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Abstract Optic disc localization is of great diagnostic value related to retinal diseases, such as
glaucoma and diabetic retinopathy. However, the detection process is quite challenging
because positions of optic discs vary from image to image, and moreover, pathological
changes, like hard exudates or neovascularization, may alter optic disc appearance. In this
paper, we propose a robust approach to accurately detect the optic disc region and locate the
optic disc center in color retinal images. The proposed technique employs a kernelized least-
squares classifier to decide the area that contains optic disc. Then connected-component
labeling and lumination information are used together to find the convergence of blood
vessels, which is thought to be optic disc center. The proposed method has been evaluated
over two datasets: the Digital Retinal Images for Vessel Extraction (DRIVE), and the Non-
fluorescein Images for Vessel Extraction (NIVE) datasets. Experimental results have shown
that our method outperforms existing methods, achieving a competitive accuracy (97.52 %)
and efficiency (1.1577s).
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1 Introduction

Diabetic Retinopathy (DR), a kind of eye disease caused by diabetes, has been a major cause
of blindness for adults in the United States [3]. An effective way to evaluate the risk of DR and
provide treatment in early stage is the Screen Program, however, a necessary requirement
before automatic screening is to accurately locate the main anatomical structures, for example,
optic disc (OD). The optic disc is an orange-pink cylindrical structure with a bright center and
its location can serve as an indicator for the detection of other fundus structures, such as
macula, considering that the distance between the optic disk and the macula is more or less
constant [5, 21].

Many studies have been conducted on detection of OD in color fundus images. In the early
stage, a lot of methods locate the optic disc based on its unique image characteristics. In Sekhar
et al. [16], the brightest regions are regarded as the position of OD. Thus, they apply
morphological operations to separate the brightest areas as candidate regions first, and then
use Hough transform to detect the optic disk region among these candidate regions. In the
method proposed by Mendon et al. [11], the features extracted from the vascular network from
RGB retinal images are used, and the optic disk is located according to the entropy along
vascular directions. Lu S et al. [8] assme that optic disk is a bright circular region and propose a
method where a line operator is used to capture the circular brightness. However, these
methods share a common limitation that some pathological structures like exudates, and
imaging artifacts like haze, often produce same appearance as OD, thus leading to a wrong
detection.

Some techniques employ the features of other anatomical structures that’s are closely
related to the OD, such as macula and retinal vessel. In K Akita et al. [1], the optic disk is
located by backtracking the vessels to their origin based on the assumption that the optic disk is
the origin of blood vessels in retinal fundus images. F Mendels et al. [10], propose a
morphological filtering technique that involves the use of active contours to localize the optic
disk. In Adam et al. [7], a fuzzy convergence method is used to determine the origin of the
blood vessel network. Compared with image characteristics, the features of other anatomical
structures are more reliable considering the pathological structures and imaging noise. But
there is still room for improvement in accuracy.

In this paper, we have proposed a robust approach to accurately detect the OD region and
locate the OD center in color retinal images. Firstly, the proposed technique employs a
kernelized least-squares classifier to decide the most likely optic disk region and segment
the optic disk boundary. Then, a shifting vertical window that evaluates the connected-
components and a shifting horizontal window that evaluates the illumination information are
used together to find the convergence of blood vessels, which is thought to be optic disc center.
Experimental results and analysis, which are tested on the two database DRIVE and NIVE, can
show that our approach is more effective than existing methods in both boundary extraction
and center localization of OD.

The main contributions of this paper are:

& We propose an efficient kernelized least-squares classifier with high-dimensional feature
space to locate the optic disk region quickly.

& We propose a robust algorithm, which takes advantage of both image characteristics and
anatomical structures, to detect the optic disk and its center accurately using convergence
tracking of blood vessels.
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& We conduct experiments on two datasets and prove that the proposed algorithm outper-
forms state-of-the-art methods in terms of both accuracy and speed.

