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Abstract Detection of Alzheimer’s disease (AD) from magnetic resonance images can
help neuroradiologists to make decision rapidly and avoid missing slight lesions in the
brain. Currently, scholars have proposed several approaches to automatically detect
AD. In this study, we aimed to develop a novel AD detection system with better
performance than existing systems. 28 ADs and 98 HCs were selected from OASIS
dataset. We used inter-class variance criterion to select single slice from the 3D
volumetric data. Our classification system is based on three successful components:
wavelet entropy, multilayer perceptron, and biogeography-base optimization. The sta-
tistical results of our method obtained an accuracy of 92.40 ± 0.83%, a sensitivity of
92.14 ± 4.39%, a specificity of 92.47 ± 1.23%. After comparison, we observed that
our pathological brain detection system is superior to latest 6 other approaches.
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1 Background

As is known, Alzheimer’s disease (AD) is a chronic neurodegenerative disease aging progress
[44]. It accounts for 60% and 70% of dementia that causes severe thinking, memory, and
behavior problems [66]. In the past, nearly 30 million elders were reported as suffering from
AD. In the coming 2050, Alzheimer’s disease (AD) shall affect 1 in 85 people in the
worldwide [63].

As the world steps into an aging society, people with AD bring heavy burdens and
negative impacts to both their families and the society. In US, the cost for the
healthcare on people with AS is about $100 billion every year, and shall increase
to $1 trillion annually after thirty years [48].

In recent decades, several neuroimaging techniques have been widely applied in clinical
diagnosis and AD detection. Those techniques are composed of computed tomography (CT)
[11], single-photon emission computed tomography (SPECT) [37], positron emission tomog-
raphy (PET), magnetic resonance imaging (MRI) [9, 19, 49, 69], magnetic resonance spectral
imaging (MRSI) [12], functional magnetic resonance imaging (fMRI) [62], etc.

Automatic detection for AD is extremely important for patients, so they can have enough
time to get early treatment. Two types of detection systems exist in past researches, one is
whole brain based detection (WBD) [47], and the other is single slice based detection (SSD)
[78]. In hospitals, the latter was widely used due to its inexpensiveness (only 300–500 RMB
per scan) and rapidness (only two or three minutes per scan). In this study, we focus on the
latter one.

How to detect important features from brain images? Physicians and computer experts have
different opinions on this problem. Physicians like to extract local features, they either measure the
volume of segmented region of interest (ROI), or use voxel-basedmorphometry (VBM) tomeasure
the atrophy, or measure cortical thickness and other features related to brain tissues [46]. On the
other hand, computer experts like to use image processing [35, 36, 46] techniques and artificial
intelligence methods [5, 75], and therefore directly extract image global features, like Hu’s moment
invariants [60], Zernike moment [21], wavelet energy [72], wavelet transform [34], etc.

Scholars have proposed various methods to detect AD, which are listed in Section 2. Our
contribution aims to propose a novel SSD system for AD with higher accuracy than state-of-
the-art approaches, on the basis of wavelet entropy, multilayer perceptron, and an improved
biogeography-based optimization method. Besides, our contribution is to compare our pro-
posed method with widely used methods by strict statistical experiments.

The structure of the paper is organized as below: Section 2 discusses the background and
latest methods. Section 3 presents the feature extraction methods. Section 4 offers the
classification methods. Section 5 reports the data, the results and gives corresponding discus-
sions. Final Section 6 presents the concluding remarks.

2 State-of-the-art

Currently, there are many novel AD detection methods: Dong (2014) [14] employed the under-
sampling (US) technique. They used principal component analysis (PCA) and singular value
decomposition (SVD) to select features. Finally, they combined decision tree (DT) with support
vector machine (SVM). Plant (2010) [51] employed brain region cluster (BRC) and information
gain (IG). Savio (2013) [55] offered a new deformation-based morphometry (DBM) method.
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They found modulated gray matter (MGM) performed well. Furthermore, they utilized Pearson’s
correlation (PC) to select important features. Yuan (2015) [73] employed the eigenbrain (EB) to
extract features. Afterwards, they employed Welch’s t-Test (WTT) to reduce the feature dimen-
sionality. Gray (2013) [23] put forward a voxel-based morphometry (VBM) method and
employed random forest (RF) technique. Zhang (2015) [76] proposed a novel displacement field
(DF) to detect AD.

