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Abstract In this paper, a novel set of features based on Quaternion Wavelet Transform
(QWT) is proposed for digital image forensics. Compared with Discrete Wavelet Transform
(DWT) and Contourlet Wavelet Transform (CWT), QWT produces the parameters, i.e., one
magnitude and three angles, which provide more valuable information to distinguish pho-
tographic (PG) images and computer generated (CG) images. Some theoretical analysis are
done and comparative experiments are made. The corresponding results show that the pro-
posed scheme achieves 18 percents’ improvements on the detection accuracy than Farid’s
scheme and 12 percents than Özparlak’s scheme. It may be the first time to introduce QWT
to image forensics, but the improvements are encouraging.

Keywords Quaternion wavelet transform · Contourlet wavelet transform · Discrete
wavelet transform · Feature comparison · Forensics

1 Introduction

With the rapid development of computer graphics (CG), some rendering softwares arise,
for example 3D Max, Photoshop and Maya. Based on them, many highly photographic
(PG) images are generated, which have involved in the applications of politics, economy
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and daily life. Unfortunately, some CG images are used as forgery in academic research,
journalism, and some other fields. Now, CG technology is getting stronger and CG image
is becoming photographic. Thus, how to recognize these CG images from the photographic
images is getting critical because they can hardly be identified by human eyes from PG
images. Fortunately, image forensics is a possible technology to solve this problem [4, 9,
11, 20].

Nowadays, many researchers focus on forensics for identifying PG and CG [3, 5, 6, 10,
13–15]. Most of existing schemes can be classified into two categories, one of which is
the transform-domain statistics scheme [3, 5, 6, 13, 15], and the other is the spatial-domain
statistics scheme [10, 14]. In this paper, the former is focused on.

In [1], the statistical model built on discrete wavelet transform (DWT) are proposed to
obtain the relationship between the subband coefficients and color channels in 1999. How-
ever, the first DWT statistical model designed for forensics is proposed in 2003. In this
paper [6], Farid et al. presented a statistical model to capture the intrinsic feature, which
is composed of the original and prediction statistic for steganalysis. Nextly, in 2005, the
improved scheme [13] is presented. These two schemes obtain the first four-order statistics
as the feature, including the mean, variance, skewness and kurtosis, which are computed
from the first three-level wavelet coefficients and the first two-level prediction error. In
2007, Chen et al. [3] proposed a DWT- and DFT-based forensics scheme. In this scheme,
the histograms of the original DWT coefficients and the predicted DWT values are trans-
formed by discrete fourier transform (DFT) respectively, from which the feature is extracted.
In 2011, Özparlak et al. [15] proposed to use the ridgelet and contourlet wavelet statisti-
cal model to obtain the regularity of the image on the basis of the Farid’s schemes. The
scheme boosts the accuracy of forensics by using the sequential floating forward selec-
tion (SFFS) and the support vector machine (SVM). Different contourlet wavelet model is
proposed by Wang et al. [5], which uses different prediction model to predict the coeffi-
cients. In this scheme, HSV channels are used, instead of RGB channels used in Farid’s
and Özparlak’s schemes. However, due to the drawbacks of DWT and CWT (to be dis-
cussed in detail in Sections 2 and 3), the extracted feature has some impacts on the forensics
performance.

In this paper, we use the first four statistics extracted from QWT domain as feature
for CG and PG classification. At present, QWT has already been successfully applied
to image processing, for example texture classification [8, 19], image fusion [16], image
coding [18]. In [19], the authors proposed the use of QWT for texture classification. Exper-
imental results show that the combined features of the QWT magnitude and the phase
are superior to those of the standard wavelet transform. In [8], a new multi-level Cop-
ula model is constructed based on the magnitude-phase dependance of QWT, which could
obtain higher performance for texture classification than DWT Copula. Pang et al. [16] used
QWT to solve the blur problem of multifocus color images. This scheme performs better
than the existing fusion methods, including DWT-based schemes. In [18], QWT is applied
to image coding, especially phase impact. With equal bit rates, this scheme can capture
better visual quality than DWT. Summing up, QWT brings some better performances than
DWT does.

The purpose of this paper is to help you understand the wavelet-based feature for foren-
sics and what’s more, achieve the best recognition accuracy. The main contributions of this
paper are as follows.

