve shift and deformation
invariance, and reduce the number of parameters in the network for better generalization
performance and less computational complexity with shared weights.

A typical CNN framework consists of three types of layers: convolutional layers, pooling
layers and fully connected layers. Based on these typical types of layers, we propose a
modified CNN model called T-CNN by adding a transform layer in advance.

2.3.1 Transformation layer

In order to capture discernible frequency-domain patterns shown above, we add this layer
in front of a conventional CNN framework. It is composed of two units: DFT and log-scale
transformation.

In case of the digital image, a 2-D DFT is performed to obtain the spectrum F(u, v),
defined as,

F(u, v) = 1

MN

M−1∑

x=0

N−1∑

y=0

f (x, y) · exp(−j · 2π(ux/M + vy/N)) (4)

where f (x, y) denotes the pixel value at point (x, y) in the M ×N image, u ∈ {1, 2, ..., M}
and v ∈ {1, 2, ..., N}.

For a real image, the spectral values in the low-frequency region are much bigger than
other values in the medium- and high-frequency region, so the spectrum is firstly converted
into a log-scale-form frequency-domain figure F ′(u, v), to ensure the values in the same
order of magnitude for further analysis, as follows,

F ′(u, v) = log10(|F(u, v)| + 1) (5)

where |F(u, v)| denotes the spectral magnitudes and “+1” ensures non-negative outputs.
Finally, the images are transformed into frequency-domain figures after above process.

2.3.2 Convolutional layer

At the convolutional layers, each neuron is connected to only a small region of the input to
perceive local correlation. Every entry in the output can thus be interpreted as an output of
a neuron that perceives a subregion in the input and shares weights with the same kernel (or
filter). The convolution operation can be denoted as,

xl
j =

∑

i∈Mi

xl−1
i ∗ kl

i→j + bl
j (6)
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where ∗ denotes the convolution operator, xl−1
i is the i-th of all the output maps in layer

l − 1. The convolutional kernel kl
i→j , whose weights could be updated by training, is used

to generate output maps in layer l from layer l −1, bl
j is the trainable bias of the j -th output

map in layer l.
After convolution, the outputs can be represented as feature maps with specific feature

detectors. Next, a nonlinear operation is performed to increase the nonlinear properties of
the decision function and the overall network without affecting the receptive fields.

2.3.3 Pooling layer

Following pooling layer is applied for a downsampling operation. There are several non-
linear functions to implement pooling, among which max pooling is the most common. It
divides each output map from the previous layer into a set of non-overlapping subregions
and outputs their maximums. Through this operation, the feature maps with the smaller
size reduce the amount of parameters and computation in the network, and hence avoid
overfitting [28] to some extent.

2.3.4 Fully connected layer

Finally, after several repeated sections of alternating convolutional and max pooling layers,
the higher level representation will be acquired. Generally, a certain number of consecutive
fully connected layers, followed by a softmax loss layer, is used for classification. Their
neurons, which is fully connected to all activations in the previous layer, will output the
probability of a sample classified into a specific class through the softmax function. The
trainable parameters in the network will be upgraded automatically by the backward error
propagation procedure over and over [20]. This is definitely why the CNN-based methods
mostly outperform other manually extracted features.

2.4 Parameter settings

The framework of the proposed T-CNN model is shown in Fig. 5. We will describe the
detailed settings in this part. The architecture mainly contains one transform layer, two con-
volutional layers, two pooling layers and two fully connected layers. At first, the additional
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Fig. 5 The framework of the proposed T-CNN
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transform layer before the convolution layers, performs DFT and log-scale transformation
on the input images so as to generate frequency-domain figures. In this work, the data are
firstly resized to 64 × 64 for saving learning time of the model. After transformation, the
first convolutional layer convolves previous outputs with 20 kernels of size 5× 5 (stride=1)
and generate 20 corresponding feature maps with the size of 60 × 60. It is followed by an
max pooling layer with filters of size 2 × 2 (stride=2), to decrease the size of feature maps
to 30 × 30. Similarly, after following convolutional layer with 50 kernels of size 5 × 5
(stride=1), and the same pooling layer as before, 50 feature maps with the size of 13×13 are
obtained. Finally, the first fully connected layer with 500 neurons converts previous outputs
into a vector with the size of 1× 500, and the neurons in the last fully connected layer must
not be fewer than the classes. Its output is fed into a softmax loss layer for classification.

The Rectified Linear Units (ReLUs) function f (x) = max(x, 0) is used to activate the
outputs of convolutional layers and the first fully connected layer. Compared with a com-
mon saturating activation function like sigmoid and tanh, the ReLUs has been argued to
be more biologically plausible [10], and it can accelerate the convergence for training [25].
Meanwhile, a technique “dropout” [19] is used to reduce overfitting by randomly omitting
half of the feature detectors on each training case.

3 Experiments

In this section, we will validate the effectiveness of our method and compare its performance
with some other applicable outstanding methods, which have been proposed for median
filtering forensics.