This paper proposed a novel AD detection system, which is based on wavelet entropy (WE)
and multi-layer perceptron (MLP). WE has been successfully applied in various medical
applications. For example, Shiyang (2007) [57] applied WE to analyze the heart rate fluctu-
ation. Bakhshi (2013) [4] applied continuous-time WE to detect cardiac repolarization
alternans. Frantzidis (2014) [18] used relative WE and electroencephalographic (EEG) to
detect AD. Candra (2015) [10] used WE to classify EEG-emotion signal.

On the other hand, MLP is also a prevalent classification tool in medical fields. For instance,
Sonawane (2014) [58] applied MLP to predict heart diseases. Behera (2015) [6] used bird
mating optimization method and MLP to classify diseases. Ibrahim (2015) [26] used MLP to
diagnose breast cancer. Meng (2015) [41] analyzed the meteorological factors related to
emergency admission of elder stroke patients in Shanghai, with the tool of MLP.

From above, we see WE and MLP are efficient tools to analyze medical signal and
images, and they have achieved success in recent studies. This gives solid support for
our study.

3 Feature extraction

3.1 Single slice selection

The single slice was selected via our past proposed inter-class variance (ICV) criterion [76] with
important modifications. Reference [76] selected 10 most important slices from each 3D volu-
metric brain image. In this paper, we only choose one important slice, hence, the slice with the
highest ICV was picked up from all slices, and it was used for following processing. The slice
direction may be sagittal, coronal, or axial. In this study, we chose axial direction by experience.

3.2 Wavelet transform

In this study, Wavelet transform (WT) was firstly analyzed. Torrents-Barrena (2015) [61]
selected complex wavelet transform to handle Alzheimer’s electroencephalography signals.
Aggarwal (2015) [2] used 3d discrete wavelet transform on T1-weighted brain magnetic
resonance images for the diagnosis of AD. However, wavelet transform introduces additional
parameters such as wavelet families and decomposition scales [79]. Previous studies commonly
selected wavelet families and decomposition scales by experience or arbitrarily.

When the wavelet analysis method is employed for AD detection, the ultimate aim
is to obtain better identification rate of AD subjects. Another problem raised is
wavelet transform will generate the same size of coefficients as original 3D brain
image, which will cause a burden to the consequent analysis.

Entropy can be employed to measure the information content over the decomposed
wavelet coefficients. The wavelet entropy (WE) have been proposed to calculate the
entropy of t wavelet subband coefficients distribution.
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The discrete wavelet transform (abbreviated as DWT) [39] implements continuous
wavelet transform (CWT) using the dyadic scales and positions [43]. Suppose t
represents the time and r(t) is a given signal in the time domain (can be extended
to spatial domain easily), the CWT is defined below:

S a; τð Þ ¼
Z∞

−∞

r tð Þ 1ffiffiffi
a

p ψ*
t−u
a

� �
dt ð1Þ

where Ψ is a real-valued wavelet function. S denotes the wavelet coefficients, a the dilation
factor, u the translation factor.

We discretize formula (1) by limiting a and u to a discrete lattice

a ¼ 2 j ð2Þ

u ¼ 2 jk ð3Þ

Then, we have the DWT form of

Lj;k nð Þ ¼ Ω
X
n

r nð Þl*j n−2 jk
� �" #

H j;k nð Þ ¼ Ω
X
n

r nð Þh*j n−2 jk
� �" # ð4Þ

Here Ω denotes the downsampling [16]. n is the discrete counterpart of variable t. L
represents the approximation coefficients through a low-pass filter l(n). H represents the detail
coefficients through a high-pass filter h(n). j and k denotes the scale and translation factor for
wavelet function, respectively.