1) QWT as a new member of wavelet family is applied to forensics;
2) The use of DWT and CWT is also investigated, and compared with QWT.
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The rest of this paper is arranged as follows. Some related works are introduced in
Sections 2 and 3. In Section 4, the quaternion and QWT are introduced, and the forensics
scheme based on QWT is proposed. In Section 5, some comparative experimental results
are given to show the proposed QWT-based scheme’s performances and the priority com-
pared with the DWT-based scheme and CWT-based scheme. Finally, the conclusions are
drawn and some future work is given in Section 6.

2 Farid’s scheme

In [13], Farid proposed the linear predictor scheme to predict a new wavelet coefficient
from the other wavelet coefficients in the same scale subband, the high-scale subband and
the same scale subbands of the other two color channels. Then, the prediction error between
the original wavelet coefficient and the predicted coefficient is generated and the first four
order statistics of the prediction errors are used as features. Take R channel as an example,
the predictor is expressed as follows.
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Here, R,G,B denote the three color channels R, G and B, respectively, and D, V,H

denote the diagonal, vertical and horizontal subbands in DWT, respectively. Additionally,
wk, k = 1, 2, · · · , 9 is the scalar weight, the subscript i is the scale number, (x, y) represent
the spatial coordinate in a subband, |x| denotes the absolute value of x, and �x� denotes the
smallest integer no less than x.

The framework of the Farid’s scheme is shown in Fig. 1.
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Fig. 1 Framework of Farid’s scheme

However, the DWT feature for forensics suffers from the following drawbacks [12, 17]
of DWT:

1) Oscillations. The oscillating wavelet filter is used to decompose the image that results
in complicated representation of a simple structure, including several coefficients in
one neighborhood.

2) Shift-variance. A small shift of the image causes substantial change in the energy of
wavelet transform, which increases the difficulty to extract valid feature from wavelet
coefficients.

3) Lack of directionality. The conventional wavelet transform only provides local informa-
tion of three directions, 0◦, 45◦, and 90◦, as shown in Fig. 2 on an image decomposed by
DWT. Owning to this, encoding local information for recognition cannot be satisfied.

Fig. 2 DWT decomposition to lena
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3 Özparlak’s scheme

In [15], the author learned from the drawbacks of Farid’s scheme and proposed a CWT-
based statistical model to capture some features of images from the prediction error. A linear
predictor in R channel is written as following.
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where C
R,i
j (x, y) denotes the CWT coefficient at position (x, y) in the j th subband of the

ith scale.
Figure 3 shows an image decomposed by CWT.
Compared with DWT, CWT overcomes some of its shortcomings and is more efficient

in directionality and anisotropy, which catches the smooth contours in different directions
of an image. However, it still has two drawbacks:

1) Discontinuity of local phase. The number of directional subbands is 2N , shown in
Fig. 3, and thus it cannot capture smooth local phase information for texture.

2) Directionality redundancy. In order to fit many directions, CWT has some redundancy
in algorithmic aspect.

Fig. 3 CWT decomposition to lena
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4 The proposed QWT-based scheme

In this section, the proposed QWT forensics scheme will be introduced in detail. As shown
in Fig. 4, the magnitude part of the proposed scheme is same as the one of Farid’s scheme,
while the phase part of the proposed scheme can only use the one of Farid’s scheme for
reference due to the fact that no previous scheme has used QWT for forensics.

4.1 The quaternion

The quaternion invented by Hamilton in 1843 is one of the most simple hypercomplex,
composed of four parts, one real part and three imaginary both orthogonal units, i.e., i, j, k.
It is expressed as follows.

q = a + bi + cj + dk, {a, b, c, d ∈ R}
where i, j, k are constrained by

i2 = j2 = k2 = −1

ij = −ji = k, jk = −kj = i, ki = −ik = j

It is observed that the quaternion does not meet the commutative law of multiplication.
The polar representation of the quaternion is formed by the magnitude and three angles

which are called phase, i.e., θ, υ, ϕ.

q = |q|eiθ ejυekϕ

where |q| = √
a2 + b2 + c2 + d2, θ × υ × ϕ ∈ [−π, π ] × [−π

2 , π
2 ] ×[−π

4 , π
4 ].

4.2 The QWT

QWT is different from DWT and CWT, and it provides a local magnitude-phase analysis
for images. Its coherent representation of local structural information in images introduces
some redundancy in the local phase rather than in directionality.