3.1 Experimental setup

We carried out the experiments on a composite database containing 15000 images from the
following three image databases:

– 1338 images from the UCID [27]. This database contains 1338 uncompressed RGB
images with a resolution of 512×384. Many of these images contain significant regions
of mostly smooth patches and several images are defocused, which presents additional
challenges.

– 3662 images from the Dresden Image Database (DID) [9]. It contains more than 14000
images of various indoor and outdoor scenes acquired from 73 different digital cameras.

– 10000 images from the BOSSbase [2]. It contains 10000 never-compressed grayscale
images with the size of 512 × 512.

These popular databases have been used in many related works, such as [3, 5, 11, 15, 35,
49]. Before further processing, images were converted into 8-bit grayscale.

Theoretically, we could implement template filtering operations on images with any
parameter. But in practice, only a limited number of typical parameters are applied. For
example, the authors in [3–5, 11, 15, 18, 35, 49] carried out related researches with widely
used 3 × 3, 5 × 5 and 7 × 7 median filters. Similarly, for the average filter, larger window
sizes will cause excessively blurred appearance and smaller could not achieve the desired
effectiveness for smoothing to interfere with the forensic methods. And for the Gaussian fil-
ter, much bigger or smaller σ will also cause unsatisfactory outcomes, and there is generally
a positive correlation between the selected σ and corresponding window size. According to
such actual conditions, in this paper, we discuss three different typical templates for each of
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these three filters, to arrange the experiments and as a result, obtain ten datasets in total as
follows.

The composite database without any manipulation is regarded as the original dataset
DORI. Processing the DORI using 3 × 3, 5 × 5 and 7 × 7 median filters, 3 × 3, 5 × 5 and
7×7 average filters, and 3×3 (σ = 0.5), 5×5 (σ = 1) and 7×7 (σ = 1.5) Gaussian low-
pass filters to obtain the datasets DMED3, DMED5 ,DMED7, DAVE3, DAVE5, DAVE7, DGAU3,
DGAU5 and DGAU7, respectively. All the images in these ten datasets will be fed in the
proposed modified CNN model. Randomly selected 70 % of each dataset is designated as
the training set, while the complement 30 % is designated as the testing set. Totally, the
training set contains 105000 images from ten different classes, while the testing set contains
the remaining 45000 images.

Similar to other related methods [4, 5, 15, 35], we also evaluate the performance in terms
of accuracy,

Acc = Nc

Nt

, (7)

where Nc and Nt denote the number of correctly classified and total testing samples,
respectively.

3.2 Experimental results

To evaluate the performance of our method, we present the classification results of above
ten classes with a confusion matrix, as shown in Table 1. The diagonal elements denote the
accuracy of each class and the rest show the error rates. It can be observed that the proposed
method effectively discriminate ten classes from one another. Fig. 6 shows the changes of
the testing loss and accuracy in the iterative process. We can see the testing loss tends to be
convergent after about 20000 iterations, and the accuracy is maintained a high level.

Several state-of-the-art methods, such as the MFF, MFR+AR, MFR+CNN and AAP,
have been proposed for the most challenging median filtering detection. Although they were
not introduced in general smoothing identification involved in this paper, they could also be
migrated to this application, considering that they also explored the statistical differences
between different operations, including median, average and Gaussian filtering. Table 2
presents the comparing results of these methods. We can see that our method T-CNN out-
performs the manually-extracted-features-based methods MFF, MFR+AR and AAP, and

Table 1 The confusion matrix of T-CNN between ten classes on the composite database

% ORI MED3 MED5 MED7 AVE3 AVE5 AVE7 GAU3 GAU5 GAU7

ORI 96.77 0.38 0.20 0 0.61 0.69 0.65 0.48 0.22 0

MED3 0.40 97.35 0.64 0.48 0.18 0 0 0.14 0.44 0.36

MED5 0.34 0.60 97.55 0.48 0.38 0 0 0.08 0.22 0.36

MED7 0.23 0.24 0.34 97.83 0.28 0.32 0.34 0.10 0.18 0.16

AVE3 0.24 0.62 0.16 0 98.52 0 0.08 0.32 0 0.06

AVE5 0.14 0.57 0.18 0.02 0 98.96 0.02 0 0.08 0.04

AVE7 0.16 0.32 0 0.14 0.06 0.06 98.84 0.04 0.04 0.32

GAU3 0.59 0.20 0.04 0.24 0.20 0.55 0.18 97.58 0.20 0.22

GAU5 0.64 0.06 0.24 0.10 0.48 0.12 0.48 0 97.84 0.04

GAU7 0.32 0.18 0.26 0.06 0.44 0.24 0.16 0.02 0.14 98.17
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Fig. 6 Changing loss and accuracy in the iterative process, where the left vertical axis indicates the loss and
the right indicates the accuracy

also the deep learning-based MFR+CNN, which failed perhaps because the MFR features
extracted from different types of filtered images confuse the CNN model, since they present
fewer perceptible differences than those in frequency domain. As expected, directly putting
images into the conventional model achieve a very low overall accuracy 21.18 %.