The remainder of this paper is organized as follows: Section 2 contains a detailed descrip-
tion of our proposed technique. Section 3 presents and analyzes the experimental results.
Section 4 compares our method with other OD detection approaches. Finally, Section 5
concludes the paper.

2 Materials and methods

The proposed technique comprises two major steps: the detection of the optic disk region and
the location of the optic disk center. A flow chart of our method is shown in Fig. 1. These steps
are described in detail in the following subsections.

2.1 Optic disc region detection

Our method is based on the CSK tracker [6], which is proved to be the highest speed among
feature trackers [19]. To start with, two standard retinal fundus images corresponding to the left
and the right eye are obtained as templates. The optic disk regions are manually labeled in
these two templates. Then, a kernelized least-squares classifier, which has a merit of exploiting
the binary circulant structure of the image patch, is used to detect the OD region. Due to this
unique merit, the detection speed of our method is outstanding. Next stage is to train the
classifier. All image patches in the vicinity of the optic disk regions are used as the training
instances. The size of the patch is identical to that of the target in the template (assuming that

Fig. 1 The flow chart of our method
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the patch size is M ×N, 1 ≤m ≤M, 1 ≤ n ≤N). In our method, the size of the patch is 80 × 80.
A Gaussian function, which has a symmetric bell curve shape and can minimize ringing in the
Fourier domain [6], is used to label all these pixels in the patch. Hence, we use G(m, n) to
denote the label information of pixel pm,n in the patch. The Gaussian function is defined by
Eq. (1) below, where σ is the standard deviation of a normal distribution. In our proposed
method, the value of σ is 0.2:

G m; nð Þ ¼ 1

2πσ2
e− m2þn2ð Þ= 2σ2ð Þ ð1Þ

In our method, since RGB images with high-dimensional color attributes are used, we
improve performance by allowing classification in a high-dimensional feature space. Hilbert
space, which arises frequently in dimension-extending applications and has enough limits to
allow the calculus to be used, is an ideal option in our algorithm. The mapping to the Hilbert
space Φ is defined by Eq. (2):

Φ tð Þ ¼ 1

π

Z ∞

−∞

τ
t−τ

dτ ð2Þ

To train the classifier, we are supposed to find the weights w (defined in Eq. (5)), which can
be determined when the cost c in Eq. (4) reaches its minimum . λ there is a regularization
parameter and λ > 0:

c ¼
XN
i¼1

κ Φ pm;n
� �

;w
� �

−G m; nð Þ� �2−λ wk k2 ð3Þ

κ is the inner product defined by Eq. (4) below, where ā and b are vectors, and l is the size of ā
and b.

κ a; b
� �

¼
Xl

i¼1

aibi ð4Þ

The weights w is defined by Eq. (5):

w ¼
XM ;N

m¼0;n¼0

a m; nð Þ � Φ m; nð Þ ð5Þ

where coefficient a(m, n) is defined by Eq. (6), as

a m; nð Þ ¼ F−1
F G m; nð Þð Þ

F κ pm;n; p
� �� �þ λ

 !
ð6Þ

F is the two-dimensional Fourier Transform (FT) operator defined by Eq. (7). F− 1 is the
inverse of the FT defined by Eq. (8), where u, v are the new independent variables of the
Fourier function, and f(x, y) is a primitive function:

F u; vð Þ ¼ F f x; yð Þ½ � ¼
Z ∞

−∞

Z ∞

−∞
f x; yð Þe−2πi uxþvyð Þdxdy ð7Þ
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f x; yð Þ ¼ F−1 F u; vð Þ½ � ¼
Z ∞

−∞

Z ∞

−∞
F u; vð Þe2πi uxþvyð Þdudv ð8Þ

As the optic disk region in an image matches the templates to a great degree, we
estimate the position of the optic disk region in the image by finding the image patch
with the maximum detection score. The size of an image patch is the same with the
definition above. For every image patch p in an image, the detection score is calculated
by Eq. (9):

S ¼ F−1 F að Þ � F κ p; Stð Þð Þð Þ ð9Þ

Where St is the detection score of the optic disk region in the templates. Other parameters
are the same with the definition above. The optic disk region position in a fundus image is the
location of the patch with the maximum detection score S. After deciding the patch that most
likely contains OD region, an inscribed circle of the patch is considered to be the boundary of
OD.