3.3 Brain image oriented wavelet

What kind of wavelet is suitable for brain image? To answer the question, we selected
three row-lines and three column-lines from a randomly selected brain image. Figure 1(a)
shows the randomly selected brain image. Figure 1(b-d) presents three row-lines with
indexes of 30, 40, and 50, respectively. Figure 1(e-g) presents three column-lines with
indexes of 60, 70, and 80, respectively.

After comparing the row-lines and column-lines with different wavelets, we finally
selected to use bior4.4 wavelet, since the wavelet forms of bior4.4 are similar to the
sharp changes of gray-level values in the lines of brain images. Figure 2 shows the
decomposition functions of bior4.4.

Compared to orthogonal wavelets, biorthogonal wavelet has more freedom degrees, and its
wavelet transform is invertible but not necessarily orthogonal. Another advantage of
biorthogonal wavelet is to generate symmetric wavelet functions.
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3.4 Entropy and wavelet entropy

In statistics, entropy is defined for a stochastic system to measure its randomness
quantitatively. Suppose we have a continuous random variable X ∈ Rn, then the
entropy S can be calculated as:

S ¼
Z ∞

0
−η xð Þlogη xð Þdx ð5Þ

where η(x) denotes the probability density function (PDF) of variable X. The value range of
entropy sit between zero and one. The less the entropy is, the less uncertainty degree the
system is, and vice versa.

(a) A randomly selected brain image 

04=IR)c(03=IR)b(

06=IC)e(05=IR)d(

08=IC)g(07=IC)f(

Fig. 1 Randomly selected row-line and column-line of brain images (RI = Row Index, CI = Column Index)
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Wavelet entropy (WE) [25] calculates the entropy value of the PDF of the energy
distribution of wavelet subband coefficients in the wavelet domain. It combines
wavelet transform and Shannon entropy, so as to estimate the disorder/order degree
of a particular image with specified spatial-frequency resolution. Suppose we have a
brain image with size of 256 × 256, and take a 2-level WE as an example.

Figure 3 shows the diagram of calculatingWE. Here a brain image was submitted, after firstly
taking 1-level DWT, we have four subbands in total (HL1, LL1, HH1, and LH1). Then, a 2-level
DWT decomposes the LL1 subband, which is then transformed to four other subbands (HL2,
LL2, HH2, and LH2). The LL1 subband usually contains more image information, thus, it is also
called approximation subband. The other three bands contain only detail information, and
therefore they are called detail subband. In a word, the next decomposition is always performed
over the LL subband. In total, there are 7 subbands (LL2, HL2, LH2, HH2, HL1, LH1, and LL1).
Entropy is then implemented over each subband, and finally a 7-element entropy vector is output.

4 Classifier

4.1 Multilayer perceptron

In the field of artificial intelligence [5], a multilayer perceptron (MLP) is a feed-forward neural
network structure that maps input training points to target labels. The universal approximation
theorem [74] guarantees the MLP can approximate to the model required for our task. Figure 4
shows that an MLP is composed of multiple layers (usually 3) of nodes in a directed graph.

Brain

LL1 HL1

LH1 HH1

LL2 HL2

LH2 HH2

HL1

LH1 HH1

1-level 2-level

64128256

Entropy

S(LL2)

S(HL2)

S(LH2)

S(HH2)

S(HL1)

S(LH1)

S(LL1)

Fig. 3 Pipeline of Calculating WE (L = Low; H = High; S = Entropy)

FW(b)FS(a)

FPH(d)FPL(c)

Fig. 2 Some important functions of bior4.4 decomposition (SF = scaling function; WF = wavelet function;
LPF = low-pass filter; HPF = high-pass filter)
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4.2 Biogeography-based optimization

Traditionally, MLP is trained by backpropagation (BP) algorithm. The BP method uses
gradient of the loss function to train the weights and biases in the MLP. Before training, the
weights and biases were generated at random. Then, we measure the mean-squared error
(MSE) between realistic output R and target output T

E ¼ 1

2
T−Rk k2 ð6Þ

Here E represents the value of MSE. The target here was interpreted as the clinical dementia
rating (CDR) as shown in Table 2.

