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Abstract Gaussian mixture model learning based image denoising as a kind of structured
sparse representation method has received much attention in recent years. In this paper,
for further enhancing the denoised performance, we attempt to incorporate the gradient
fidelity term with the Gaussian mixture model learning based image denoising method to
preserve more fine structures of images. Moreover, we construct an adaptive regularization
parameter selection scheme by combing the image gradient with the local entropy of the
image. Experiment results show that our proposed method performs an improvement both
in visual effects and peak signal to noise values.

Keywords Image denoising · Gaussian mixture model · Adaptive regularization
parameter · Gradient fidelity term

1 Introduction

Digital image has been widely used in our daily life. However, during the acquiring process,
it is inevitably corrupted by the degraded factors, mainly including the precision in mea-
surements of sensors, motion blur, lens aberration. Therefore, in order to obtain the high
quality images, there has been a growing attention in image denoising techniques.
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Generally speaking, given a corrupted image u0 = Au + ε, where A stands for a linear
blurring operator, ε is the additive white Gaussian noise and u is the original image, restor-
ing u from u0 often is an ill-posed inverse problem. In the past decades, a great variety of
image recovery methods for solving the inverse problems have been presented, such as the
regularization methods based [8, 12, 27, 31], the image sparse representation based [3, 6,
15, 28], the mixture models learning based [19, 25, 32], and so on. The total variation (TV)
regularization [18, 29] as a classical image restoration method, utilizes priors on certain dis-
tributions of image gradients to locally regularize image, which enables to obtain satisfying
results on piecewise-smooth images like cartoon images. The sparse representation method
for image restoration is based on the fact that image can be sparsely represented on a redun-
dant dictionary adaptively learned, and has proven its validity in recovering a wide variety
of images [17, 30], including the natural images, the medical images, the aerial images and
the satellite images. However, the traditional sparse representation method assumes that the
atoms in dictionary are independent of each other and the structure information between the
atoms is not taken into consideration. So as to achieve more satisfying denoised results, at
present, many people have devoted to the research on the correlation among the dictionary
atoms and propose a number of structured sparse representation methods.

The mixture model learning based image denoising method employs a small number
of mixture components to learn priors over image patches for image statistical modeling,
which has the advantages of the well-understood mathematical behaviors and relatively
low computational complexity. Especially, the Gaussian Mixture Model (GMM) [11, 14,
16, 26] based image restoration method has proven its effectiveness and achieved good
results, which actually is a kind of structured sparse representation method. Compared with
the dictionary learning, learning image priors using GMM is less time consumption and
easy to implement. Presently, the Expected Patch Log Likelihood (EPLL) which restores
an image by maximizing the expected patch log likelihood, as one of the most important
image denoising methods based on Gaussian mixture image prior has achieved a satisfying
result.

In addition, the gradient information of image has been successfully introduced into the
TV model, the pixel-level MAP-estimation [2] and non-local sparse representation [4, 5,
23], for preserving the small-scale textures of image. Besides, image gradient is frequently
employed in image quality assessment, on account of the fact that it has the advantage of
acquiring more fine structures of images. Motivated by this, we incorporate the gradient
fidelity term [13] with the GMM based image denoising method for further enhancing the
image denoising performs during the noise removal.

Moreover, recently, regularization parameter selection has received much attention,
which has a great effect on preserving more details of image when denoising. At present,
numerous methods for regularization parameter selection have been put forward, includ-
ing the discrepancy principle based [21], the residual image statistics (RIS) based [7], the
L-curve and gradient based [24]. In this paper, we focus on the image gradient based
regularization parameter selection problem for GMM based image denoising method.
Unfortunately, the image gradient is sensitive to noise and can not acquire satisfying results
when the image is corrupted seriously. By observing that the local entropy of image has a
good robustness to noise, we attempt to construct a new adaptive regularization parameter
using image gradient matching and the local entropy of image. Furthermore, we ana-
lyze the relationship between the regularization parameters of the data-fidelity term and
gradient-fidelity term, and propose a novel regularization parameter scheme for GMM
based image denoising method for preserving more small-scale textures and details of
images.
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This paper is organized as follows: Section 2 briefly reviews the GMM based image
denoising method, Section 3 introduces our proposed method with adaptive regulariza-
tion parameters. In Section 4 we show experimental results and Section 5 give a simple
conclusion.