2.2 Optic disc center localization

Figures 2, 3 and 4 are retinal fundus images in different situations. Figure 2 shows an
example of healthy retina. The optic disc appears as a bright circular area in the
center of image and the blood vessel network converge at the center of OD. Figure 3
shows an example of glaucoma retina, where the circular shape and size are distorted.
Figure 4 shows an example of abnormal retina with optic disc blurred, where OD
boundary is nearly invisible. These cases indicate the difficulty to accurately detect
OD so that it’s necessary to develop a robust algorithm for detection of various kinds
of OD.

However, by observing Figs. 2, 3 and 4, we can find a common visible property that the
blood vessel networks all converge in OD center point. Therefore, we base our approach of
OD detection on computing the coordinate of blood vessels convergence point. We divide the
detection process into three steps: retinal vessel segmentation, determining the center abscissa,
and determining the center ordinate.

Fig. 2 A healthy retina, the OD is
shown to be identifiable
considering both shape and color
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2.2.1 Retinal vessel segmentation

Each color channel of the RGB images shows different information, for example, the
luminance information is in the red channel, whereas blood vessel information is in the green
channel. Hence, we choose the image in the green channel to separate blood vessels from the
optic disk region. The images of each channel are shown in Fig. 5.

As we have detected the optic disk region above, we only need to detect the optic disk
center in the range of the optic disk region instead of the overall image, which saves the
detection time in our method. The median filtering and edge enhancement are performed on
the optic disk region first. And then we employ binarization with a grayscale threshold to
separate the blood vessels from the image. In our method, the value of the threshold of the
blood vessels in binarization is set to be 150.

2.2.2 Determining abscissa of optic disk center

Noting that vessel-connected components are concentrated around optic disk center, while the
connected components in other places of the retina are diffused, we can take advantage of this
feature to detect OD center. Besides, since the thick retinal vessels are usually approximately
perpendicular to the OD, we can compute abscissa of the OD center by designing a vertical
rectangular window to traverse the optic disk region from left to right. The width of the
rectangular window is twice that of the blood vessels, and the height is identical to that of the
optic disk region. The blood vessels are divided into vessel-connected components in a vertical

Fig. 3 Optic disc photo of retina
with glaucoma

Fig. 4 Abnormal retina, the optic
disc boundary is blurred
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rectangular window. D(v) is defined in Eq. (10) to quantify the degree of blood vessel
concentration:

D vð Þ ¼ −1ð Þ �
X
i¼1

Nw Vi

V
� log

Vi

V

� �� � !
ð10Þ

where D(v) represents the concentration of blood vessels in the v-th window, Nw is the total
number of windows, Vi is the pixel number of the i-th vessel-connected component, and V is
the total number of pixels of blood vessels in the vertical rectangular window v. When the

value of Vi
V is small, log Vi

V

� �
would be large negative number, and as a result, D(v) would be

large positive. Hence, the varying distribution of blood vessels will contribute to significant
disparity. The center of the optic disk is considered to be on the central vertical line of the
rectangular window that minimizes the concentration value D(v), which indicates a relatively
large vessel-connected component. Thus, the abscissa is confirmed in this step. Figure 6 shows
the relation diagram between D(v) and the rectangular window.