Nevertheless, the loss function contains many local minimal points, and gradient
descent method may converge to one of the local minimal points. To improve the
performance, scholars have suggested to use swarm intelligence that can converge to
global minimal point at very high probability. For instance, Dil (2016) [13] used
genetic algorithm (GA) to train the artificial neural network. Saghatforoush (2016)
[54] combined ant colony optimization (ACO) with neural network. Mashhadban
(2016) [40] applied particle swarm optimization (PSO) in training ANN.
Shamshirband (2016) [56] combined cuckoo search (CS) with ANN. Two years ago,
Mirjalili (2014) [42] proposed to use a novel training method, named biogeography-
based optimization (BBO), to train MLP, and they reported the superior performances
of BBO to other swarm intelligence based training algorithms. Therefore, we chose
the BBO in this study.

Biogeography-based optimization (BBO) iteratively approximates to the global optimal
point of an optimization problem [28, 65, 70], by mimicking the context of biogeography.
First, we define the Bhabitat suitability index (HASI)^ of the comfort measure of each habitat
based on current living conditions. The HASI relies on numerous variables [17], such as
temperature, rainfall, area, humidity, vegetation, etc. Those variables are defined as Bsuitability
index variables (SUIV)^ [52].

Input

Hidden

Output

Fig. 4 Diagram of multilayer
perceptron, in which each layer
connecting fully to the next layer
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Three important components are covered in BBO algorithm: migration, elitism, and
mutation. In below texts, we shall discuss them in sequence.

Habitats with higher and lower HASI values tend to emigrate and immigrate,
respectively, since emigration is caused by intense competitions among existed spe-
cies, and immigration is yielded due to abundant resources left for extra species [15,
71]. Therefore, based on the relationship of emigration rate x and the immigration rate
y, we can model the migration of species as:

x zð Þ ¼ X � z
Z

ð7Þ

y zð Þ ¼ Y � 1−z
Z

ð8Þ

In the formula, z denotes the number of species, Z represents the maximum number of
species. X and Y represents the highest values of emigration and immigration rates, respec-
tively [24].

Suppose a(z) represents the solution probability of species s, A is the maximum value of a.
Hence, mutation u is defined as

u zð Þ ¼ 1−a zð Þ
A

� U ð9Þ

where U is the maximum mutation rate [8]. The mutation operation is carried out by:

Fi;m ¼ Fi;k þ θ� Fi;max−Fi;min

� � ð10Þ
Where θ is a random number in the range of [0, 1]. Fi,k represents the SUIV value

at k-th step. Fi,m is the mutated value, and will be assigned to Fi,k if it can provide
better HASI value. Fi,max and Fi,min represents the lower and upper bounds of Fi,k,
respectively. Remember that mutation was carried out independently on each SUIV.

Fi;k←Fi;m;
if v F1;k ; F2;k ; :::; Fi−1;k ; Fi;m; Fiþ1;k ; :::

� �� �
< v Fkð Þ ð11Þ

where v represents the HASI objective function. On the other hand, elitism keeps
the best solutions within the ecosystem [50], to counteract the effect of mutation
operation. Assume the number of elitism is ξ, then the algorithm performs elitism by
assigning y = 0 for the best ξ elites.

Table 1 Measurement of classification performance

Measure Definition

Accuracy (TN + TP)/(TP + FP + TN + FN)
Sensitivity TP/(FN + TP)
Specificity TN/(FP + TN)
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4.3 Stratified cross validation

With the aim of statistical analysis, 10-fold stratified cross validation (SCV) was
employed for fair comparison. The 10-fold SCV repeated 50 times, viz., a 50 × 10-
fold SCV was implemented. For each run, we take the accuracy, sensitivity, and
specificity, as the measurement of the performance (See Table 1).

A correctly recognized AD case was taken as a true positive. Based on the 50 runs, the final
three measures of were reported, in the form of both the mean and standard deviation (SD).

5 Experiments, results, and discussions

Data used in the simulation experiments in this paper, were downloaded from BOpen
Access Series of Imaging Studies (OASIS)^ [3]. The OASIS is a project, compiling
and freely distributing MRI data sets, in order to make MRI data sets of the brain
freely available to the scientific community [53].