Bülow proposed that a quaternionic analytic signal can be defined by both partial Hilbert
transform (HT),i.e., H0 and Hπ/2, and total HT, HT = H0Hπ/2.

fA(x, y) = f (x, y) + iH0f (x, y) + jHπ/2f (x, y) + kHT f (x, y)

The mother wavelet � is a quaternionic 2D analytic filter, which is separable, i.e.,
� = ψ(x)ψ(y). QWT implements 2D analytic wavelet transform on the basis of the

Fig. 4 Framework of the proposed scheme
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generalization with separable scaling function � and mother wavelets �D , �V , �H . There-
fore, QWT, the analytic 2D wavelets can be extended by separable product as follows
[2, 18].

�D = ψh(x)ψh(y) + iψg(x)ψh(y) + jψh(x)ψg(y)

+kψg(x)ψg(y)

�V = φh(x)ψh(y) + iφg(x)ψh(y) + jφh(x)ψg(y)

+kφg(x)ψg(y)

�H = ψh(x)φh(y) + iψg(x)φh(y) + jψh(x)φg(y)

+kψg(x)φg(y)

� = φh(x)φh(y) + iφg(x)φh(y) + jφh(x)φg(y)

+kφg(x)φg(y) (3)

Here, due to the fact that 2D HT is equivalent to 1D HT along x axis and/or y axis, 1D
Hilbert pair of wavelets and scaling functions are considered:

ψh,ψg = Hψh

φh, φg = Hφh

In QWT, the magnitude |q| represents the signal strength at any space position in each
frequency subband, similar to that of DWT. The phases (θ, υ, ϕ) depict the structure of
the signal. The first two QWT phases θ, υ indicate the spatial shift information of image
features in the axis x/y coordinate system, while the third phase ϕ indicates edge orientation
mixtures and textual information.

An image decomposed by QWT is shown in Figs. 5 and 6.

Fig. 5 QWT magnitude decomposition to lena
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Fig. 6 QWT Phase Decomposition to Lena. In a, the first row is horizontal direction, the second row is
vertical one and the third row is diagonal one. In a and b, the first column is θ , the second column is υ and
the third column is ϕ

4.3 QWT analysis for forensics

Compare with DWT and CWT, QWT includes not only the magnitude which encodes the
frequency information but also three phases which indicate richer edge and texture infor-
mation. Those three phases contain extra information that is not included in high frequency
subbands LH, HL and HH of DWT and CWT. The key difference is from the expres-
sion meaningfulness of the high frequency subbands in DWT and CWT which indicate the
edge and noise change along the specific directions between the low frequency and original
image. However, the low frequency part of three phases shows the edges and noise of the
whole image with the general directions, and the high frequency part reflects the change of
the edges and textures [12].

As shown in Figs. 5 and 6, QWT magnitude and phases carry complementary infor-
mation that could be used for texture analysis. At present, the third phase ϕ of QWT is
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widely applied to texture segmentation and classification due to its ability of discriminating
different textures and their superpositions [18, 19].

To our best knowledge, QWT has not yet been applied to forensics. Based on the above
analysis, QWT may provide more information than DWT and CWT for forensics, and is
expected to achieve better forensics performance. The experimental results will be given
which prove its validity in Section 5.

4.4 Feature dimension

In Farid’s scheme, the first four order statistics, i.e., mean, variance, skewness and kur-
tosis, are used to represent the difference between the computer-generated image and the
photographic image. DWT of scale 3 is used to decompose two classes of image. Twelve
features, named the original features, are extracted from DWT coefficients in three sub-
bands of every scale, LH, HL and HH. Thus, the total dimension of original feature vector
is 12 × 3 × 3 = 108 for 3 color channels. The prediction error is generated by the predictor
introduced in Section 2 on the DWT coefficients in two same directional subbands of two
scales. The same four statistics can be obtained from the prediction error, named prediction
features. Thus, the dimension of prediction feature vector is totally 12 × 3 × 3 = 108 for 3
color channels. In sum, the dimension of both feature vectors is 216.

Özparlak’s scheme is the same as Farid’s scheme except that CWT is used to replace
DWT. The images are split by CWT in scale 3 and direction 28. The dimension of original
feature vector is 4 × 28 × 3 = 336 for 3 color channels, and the one of prediction feature
vector is totally 4 × 28 × 3 = 336 for 3 color channels. Therefore, the dimension of both
feature vectors is 672.