Fig. 5 The figures in different channels. The left figure represents the R channel, the middle figure represents the
G channel, and the right figure represents the B channel

Fig. 6 Relation diagram betweenD(v) and the rectangular window at different locations. The blue, red and black
windows in the right figure correspond to the 1st, 4th and 7th bin in the left figure
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2.2.3 Determining ordinate of optic disk center

As the optic disk is significantly brighter than the surrounding pixels and the value of
the Gabor filter in the optic disk is greater than that in the surrounding pixels, in the
third stage, we will locate the ordinate of ordinate of OD center with the use of
luminance information and Gabor filter. First of all, mean filtering is normally
employed to remove the uneven illumination noise and imaging artifacts. Subsequently,
we design a horizontal rectangular window, whose width is identical to that of the OD
region and height approximately equals to the retinal vessels width, to traverse the optic
disk region from top to bottom. The value R(h) defined in Eq. (11) is used to measure
the intensity and the value of the Gabor filter in the h-th horizontal rectangular window,
where (xi, yi) (1 ≤ i ≤ Np, Np is the total number of pixels in the window) is the
coordinate of the pixels in the horizontal rectangular window h, l(xi, yi) represents the
RGB values of the pixels at (xi, yi):

R hð Þ ¼

X
i¼1

Np

l xi; yið Þ � g xi; yið Þð Þ

Np
ð11Þ

Where g(xi, yi) is the mean value of the Gabor filter at (xi, yi), defined by Eq. (12) below. δ is
the standard deviation of the Gaussian factor in pixels in the h-th window, and f is a constant
coefficient. The value of f in our method is fixed as 0.2.

g xi; yið Þ ¼ f 2

π� δ2
� e

− f 2� xi
0ð Þ2þ yi

0ð Þ2
δ2

� �
� e 2π� f�xi 0ð Þ ð12Þ

xi ′ and yi ′ are defined separately by Eqs. (13) and (14), respectively, where θ is the orientation
in radians of the Gabor filter. In this paper, the value of θ is set to be π/2 so as to acquire a
horizontal kernel.

xi 0 ¼ xi � cosθþ yi � sinθ ð13Þ

yi
0 ¼ −xi � sinθþ yi � cosθ ð14Þ

The rectangular window with the maximum R(h) value is regarded to be the one where the
center is located. We choose the ordinate of the central horizontal line of the rectangular
window as the ordinate of the optic disk center. The position of the center achieved above is
then mapped to the original retinal fundus image. Figure 7 shows the relation diagram between
R(h) and the rectangular window.

Through the work above, we are able to acquire a vertical window vi which makes D(v)
minimum, and a horizontal window hjwhich makes R(h) maximum. Then the optic disk center
can be determined as the intersection point of the central vertical line in vi and the central
horizontal line of hj.
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3 Experiments and results

3.1 Datasets

Experiments are conducted on two databases: the Digital Retinal Images for Vessel
Extraction (DRIVE) [18], and the Non-fluorescein Images for Vessel Extraction (NIVE)
[12] datasets.

DRIVE: This dataset contains 40 color fundus images, including 10 unhealthy retinal
images and 30 healthy images. All images are captured by a Canon CR5 non-mydriatic
3CCD camera at a 45-degree field of view. Each image is 768584 pixels.

NIVE: The dataset privately belongs to us. All images are provided by Department of
Ophthalmology of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital. The
dataset contains 400 color fundus images, including 150 unhealthy retinal images and 250
healthy images. All images are captured by a Canon CR-DGi non-mydriatic retinal camera at a
45-degree field of view. Each image was 19361288 pixels.

3.2 Experiments

We evaluate our proposed method on the two datasets presented above: DRIVE and
NIVE. The manual segmentation results are available from the datasets. For DRIVE,
the manual results are labeled by three observers trained by a seasoned ophthalmol-
ogist. For NIVE, the manual results are labeled by three experts from the Six People’s
Hospital, affiliated with Shanghai Jiao Tong University. We assume that the manually
labeled images are exactly correct and define the manual detection as the ground-truth
in our test. Examples of the detection process are shown in Fig. 8. All experiments
are performed in MATLAB 2012b on a computer (3.20GHz Intel Core i5-4460 CPU,
8GB RAM).