OASIS covers two types of data: cross-sectional MRI data and longitudinal MRI
data. In this study, we used cross-sectional MRI data because our study aims at
developing an automatic system to detect AD, which is not relevant to longitudinal
data in which AD subjects were gathered over a long period of time.

The cross-sectional MRI data in OASIS include 416 subjects, who aged from 18 to
96. All subjects are right-handed, and include both men and women. In this study, we
pick up 126 samples (28 ADs and 98 HCs). The exclusion criterion is subjects less
than 60 years old or any of their records are missing. The demographic statuses are
reported in Table 2. The imbalanced data may cause problem in future identification,
we adjust cost matrix [29, 45] to solve this problem.

5.1 Image preprocessing

For each subject, each scanning session include three or four individual T1-weighted
MRI scans. In order to increase the signal-to-noise ratio (SNR), all those MRI scans
with the same protocol of the same person were motion-corrected, and spatially co-
registered to the Talairach space to generate an averaged image, and then brain

Table 2 Demographic Status of subjects

Characteristic AD HC

PN 28 98
Age (Year) 77.75(6.99) 75.91(8.98)
MMSE 21.67(3.75) 28.95(1.20)
Ed. 2.57(1.31) 3.26(1.31)
SES 2.87(1.29) 2.51(1.09)
CDR 1 0
GD (M/F) 9/19 26/72

(PN = participant number; MMSE = mini-mental state examination; SES = Socioeconomic Status; Ed. =
Education; CDR = clinical dementia rating; x(y) represents x is the mean and y is the standard deviation;
GD = gender; M = male; F = female)
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masked. The motion-correction registered the 3D images of all scans, and then
generated an average 3D image in original acquisition space. The images were then
resampled to 1 mm × 1 mm × 1 mm. The image was transformed from acquisition
space to Talairach coordinate space. Finally, the brain extraction was implemented.
The whole preprocessing can be viewed in Fig. 5.

All MR images were downloaded from OASIS and preprocessed. We only considered one
slice of all MR images in axial view. Figure 6 shows exemplar instances of both HC and AD.

5.2 WE results

The AD image was decomposed by bior4.4 wavelet. Figure 7(a) presents an original AD
image. Clearly the ventricle is enlarged and the cortex is shrunk compared to healthy controls.
Afterwards, Fig. 7(b) offers the 1-level DWT decomposition results, in which four subbands
(LL1, LH1, HL1, and HH1) preserve different components from original image. Figure 7(c)
shows the 2-level decomposition results. The LL1 was decomposed to LL2, LH2, HL2, and
HH2. Figure 7(d) shows the 3-level decomposition results. The LL2 was further decomposed
to LL3, LH3, HL3, and HH3.

(a) Scan I (b) Scan II (c) Scan III 

(d) Combined (e) Atlas-Registered (f) Brain-masked 

Fig. 5 Preprocessing of a
specified subject (Axial View)

Fig. 6 Axial view of (a) HC and
(b) AD
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5.3 Optimal decomposition level

After 50 × 10-fold stratified cross validation, our BWE + MLP + BBO^ approach
achieved an accuracy of 92.40%, a sensitivity of 92.14%, a specificity of 92.47%, a
precision of 77.76%, when 3-level decomposition was implemented. We also changed
the decomposition level from 1 to 4, and plotted the corresponding performance
change in Fig. 8, from which we can observe 3-level decomposition yields the best
performance.

5.4 Statistical analysis

In the third experiment, we give the details result of each run over each fold of this proposed
method. Appendix 1 gives the segmented results based stratified cross validation. Remember
that we have 28 AD subjects and 98 HC healthy subjects. The 10-fold segmentation divides
the dataset into ten folds. Each column in Appendix 1 represents a different fold. Each row in
Appendix 1 represents a run. The same setting is for Appendix 2.

The sensitivities, specificities, and accuracies over the 50 runs of 10-fold SCV is shown
below in Table 3. Here we observe that the sensitivity of our method is 92.14 ± 4.39%, the
specificity is 92.47 ± 1.23%, the accuracy is 92.40 ± 0.83%.