In Farid’s scheme, DWT coefficients less than 1 are erased. Similarly, in QWT, coeffi-
cients less than 1 are deleted. What’s more, the phase corresponding to small coefficients
are wiped off because of two reasons. One is that there exists strong dependence between
the magnitude and three phases of QWT. The other is that those phases of small coeffi-
cients are little meaningful and unstable. In our proposed scheme, QWT in scale 3 is used to
decompose the images. Therefore, the dimension of whole feature vector is 576, including
magnitude features 4 × 3 × 3 × 4 = 144 for 4 statistics, 3 subbands, 3 scales and 4 complex
planes and phase features 144 × 3 = 432 for 3 phases.

It is noted that the phase features are obtained by the product of the phase coefficients
and the corresponding normalized magnitude coefficients.

5 Experiments and discussions

In experiments, 7500 CG images and 7500 PG images with high visual quality are
used to evaluate the performance of the proposed feature vector (http://www.creative-3d.
netandhttp://www.3dlinks.com) [7, 10], as shown in Fig. 7. In order to enrich the image
database, the image content includes all kinds of the indoor-outdoor scenes, for example,
plants, animals, characters, sculptures and architectures. The CG images are generated by
over 50 softwares, including 3D Max, Auto CAD and Maya, etc.

In order to guarantee fair comparison, RGB color model is selected in three schemes. The
LibSVM (http://www.csie.ntu.edu.tw/cjlin/libsvm/) is used to classify CG and PG images.
The kernel function is polynomial with the following parameters: degree 2, gamma 1, coef0
1 and cost 1. The proposed QWT feature vector is split in two parts, e.g., magnitude features
and phase features. And, the two parts are tested respectively to compare with that of DWT

http://www.creative-3d.net and http://www.3dlinks.com
http://www.creative-3d.net and http://www.3dlinks.com
http://www.csie.ntu.edu.tw/cjlin/libsvm/
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Fig. 7 The examples from the
CG/PG Database
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and CWT. Finally, the whole QWT feature vector is evaluated and three ROC curves are
depicted.

All the experimental results are obtained by 5-fold cross validation. In order to obtain
convincing experimental results and validly evaluate the performance of the proposed
scheme, all the images with various sizes in PG and CG database are used to calculate the
statistical features for DWT-, CWT- and QWT-based schemes. The width of the images in
PG database is from 128 to 2704 and the height from 85 to 2259. The width of the images in
CG database is from 130 to 2400 and the height from 140 to 3200. This means that the range
of the image size changes widely and therefore it makes our research confirm to reality.

5.1 Tests on the proposed feature

In this section, three kinds of feature are tested, including the magnitude and phase features,
the original and prediction features, and the four statistical features.

For the first kind of feature, its performance is tested by considering of sub-features
independently, including the magnitude feature, three phase features and the combination
features of the magnitude and three phases. As shown in Table 1, the accuracy of the single
feature is less than that of the combination of all the features. However, it is noted that the
accuracy of some combination feature is less than that of the single feature, for example,
the accuracy of ϕ feature is higher than that of θ + ϕ features in PG database. It has also
been discovered in Table 1 that more features do not mean more accuracy, for example, the
performance of θ + υ + ϕ features is inferior to that of υ + ϕ and θ + ϕ features in CG
database. Besides, the accuracy of the phase feature excels that of the magnitude feature,
which proves that the phase feature provides better performance of classification. And, the
combination of the magnitude feature and the phase feature is superior to the magnitude
feature, which proves the complementary effect of the magnitude and phase features.

For the second kind of feature, the original features and the prediction features are tested
and compared, with the results shown in Table 2. As is found that the prediction feature has

Table 1 Tests on the magnitude
features and phase features Feature Dimension PG CG Average

Magnitude 144 92.41 88.13 90.27

θ 144 90.14 87.28 88.71

υ 144 92.49 88.93 90.71

ϕ 144 92.57 89.21 90.89

θ + υ 288 92.61 89.61 91.11

θ + ϕ 288 90.29 92.13 91.21

υ + ϕ 288 93.07 90.11 91.59

θ + υ + ϕ 432 94.01 89.77 91.89

Magnitude+θ 288 93.19 90.83 92.01

Magnitude+υ 288 93.75 90.99 92.37

Magnitude+ϕ 288 94.01 91.57 92.79

Magnitude+θ + υ 432 94.67 91.87 93.27

Magnitude+θ + ϕ 432 94.79 93.07 93.93

Magnitude+υ + ϕ 432 95.21 93.49 94.35

Magnitude+θ + υ + ϕ 576 96.42 93.32 94.87
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Table 2 Tests on original
features (OF) and prediction
features (PF)

Original Features Prediction Features OF + PF

Dimension 432 144 576

PG 95.03 89.84 96.42

CG 91.93 90.31 93.32

Average 92.11 89.74 94.87

better balance between PG and CG, although its accuracy is less than that of the original
feature.