Fig. 7 Relation diagram between R(h) and the rectangular window at different locations. The blue, red and black
windows in the right figure correspond to the 1st, 4th and 7th bin in the left figure
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Fig. 8 The detection process of our method. (a) Original retinal fundus images. (b) Optic disk region images
obtained in the first step. (c) Optic disk region images with the blood vessels segmented. (d) Optic disk region
images with the center located. (e) Final images with the OD center detected and OD boundary marked
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3.2.1 Optic disc region detection

We use three common evaluation metrics to assess our proposed technique. The three
measures are precision, recall rate, and F1 score. Precision(PR) expresses the proportion
of correctly detected optic disk pixels to all optic disk pixels detected by our algorithm.
Recall rate(RE) indicates the proportion of correctly detected optic disk pixels to all
optic disk pixels in ground-truth. The F1 score(F1) reflects the trade-off between
precision and recall rate. These evaluation metrics are defined by Eqs. (15), (16) and
(17), respectively:

PR ¼ tp
tpþ f p

ð15Þ

RE ¼ tp
tpþ f n

ð16Þ

F1 ¼ 2� PR� RE
PRþ RE

ð17Þ

In the equations above, tp represents the number of optic disk pixels identified correctly by
our algorithm, fp represents the number of pixels that are identified as optic disk pixels but are
actually not in ground-truth, and fn represents the number of real optic disk pixels that are not
identified by our algorithm. The closer the values of these metrics approximate to 1, the more
precise is the detection performance of our proposed method. If the value of these metrics is
0.5, this means that our algorithm is equivalent to a pure random guess; if the value of these
metrics is 1.0, it means that the detection result of our method is completely consistent with the
manual labeled results.

Furthermore, we use other additional evaluation metrics to evaluate the performances of
optic disk region detection: the center location error(CLE), distance precision(DP) and overlap
precision(OP). Specifically CLE measures the average Euclidean distance of the geometric
center location between the region detected by our method and the ground-truth. DP denotes
the number of images where CLE of the location region was smaller than a certain threshold.
OP is the percentage of images where the detection region overlap exceed a threshold
compared with the region of the ground-truth.

Figure 9 shows the line charts containing distance precision(DP) and the overlap
precision(OP). From Fig. 9, we learn that when the location error threshold(CLE) is larger
than 6, the value of DP is close to 1. When the overlap threshold is smaller than 0.92, the value
of OP is close to 1. Table 1 lists the evaluation metric and the detection times for different
datasets used in our method. Figure 10 shows a comparison between our method and manual
detection. From Table 1, we see that almost all evaluation metric results are greater than 94 %,
and the mean detection time per image is shorter than 0.2. All these indicate the high efficiency
of our method.
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3.2.2 Optic disc center localization

We use Geometric Dilution Precision(GDOP) and success rate(SU) to assess our
center location algorithm. GDOP is a coefficient that measures the accuracy of
detection, and it represents the distance between the actual position of the optic disk
center and that determined by our method. SU is the ratio of the number of images
with optic disk center detected correctly to the total number of images. GDOP and SU
are defined by Eqs. (18) and (19):

SU ¼ Ns
Nsþ N f

ð18Þ

GDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
cx þ σ2

cy

q
ð19Þ

where Ns is the number of images where the optic disk center is detected correctly, Nf
is the number of images located incorrectly, σcx

2 is the variance in the direction of the

Fig. 9 Distance precision and overlap precision of our method. DRIVE_H contains all healthy retinal images in
dataset DRIVE. DRIVE_U contains all unhealthy retinal images in dataset DRIVE. NIVE_H contains all healthy
retinal images in dataset NIVE, and NIVE_U contains all unhealthy retinal images in dataset NIVE

Table 1 The evaluation metrics of datasets tested for the detection of the optic disk region

Datasets Evaluation metrics

Precision(PR) Recall rate(RE) F1 Score(F1) Time

DRIVE DRIVE_HEALTHY 96.41 % 96.41 % 96.39 % 0.1491

DRIVE_UNHEALTHY 93.88 % 95.03 % 94.45 % 0.1565

NIVE NIVE_HEALTHY 94.03 % 95.19 % 94.53 % 0.1947

NIVE_UNHEALTHY 94.01 % 95.42 % 94.65 % 0.2041

MEAN VALUE 94.58 % 95.51 % 95.00 % 0.1761

DRIVE_HEALTHY contained all healthy retinal images in dataset DRIVE, and DRIVE_UNHEALTHY
contained all unhealthy retinal images in the dataset. NIVE_HEALTHY contained all healthy retinal images in
dataset NIVE, and NIVE_UNHEALTHY contained all unhealthy retinal images in the dataset
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x-axis, and σcy
2 is the variance in the direction of the y-axis. σx