2 GMM based image restoration model

Image u including N pixels can be divided into N overlapped image patches. Let ui(i =
1, 2, ..., N) denote an image patch with the size of

√
L × √

L obtained by ui = Riu, where
L is the number of pixels in each image patch, Ri denotes an operator for extracting image
patch ui from image u at position i. Given that there exist K mixture components and the
patch ui is independent of each other, then the density function of the GMM on an image
patch ui can be given by:

p(ui) =
K∑

j=1

πjN(ui |μj ,�j ) (1)

where πj is the mixing weights, μj and �j are the corresponding mean and covariance
matrix, N(ui |μj ,�j )is the Gaussian distribution, which is defined as:

N(ui |μj ,�j ) = 1

(2π)
L
2

1

|�j | 12
×exp(− 1

2 (ui − μj )
T �−1

j (ui − μj ))
(2)

Owing to the independence of each patch, the joint conditional density of the image
u = (u1, u2, ..., uN) can be modeled as:

p(u) =
N∏

i=1

K∑

j=1

πjN(ui |μj , �j ) (3)

the log of likelihood function is written as:

L(�) = logp(u)

= log
∏N

i=1
∑K

j=1 πjN(ui |μj ,�j )

= ∏N
i=1 log

∑K
j=1 πjN(ui |μj ,�j )

(4)

where � = {πj , μj ,�j } is the set of the model parameters.Then the optimization can
be solved easily by maximizing the (4) with the help of the Expectation Maximization
algorithm (EM).

Lately, image priors as driving force for image denoising have been popular, which plays
an important role in image denoising. One such a popular prior is learned by GMM. From
(1), learning the priors on a given patch set with the EPLL is defined as follws:

EPLL(u) = logp(u) =
∑

i

logp(Riu) (5)

Given a corrupted image u0, restoring u from u0 with the EPLL is equivalent to maximize
the posterior probability:

max
u

p(u|u0) = max
u

{logp(u0|u) + logp(u)}
= max

u
{logp(u0|u) + EPLL(u)}

= min
u

{− logp(u0|u) − EPLL(u)}
(6)
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Then the image denoising model based on EPLL is derived as:

min
u

{
λ
2 ‖u − u0‖2 − EPLL(u)

}

= min
u

{
λ
2 ‖u − u0‖2 − ∑

i logp(Riu)
} (7)

where λ is the regularization parameter and the (7) can be solved by the Half Quadratic
Splitting algorithm [1, 9, 10, 20].

3 Proposed method with adaptive regularization parameter

Regularization parameter selection plays an important role in image restoration. As
explained in [22], an adaptive regularization parameter for the fidelity term is effective to
preserve fine structures of images. This is naturally owing to the parameter in fidelity terms
is adaptive to the image information and will change its value automatically in different
regions of the image. Following the above motivation, we construct a new adaptive parame-
ter coupling local entropy of images and analyze the relationship between the regularization
parameters of the data-fidelity term and gradient-fidelity term. In this paper, for the sake of
acquiring more satisfying denoised results, a novel Gaussian mixture model based image
denoising method with adaptive fidelity term is presented as follows:

min
u

{λ(x, y)

2
‖u − u0‖2 + α(x, y)

2
‖∇u − ∇(Gσ ∗ u0)‖2 −

∑

i

logp(Riu)} (8)

where ∇ denotes the image gradient, Gσ is a Gaussian filter operator, ∗ is the convolution
symbol, the first term imposes a global constraint on the restored image; the second term is
the gradient fidelity term which describes the similarities in gradient between the corrupted
images and the restored ones for preserving more image details. λ and α are the weight
coefficients and can be chosen as a function of the gradient and local entropy of corrupted
image in the following form:

α(x, y) = 1

1 + (|∇u| · f (E(x, y))/k0)g(|∇u|) (9)

λ(x, y) = k(1 − α(x, y)) (10)

where k is a given constant, k0 is a threshold value, g(|∇u|) is designed by:
g(|∇u|) = 2 + k1

(1 + |∇u|/k0)2
(11)

where k1 is also a threshold value, when |∇u| is large, g(|∇u|) → 2, when |∇u| → 0,
g(|∇u|) → 2 + k1, E(x, y) is the local entropy of image and is defined by:

E(x, y) = −
S−1∑

i=1

pi logpi (12)

where pi = ni/(M × N) is the probability of the i-th gray level, S is the maximum gray
level in the neighborhood centered on the pixel (x, y), in practice, we generally set the size
of the local neighborhood as 3 × 3 and ni is the number of pixels with the i-th gray level,
M × N is the size of image and f (E(x, y)) is defined as follows:

f (E(x, y)) = 1 + E(x, y) − min(E(x, y))

max(E(x, y)) − min(E(x, y))
G (13)
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where G is the maximum of image gradient norm, and the range region of f (E(x, y)) is
[1, G + 1], which alleviates the impact of image gradient on the regularization parameters
due to the introduction of the local entropy of images and makes the adaptive parameters
have a better robustness.