For the third kind of feature, four statistical features, e.g., mean, variance, skewness and
kurtosis, are tested, as shown in Table 3. It is easily understood that the mean feature is the
worst because it reflects the average of total image, which results in the weak recognition
capability. Similar to Table 1, the accuracy of combination features is less than that of single
feature, for example, the performance of mean+skewness is inferior to that of kurtosis. It is
noted that variance+skewness+kurtosis feature can obtain higher accuracy than any of the
other combination except for the whole feature set, which shows these three sub-features
can provide the most complementary information. This test proves skewness+kurtosis the
best combination feature.

5.2 Feature comparison

In this section, three schemes based on wavelet transform are compared in order to select the
best feature over three schemes. That is, the advantages and disadvantages of these features
are analyzed to achieve the best recognition accuracy.

Table 3 Tests on mean,
variance, skewness and kurtosis Feature Dimension PG CG Average

Mean 144 88.49 83.37 85.83

Variance 144 91.84 83.46 87.65

Skewness 144 92.46 84.08 88.27

Kurtosis 144 91.38 86.16 88.77

Mean+Variance 288 91.99 86.97 89.43

Mean+Skewness 288 92.69 84.33 88.51

Mean+Kurtosis 288 93.10 85.60 89.35

Variance+Skewness 288 92.45 89.17 90.81

Variance+Kurtosis 288 93.13 90.31 91.72

Skewness+Kurtosis 288 93.74 93.18 93.46

Mean+Variance+Skewness 432 94.11 89.91 92.01

Mean+Variance+Kurtosis 432 94.39 90.35 92.37

Mean+Skewness+Kurtosis 432 95.07 91.19 93.13

Variance+Skewness+Kurtosis 432 95.58 92.24 93.91

Mean+Variance+Skewness+Kurtosis 576 96.42 93.32 94.87
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Table 4 Comparison of the
proposed scheme with Farid’s
scheme and Özparlak’s scheme

Farid’s Özparlak’s The proposed scheme

Dimension 216 672 576

PG 78.66 84.21 96.42

CG 74.81 81.09 93.32

Average 76.78 82.68 94.87

Seen from the results in Table 4, it is observed that the DWT feature’s dimension and
forensics accuracy of Farid’s scheme are lowest, which shows that Farid’s scheme has
the weakest classification capability. Compared with Farid’s scheme, Özparlak’s scheme
improves the forensic accuracy by increasing the feature dimension from 216 to 672. For
the proposed scheme, the performance of the QWT feature excels the other two schemes,
and achieves the highest forensics accuracy with feature dimension lower than Özparlak’s
scheme.

The receiving operation characteristics (ROC) curves are depicted for three wavelet-
based schemes, as shown in Fig. 8. It is obviously found that the QWT feature owns the best
performance over all three schemes.

It is also proved from Table 4 and Fig. 8 that QWT can be helpful for boosting forensics
performance. The reason is that QWT takes the advantage of the rich phase information to
represent the change details of the image.
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6 Conclusions and future work

In this paper, QWT is applied to obtaining more feature information to achieve the improve-
ment on forensics scheme’s identification performance. Firstly, the investigation on Farid’s
scheme and Özparlak’s Scheme is made. Then, QWT is introduced and analyzed. And, the
proposed scheme is constructed by generating the magnitude feature and the phase feature.
In experiments, various QWT features are analyzed and tested, including the magnitude
and phase features, original and prediction features, and four statistical features, and com-
pared with the features extracted in DWT and CWT domains. The theoretical analysis and
experimental results proves the proposed scheme’s (based on QWT) superiority over the
other schemes (based on DWT and CWT). It may be the first time to introduce QWT to
image forensics. The improvements are apparent, but the advantage of QWT is not totally
explored. For example, the current transform treats three color channels separately but not
together. In future, a quaternion color wavelet transform for forensics will be studied.
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