2 and σy
2 are defined by

Eqs. (20) and (21):

σ2
x ¼

1

NI

X
i¼1

NI

cxi−cxi 0ð Þ2 ð20Þ

σ2
y ¼

1

NI

X
i¼1

NI

cyi−cyi
0ð Þ2 ð21Þ

where (cxi, cyi) represents the optic disk center coordinates of image i labeled manually. (cxi ′,
cyi ′) are the optic disk center coordinates of image i detected by our method, and NI is the total
number of images tested. In this evaluation metric, a lower value of GDOP represents better
accuracy.

Figure 11 shows the variation in the values of D(v) and R(h) with the change of rectangular
window position. The curves in different colors represent different sizes of the rectangular

Fig. 10 A comparison between our method and the manual detection of the optic disk region. The manual
results are provided by doctors from the Six People’s Hospital, affiliated with Shanghai Jiao Tong University. The
optic disk region is marked with a circle

Fig. 11 The changes in D(v) and R(h) with the position of the rectangular window. The curve in different color
represents different sizes of the rectangular window. The blue curve indicates a window size of four times that of
the blood vessels. The red curve indicates a window size of thrice that of the blood vessels. The green curve
indicates a window size of twice that of blood vessels. The purple curve indicates a window size equal to that of
blood vessels

Multimed Tools Appl (2017) 76:23309–23331 23321



window. When the width of the window is twice that of the blood vessels, the valley of the
curve is the most obvious; when the height of the window is equal to the blood vessel width,
the peak of the curve is the most obvious. Hence, we choose twice the width of the blood
vessels as the width of the vertical rectangular window when determining the abscissa of the
center, and choose the width of blood vessels as the height of the horizontal rectangular
window when determining the ordinate.

Table 2 lists the GDOP value and the detection time of our method on different datasets.
Figure 12 is a scatter plot showing the deviation in the detection of the center, and Fig. 13
shows a comparison between our method and manual detection. From Table 2, we learn that
all GDOP values are less than 2.5 pixels and the detection time is less than 1.5 s. From Fig. 12,
we learn that the deviation between our detection and ground truth is small(the maximum is
10.8, the minimum is 0). Moreover, we have invited 10 qualified doctors to evaluate the
quality of the results obtained by our method. As summarized in Table 3, the evaluation results
of our approach have outperformed other existing methods, which demonstrate that the
detection using our method is accurate, and the short detection time shows that it is efficient.

3.3 Assessor evaluation

We have invited 10 hospital doctors to evaluate the quality of results obtained by our method.
The results are the percentage of images favored by the doctors. Table 3 shows the quantitative
values of the doctors’ evaluation of the detection results obtained by our method. Figure 14
analyzes the evaluation values for different datasets. The mean accuracy is greater than 97 %,
which confirms that our method is favored by doctors.

4 Discussion

To emphasize the effectiveness of our method, we choose a few recently proposed supervised
methods, test them on the NIVE dataset, and use the evaluation metrics mentioned above to
assess their performance. Table 4 shows the evaluation metrics obtained from these methods. It
can be observed that our method owns higher SR and smaller GDOP value compared with
other methods, which proves that our method is faster and more precise than the prevalent
techniques. Moreover, we have invited qualified experts to evaluate the quality of the
experimental results and we see that the results obtained by our method are more recognized
by the assessors, as summarized in Table 4. Figure 15 shows the evaluation results for different

Table 2 The evaluation values for datasets tested for the detection of the optic disk center

Dataset Evaluation metrics

GDOP Time Success Rate

DRIVE DRIVE_HEALTHY 1.9587 0.7537 97.06 %

DRIVE_UNHEALTHY 2.2707 0.7743 100.00 %

NIVE NIVE_HEALTHY 1.2036 1.4028 97.06 %

NIVE_UNHEALTHY 1.1947 0.8182 95.97 %

MEAN VALUE 1.6126 0.9816 97.52 %
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methods by assessors. The correct rate of our method is higher than those of other methods.
Based on the data in Table 4 and Fig. 15, we conclude that the detection results of our method
are more precise than those obtained by other methods.