The regularization parameter λ(x, y) and α(x, y) vary with different regions of the
image. λ(x, y) is set to be small in the smooth regions of image, while α(x, y) is large so
as to remove much noise in the meanwhile guarantee the similarity between the restored
image and the corrupted one. At the edge of image, α(x, y) is small but λ(x, y) is large, for
the sake of preserving more edges of the image. Meanwhile, the given k can help balance
the regularization parameters λ(x, y) and α(x, y), and make them have proper values in dif-
ferent regions of the image for preserving more details of image while smoothing noises.
Consequently, an adaptive fidelity term is useful and effective for preserving more textures
and details of image in the process of noise removing.

Here, we employ the Half Quadratic Splitting algorithm to solve (8). The (8) is equiv-
alently transformed into the following function by introducing a set of auxiliary variables
{zi} as follows:

min
u,{zi }

{ λ(x,y)
2 ‖u − u0‖2 + α(x,y)

2 ‖∇u − ∇(Gσ ∗ u0)‖2
+∑

i{β
2 (‖Riu − zi‖2) − logp(zi)}}

(14)

where β is the penalty parameter which usually is set to be large enough to ensure that the
solution of (14) is close to that of (8).

For solving (14), at first, we choose the most likely Gaussian mixing weightjmax for each
patch Riu:

jmax = max
j

p(j |Riu)

= max
j

p(Riu|j)p(Riu)

= max
j

{logp(Riu|j) + logp(Riu)}
(15)

Accordingly, the image patch has the mean μjmax and covariance matrix �jmax , then (14) is
minimized by alternatively updating zi and u.

For a fixed un, updating zi is equivalent to solve the local MAP-estimation problem as
follows:

min
zi

{β
2

‖Riu − zi‖2 − logp(zi)} (16)

It is in fact a Wiener solution:

zn+1
i = (�jmax + 1

β
I)−1 · (Riu

n�jmax + 1

β
μjmax I ) (17)

where I is the identity matrix.
For a fixed zi , using the Euler-Lagrange formula for (14) and the corresponding Euler

equation of it is:

λ(x, y)(u − u0) +
∑

i

βRT
i (Riu − zi) − α(x, y)
u + α(x, y)(Gσ ∗ ∇u0) = 0 (18)

the corresponding PDE as:

∂u

∂t
= λ(x, y)(u − u0) −

∑

i

βRT
i (Riu − zi) + α(x, y)
u − α(x, y)(Gσ ∗ ∇u0) (19)
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It can be solved by the gradient descent algorithm and updating u as follows:

un+1 = un + 
t[λ(x, y)(u0 − un) − ∑
i βRT

i (Riu
n − zn

i ) + α(x, y)(un
xx + un

yy)

−α(x, y)(Gσ ∗ (u0xx + u0yy)] (20)

where 
t is the time step, uxx, uyy, u0xx, u0yy are respectively the second-order partial
derivative of u and u0.

In summary, our suggested algorithm can be implemented as follows:

Step1. Input corrupted image u0 , model parameters β, 
t and iteration stop- ping
tolerance ε, initialize regularization parameters λ, α ;

Step2. Choose the most likely Gaussian mixing weights jmax for each image patch zi with
the model (15);

Step3. Calculate z1i using (17);
Step4. Calculate u1 using (20) with updated regularization parameters λ and α;
Step5. Calculate zn+1

i using (17);
Step6. Pre-estimate image un+1 using (20) with updated λ and α;
Step7. Repeat Steps 5-6 until satisfying stopping criterion.

4 Implementation and experiment results

In our experiments, the GMMwith 200 mixture components is learned from a set of 2×106

images patches sampled from the Berkeley Segmentation Database Benchmark (BSDS300)
with their DC removed. Comparing our proposed method with the original EPLL and the

Fig. 1 Denoising results on Test1 image, a-b Original and noisy images, respectively. c-d Denoising results
of EPLL and proposed method, respectively
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Table 1 The PSNR and SNR
results of different denoising
models

Test1 EPLL Our Method

PSNR 36.09 36.88

SNR 16.14 16.94

EPLL with Xie adaptive λ and α in [22], the parameters in our proposed method are as
follows:the image patch size

√
L = 8, the weighted coefficients β = 1

σ 2 ∗ [1 4 8 16],
the noise standard variance σ = 25 and the size of local entropy of the image is set as 3×3,
the constant k0 = 1