3.2.1 Generic Features

Sometimes, effective features are learned not only for a specific task such as the template
parameters identification in this paper. As a result, it is essential to separate the feature
extraction and the classification to get a generic feature. Various pre-trained CNN models
[6, 16, 48, 50] have been successfully used for extracting image features, which are normally
the activations from some of the networks last few fully connected layers.

Following this, we use activations of the first fully connected layer as features called fc1.
We qualitatively evaluate our learned fc1 to verify if it is a good generic feature by visual-
izing the features on the composite database. For each of the ten classes, we compute the
average of 500-dimensional features from 4500 testing images to form a 1 × 500 vector
representing this class. The comparison results in Fig. 7 indicate that our learned features
show obvious differences between these ten different types. And also we can observe there
are fewer differences between three median filtering classes with different parameters than
those presented in average and Gaussian filtering. That is why the accuracies in Table 1 of
the median filtering are slightly lower than those of average and Gaussian filtering. More-
over, it also reflects that median filtering identification is the most challenging task as shown
in Fig. 3 above. Like some of baselines with manually extracted features, we also proceed to
feed our fc1 features into the simple multi-class SVM and achieve a good overall accuracy
97.49 %.

Table 2 Overall accuracy of
different methods on the
composite database

Method MFF MFR + AR MFR + CNN AAP T-CNN

Acc (%) 80.53 93.34 52.47 92.75 97.86

26860 Multimed Tools Appl (2019) 78:2 1–2 8685 6 65



Fig. 7 Visualization of features from 10 different types of images. Each row denotes a 500-dimensional
feature vector from one type, and for easy-observing, each row is duplicated 25 times continuously (totally
250 rows)

3.2.2 For low-resolution images

Most copy-move and splicing forgeries use smooth filtering to reduce the discontinuity
between the forged regions and the rest of the image, for the purpose of appearing more
realistic. In this case, local filtering operations in small sized regions will be employed.
And in most practical situations of storage and transmission, images are saved in JPEG
compressed format. As a result, it is necessary to further identify smooth filtering operations
in the scenarios of small size and JPEG compression.

We firstly crop 64 × 64 center portion from each image in the composite database, and
then compress cropped images with JPEG (quality factor(QF) = 70). Next, corresponding
datasets and training-testing pair are generated following the steps in Section 3.1.

In this part, we compare our methods (including T-CNN and fc1+SVM) with above well
performed MFF, MFR+AR and AAP. As known to all, the JPEG compression will affect
the reliability of forensic methods because filter characteristics are suppressed by JPEG
artifacts, and in small sized images, the number of captured features is reduced. There-
fore, compared with the previous experimental results, the performances of all the methods
degrade as shown in Table 3. However, our method is still effective with an accuracy over
80 %, and the method fc1+SVM could achieve better performance with 78.82 % than other
baselines, which also put manually extracted features into a simple SVM for classifica-
tion. That is because both our two methods exploit characteristics in the frequency domain,
where the patterns might be more robust to resist the JPEG effects than those in the spatial
domain, where the blocking effect caused by JPEG compression would affect the correla-
tion between the pixels and some of their neighbors. Fig. 8 reports the detailed comparison
results in the form of gray-scale confusion matrix. It can be observed that both the fc1+SVM
and T-CNN present the most concentrated distribution in the diagonal of the matrix, while

Table 3 Accuracies of different
methods for smooth filtering
identification in small sized and
JPEG compressed images

Method MFF MFR + AR AAP fc1 + SVM T-CNN

Acc (%) 49.96 53.40 53.04 78.82 80.12
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Fig. 8 The confusion matrixes of a MFF, b MFR+AR, c AAP, d fc1+SVM, and e T-CNN, respectively, for
64×64 JPEG compressed images; The ten filtering classes, in order form left to right and from top to bottom,
are ORI, MED7, MED5, MED3, AVE7, AVE5, AVE3, GAU7, GAU5 and GAU3

other methods show higher values in some other components. This suggests our method
could obtain the best performance in the practical scenarios.

4 Conclusion

In this paper, we proposed a novel method of smooth filtering forensics based on deep
learning algorithms. By adding a transform layer in front of a conventional CNN model,
we capture discernible patterns to identify the types and template parameters of the spa-
tial smooth filtering operations. Experimental results supported by theoretical analysis
have showed that our approach achieved outstanding performance, compared with several
state-of-the-art methods, especially in the challenging cases of small size and JPEG com-
pression. Different from most methods based on the spatial-domain analysis, we explore the
characteristics of different filtering operations in the frequency domain, which makes our
T-CNN method and the fc1+SVM method with extracted features from the first fully con-
nected layer achieve better anti-interference performance to JPEG compression. Besides,
the learned feature fc1 has also shown better performance than other manually extracted
features of the baselines, which also apply simple SVMs to fulfil the classification task.
As a result, it effectively separates the feature extraction and classification to get a generic
feature, which will be employed in more general forensic tasks.

In the future, the proposed thoughts based on discernible frequency-domain patterns
could be extended by involving more types of filtering operations and further other vari-
ous manipulations in general forensic situations. Moreover, we will explore the distribution
characteristics in the frequency domain more deeply, and try some statistical analysis to cap-
ture more respective low-dimensional features for efficient computation in the classification
phase.
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