5 Conclusions

An effective and efficient approach to accurately detect the optic disc in color retinal images
is presented in this paper. The proposed technique first employs a kernelized least-squares

Fig. 12 Scatter plot showing the deviation in OD center detection. Data represents part images from the dataset
NIVE

Fig. 13 A comparison between our method and manual detection in the detection of the optic disk center.
Manual results are provided by doctors from the Six People's Hospital, affiliated with Shanghai Jiao Tong
University. The optic disk center is marked with a green spot (our method) and a black spot (manual detection)
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classifier to determine the OD region and then locate the OD center through evaluation of
both vessel-connected component and luminance information. Fundus images from two
datasets, DRIVE and NIVE, are used to test the robustness of the proposed method. By
analyzing the results, we can draw the conclusion that the proposed method outperforms
other optic disk detection methods with a competitive accuracy (97.52 %) and efficiency
(0.1761 + 0.9816 = 1.1577s). Moreover, the proposed method can not only be used in the
OD detection, but also be applied to other image segmentation problems, especially in

Table 3 The evaluation results by assessors for the detection of the optic disk

Dataset Assessor evaluation(%)

Mean ± std Median ±mad

DRIVE DRIVE_HEALTHY 96.00 ± 0.10 95.00 ± 2.00

DRIVE_UNHEALTHY 96.50 ± 0.17 97.50 ± 3.50

NIVE NIVE_HEALTHY 97.90 ± 0.01 98.00 ± 0.70

NIVE_UNHEALTHY 97.80 ± 0.01 98.00 ± 0.60

MEAN VALUE 97.05 ± 0.02 97.25 ± 0.83

The results are in terms of percentages of images detected accurately by the assessors. MEAN VALUE is the
result achieved for all images. BMean^ denotes the average value, and BMedian^ is the median of evaluation
value. Bstd^ denotes standard deviation, and Bmad^ denotes median absolute deviance

Fig. 14 Assessor’ evaluation of our method. The black lines in boxes denote the median, the triangles represent
the mean values, and the black lines outside the boxes represent the maximum and the minimum values
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medical image processing field. In the future, we intend to explore the implicit relations
between OD and other anatomical structures, such as macula and retinal vessels.

Table 4 The comparison between our method and other methods tested on the NIVE dataset

Method NIVE

GDOP Success rate Assessor evaluation

Sekhar et al. [16] 2.5689 92.50 % 91.50 %

Lu S et al. [8] 2.4916 96.50 % 95.25 %

Adam et al. [7] 2.6904 89.00 % 88.25 %

F. Sattar et al. [15] 2.4801 95.00 % 94.00 %

Foracchia et al. [4] 2.5081 96.00 % 95.00 %

Park et al. [13] 2.6597 90.25 % 89.50 %

Ying et al. [20] 2.5005 96.50 % 95.50 %

Lupascu et al. [9] 2.5371 95.00 % 94.00 %

Chaichana et al. [2] 2.5040 96.50 % 95.50 %

Gonzalez et al. [14] 2.5011 96.50 % 95.25 %

Sinha et al. [17] 2.4975 96.34 % 95.50 %

Proposed method 1.6126 97.52 % 97.05 %

The evaluation result by doctors is the percentage of images they consider to be detected accurately. All images
are from the NIVE dataset, which contains 400 retinal images

Fig. 15 A comparison of assessor evaluation between ours and other methods. The black lines in boxes denote
the median, the triangles represent the mean values, the black lines outside the boxes represent the maximum and
the minimum values
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