σ 2 , k1 = 7 and k = L

2σ 2 .
Figure 1 demonstrates the denoised results of the original EPLL and our proposed

method with adaptive λ, α on Test1 image (i.e,No.3096). The related quantitative compar-
ison, in terms of peak signal to noise ratio (PSNR) and signal to noise ratio (SNR), are
shown in Table 1. The Fig. 1a and b are respectively the original image and noisy image.
The Fig. 1c shows that the denoised result obtained by the original EPLL, and we can see
that some regions of the image are not smooth, in contrast, the Fig. 1d obtained by our
method shows a better result. This is probably due to the fact that our proposed method
incorporates the gradient fidelity term with the EPLL and the regularization parameters are
adaptive to the image information, which can help preserve more details of image and make
the degraded image smoother during the denoising procedure. In addition, as demonstrated
in Table 1, the PSNR value and SNR value of our method is higher than the original EPLL.

In Fig. 2. we also compare our proposed method with the original EPLL on Test2 image
(i.e,No.3063). The related quantitative comparison, in terms of PSNR and SNR are shown

Fig. 2 Denoising results on Test2 image, a-b Original and noisy images, respectively. c-d Denoising results
of EPLL and proposed method, respectively
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Table 2 The PSNR and SNR
results of different denoising
models

Test2 EPLL Our Method

PSNR 32.84 33.55

SNR 18.60 19.31

in Table 2. From the denoised results shown in Fig. 2c and d, we can see that our pro-
posed method outperforms the original EPLL and make the image smoother. In addition,
we enlarge the middle part of the denoised result and put it on the right of image. From
the Fig. 2d, we can find that our proposed method can better preserve the edges and small-
scale textures of the image. This is because our proposed method has adaptive regularization
parameters and can help preserve more details of images. Therefore, by comparison, our
proposed method can obtain visually satisfying results and performs better in PSNR and
SNR.

Figure 3. demonstrates the denoised results of our proposed method and the comparison
with the EPLL with fixed λ, α on Barbara image. The corresponding PSNR and SNR are
shown in Table 3. We enlarge the right shoulder of denoised result and put it on the right
of image. From the result in Fig. 3c we can see that some small-scale textures of the image
are not clear, while the result of our proposed method in Fig. 3d preserve more textures.
This is probably on account of the fact that the regularization parameters being a constant

Fig. 3 Denoising results on Barbara image, a-b Original and noisy images, respectively. c-d Denoising
results of EPLL with fixed λ, α and proposed method, respectively
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Table 3 The PSNR and SNR
results of different denoising
models

Barbara EPLL+fixed λ, α Our Method

PSNR 27.78 27.95

SNR 13.94 14.12

of the method in Fig. 3c, while the parameters of our proposed method vary with different
regions of the image. They can change their values automatically according to the image
information and help preserve more fine structures in image. Therefore, by comparing,
our proposed adaptive method outperforms the EPLL with a fixed λ, α both in PSNR and
SNR.

Figure 4.demonstrates the denoised results of the EPLL with Xie λ, α and our proposed
with adaptive λ, α on the Test3 image (i.e,No.160068). The related PSNR and SNR are
shown in Table 4. The Fig. 4a and b are respectively the original image and noisy image.
The Fig. 4c shows that the denoised result obtained by the EPLL with Xie adaptive λ, α

and the Fig. 4d shows that the denoised result of our proposed method. We construct a
new adaptive regularization parameter with local entropy of image. Due to the robustness
of local entropy to noise, our proposed method can not only remove noise but preserve the
weak edges and fine details of image. Thus, we can see that our proposed method can obtain
a more satisfying result.

Fig. 4 Denoising results on Test3 image, a-b Original and noisy images, respectively. c-d Denoising results
of EPLL with Xie λ, α and proposed method, respectively



11480 Multimed Tools Appl (2017) 76:11471–11483

Table 4 The PSNR and SNR
results of different denoising
models

Test3 EPLL+Xie λ, α Our Method

PSNR 29.05 29.19

SNR 14.53 14.65

5 Conclusions

In this paper, a novel GMM based image denoising method with gradient fidelity term has
been proposed, which can help preserve more small-scale textures and details of images
during the noise removal. The GMM is a powerful tool for learning image priors, that
is easy to implement and requires a small amount of parameters to estimate. In addition,
compared with the dictionary learning in sparse representation, GMM has the advantages
of relatively low computational complexity and the well-understood mathematical behav-
ior. Furthermore, for preserving more weak edges of images when denoising, we construct
a new adaptive selection scheme for the regularization parameters by means of the local
entropy of the image, which varies with different regions of the image and has a good robust-
ness to noise. Experiments show that our proposed method shows a clear improvement in
comparison to the original EPLL algorithm and EPLL with fixed regularization parameters
method for image denoising both visually and quantitatively.
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