(a) AD (b) 1-level DC (c) 2-level DC (d) 3-level DC 

Fig. 7 DWT Decomposition Results (DC = decomposition)

Fig. 8 Classification performance
vary with decomposition level
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5.5 Comparison with other approaches

To further demonstrate the effectiveness of this proposed BWE + MLP + BBO^, we compared
it to 6 state-of-the-art approaches in Table 4. Those methods include US + SVD-PCA + SVM-
DT [14], BRC + IG + SVM [51], MGM + PEC + SVM [55], EB + WTT + SVM [73],
VBM + RF [23], and DF + PCA + SVM [76]. The meaning of these abbreviations can be
found in Table 5. For clear view, Fig. 9 presents the corresponding bar plot.

The results in Table 4 show that US + SVD-PCA + SVM-DT [14] and BRC + IG + SVM
[51] did not report the standard deviation of three measures. The former obtained an accuracy
of 90%, a sensitivity of 94%, and a specificity of 71%. The latter obtains an accuracy of
90.00%, a sensitivity of 96.88%, and a specificity of 77.78%. We can observe their specific-
ities are too low compared to other approaches. Therefore, these two methods are not worthy
to be studied.

Other five methods report both the average values and the standard deviation values.
MGM + PC + SVM [55] obtained an accuracy of 92.07 ± 1.12%, and a sensitivity of

Table 3 Measures over 50 runs (Unit: %)

Sen. Spc. Acc. Sen. Spc. Acc. Sen. Spc. Accu.

R1 100.00 92.86 92.06 R18 92.86 92.86 92.86 R35 85.71 94.90 92.06
R2 96.43 93.88 92.86 R19 96.43 91.84 91.27 R36 96.43 92.86 92.86
R3 89.29 93.88 92.06 R20 96.43 94.90 92.06 R37 100.00 91.84 92.86
R4 96.43 89.80 91.27 R21 89.29 93.88 92.06 R38 100.00 92.86 94.44
R5 89.29 94.90 92.86 R22 96.43 90.82 92.06 R39 100.00 91.84 93.65
R6 89.29 94.90 91.27 R23 92.86 92.86 92.86 R40 82.14 93.88 91.27
R7 92.86 94.90 93.65 R24 96.43 91.84 92.86 R41 85.71 93.88 90.48
R8 92.86 93.88 93.65 R25 89.29 94.90 93.65 R42 92.86 91.84 92.06
R9 100.00 93.88 92.06 R26 96.43 92.86 93.65 R43 92.86 91.84 92.06
R10 89.29 93.88 92.06 R27 92.86 92.86 92.86 R44 92.86 91.84 92.06
R11 100.00 89.80 92.06 R28 89.29 93.88 91.27 R45 89.29 94.90 93.65
R12 96.43 92.86 93.65 R29 92.86 92.86 92.86 R46 92.86 93.88 91.27
R13 89.29 92.86 92.06 R30 89.29 91.84 91.27 R47 100.00 92.86 92.06
R14 92.86 91.84 91.27 R31 100.00 91.84 92.86 R48 100.00 92.86 92.86
R15 89.29 92.86 92.06 R32 92.86 91.84 92.06 R49 92.86 91.84 92.06
R16 92.86 92.86 92.86 R33 92.86 92.86 92.86 R50 96.43 92.86 92.06
R17 96.43 92.86 92.86 R34 89.29 92.86 92.06 Average 92.14

± 4.39
92.47

± 1.23
92.40

± 0.83

(R = Run; x ± y, x means the mean, y means the standard deviation)

Table 4 Comparison with State-of-the-art Approaches

Approach Accuracy Sensitivity Specificity

US + SVD-PCA + SVM-DT [14] 90 94 71
BRC + IG + SVM [51] 90.00 96.88 77.78
MGM + PC + SVM [55] 92.07 ± 1.12 86.67 ± 4.71 N/A
EB + WTT + SVM [73] 91.47 ± 1.02 90.17 ± 1.66 91.84 ± 1.09
VBM + RF [23] 89.0 ± 0.7 87.9 ± 1.2 90.0 ± 1.1
DF + PCA + SVM [76] 88.27 ± 1.89 84.93 ± 1.21 89.21 ± 1.63
WE + MLP + BBO (Our Method) 92.40 ± 0.83 92.14 ± 4.39 92.47 ± 1.23

(Bold means the best)
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86.67 ± 4.71. Nevertheless, they did not report anything about the specificity. Thus, it is not
further considered in this study.

All the rest algorithms achieved satisfying results. EB + WTT + SVM [73] obtained an
accuracy of 91.47 ± 1.02%, a sensitivity of 90.17 ± 1.66%, and a specificity of 91.84 ± 1.09.
Their excellent performance contributes to their proposed eigenbrain, which was inspired from
the eigenface theory [7] widely used in face recognition.

VBM + RF [23] obtained an accuracy of 89.0 ± 0.7%, a sensitivity of 87.9 ± 1.2%, and a
specificity of 90.0 ± 1.1. Their success contributes to the voxel based morphometry. Indeed,
VBM has been commonly used to study brain changes. Maguire (2000) [38] showed taxi
driver will have larger back part of posterior hippocampus in average. Good (2001) [20]
showed global gray matter decreased linearly with age, but the global white matter did not.
Nevertheless, it needs accurate spatial normalization, otherwise the classification performance
may decrease significantly.

DF + PCA + SVM [76] obtained an accuracy of 88.27 ± 1.89%, a sensitivity of
84.93 ± 1.21%, a specificity of 89.21 ± 1.63%. This method relies on a novel method
called displacement field (DF). This research measures and calculates the displace field
of different slices between AD patients and HC subjects. Liu (2016) [33] extends DF to
three-dimensional. DF method is promising, but it still needs further development to
solve several problems: (i) DF is sensitive to noise, i.e., it will fail if the brain extraction
result is not clear. (ii) The initial random solution candidate affects the final searched
result. (iii) Fast algorithms are expected.

Finally, this proposed BWE + MLP + BBO^ achieves the largest accuracy of 92.40% and
the largest specificity of 92.47% among all methods. In addition, our method obtains a
sensitivity of 92.14%, which is slightly worse than BRC + IG + SVM [51] of 96.88% and
US + SVD-PCA + SVM-DT [14] of 94%. Considering all three measures, our method
performs better than other six methods. Our method does not propose any new algorithm,
and it is a simple combination of mature algorithms. Nevertheless, the result shows Bsimple is
better than complex^, as stated in Occam’s razor [59]. This also gives us a hint to use

Fig. 9 Bar plot of algorithm comparison (MGM + PC + SVM [55] did not report its specificity)
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combination of simple methods in other medical applications, such as sensorineural hearing
loss [22, 31], multiple sclerosis [77], breast cancer [32], etc.

6 Conclusions and future research

In this paper, our team proposed a new AD identification approach based on wavelet entropy
(WE), multilayer perceptron (MLP), and biogeography-based optimization (BBO). This
proposed BWE + MLP + BBO^ approach yields an accuracy of 92.40%, a sensitivity of
92.14%, and a specificity of 92.47%.

In the future, we will test advanced variants of WE, such as relative wavelet entropy [30],
wavelet singular entropy [27]. In addition, some advanced swarm intelligence [1] methods can
be used for training MLP. Other image preprocessing methods will be tested to enhance the
classification performance, such as image denoising [67], image enhancement [64], and image
segmentation [68]. Morphological shared-weight neural network will be employed as an
alternative to MLP.

7 Nomenclature
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Table 5 Acronym list
Abbreviation Definition

US Under-sampling
SVD Singular value decomposition
PCA Principal component analysis
DT decision tree
SVM support vector machine
BRC brain region cluster
ICV inter-class variance
IG information gain
DBM deformation-based morphometry
MGM modulated gray matter
PC Pearson’s correlation
EB Eigenbrain
WTT Welch’s t-Test
VBM voxel-based morphometry
RF random forest
DF displacement field
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