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Abstract Copy-move forgery is one of the most common types of image forgeries, where a
region from one part of an image is copied and pasted onto another part, thereby concealing the
image content in the latter region. Keypoint based copy-move forgery detection approaches
extract image feature points and use local visual features, rather than image blocks, to identify
duplicated regions. Keypoint based approaches exhibit remarkable performance with respect to
computational cost, memory requirement, and robustness. But unfortunately, they usually do
not work well if smooth background areas are used to hide small objects, as image keypoints
cannot be extracted effectively from those areas. It is a challenging work to design a keypoint-
based method for detecting forgeries involving small smooth regions. In this paper, we propose
a new keypoint-based copy-move forgery detection for small smooth regions. Firstly, the
original tampered image is segmented into nonoverlapping and irregular superpixels, and the
superpixels are classified into smooth, texture and strong texture based on local information
entropy. Secondly, the stable image keypoints are extracted from each superpixel, including
smooth, texture and strong texture ones, by utilizing the superpixel content based adaptive
feature points detector. Thirdly, the local visual features, namely exponent moments magni-
tudes, are constructed for each image keypoint, and the best bin first and reversed generalized
2 nearest-neighbor algorithm are utilized to find rapidly the matching image keypoints. Finally,
the falsely matched image keypoints are removed by customizing the random sample consen-
sus, and the duplicated regions are localized by using zero mean normalized cross-correlation
measure. Extensive experimental results show that the newly proposed scheme can achieve
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much better detection results for copy-move forgery images under various challenging condi-
tions, such as geometric transforms, JPEG compression, and additive white Gaussian noise,
compared with the existing state-of-the-art copy-move forgery detection methods.

Keywords Copy-move forgery detection . Superpixel . Adaptive feature points detector .

Exponentmoments . Reversed generalized 2 nearest-neighbor

1 Introduction

With the development of computer technology and image processing software tools, digital
image forgery has been increasingly easy to perform. It has become a severe threat to security
that anyone may access and modify the content of an image without leaving visually detectable
traces. In recent years, more and more researchers have begun to focus on the problem of
digital image forgery, and various methods have been developed to counter tampering and
forgery in order to ensure the authenticity of images [9]. Current image forgery detection
methods can be roughly categorized as active and passive (blind). Active methods such as
watermarking or illegal image copy detection depend on prior information about the image.
However, in many situations, prior information regarding an image is not available and
passive, or blind methods should be used to authenticate the image. The practicality and wide
applicability of passive methods have made them a popular topic of research [35].

Copy-move (or copy-paste) forgery is one of the most common types of image forgeries,
where a region from one part of an image is copied and pasted onto another part, thereby
concealing the image content in the latter region. Such concealment can be used to hide an
undesired object or increase the number of objects apparently present in the image. Although a
simple translation may be sufficient in many cases, additional operations are often performed in
order to better hide the tampering. These include scaling, rotation, lossy compression, noise
addition, among others. Because the wide availability of image processing software has made it
easy to perform copy-move operations, passive copy-move forgery detection (CMFD) is be-
coming one of the most important and popular digital image forensic techniques currently [12,
39]. In this paper, we focus on passive image copy-move forgery detection. In previous years,
many passive forgery detection methods have been proposed for copy-move forgery detection.
According to the existing methods, the copy-move forgery detection methods can be categorized
into two main categories: block-based algorithms and keypoint-based algorithms. They both try
to detect the copy-move forgery through describing the local patches of one image.

The block-based forgery detection methods usually divide the input images into overlap-
ping and regular image blocks, and then the tampered region can be obtained by matching
blocks of image pixels or transform coefficients. Because the descriptor of the block is
important for the algorithm, various description methods, like 1D-fourier transform (FT),
discrete cosine transform (DCT), discrete wavelet transform (DWT), singular value decom-
position (SVD), geometric moment, histogram, and principal component analysis (PCA) etc.,
have been introduced [32]. Although these block-based forgery detection methods are effective
in forgery detection, they have three main drawbacks: 1) nearly all of these methods are based
on a large number of blocks and the feature vectors extracted from the blocks are large, which
results in high computational complexity due to the fact that multiple-index sorting is required
to enable lexicographical sorting of all of the blocks. In addition, higher computational load for
extracting feature vectors is also the weakness of some block-based forgery detection methods;
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2) the host image is usually divided into overlapping rectangular blocks, which are fragile to
geometrical transformations (e.g., scaling, rotation, etc.). So, the existing methods always
cannot address significant geometrical transformations of the forgery regions; and 3) their
recall rate is low under various noises and geometric transformations, the reason for this is that
the extracted feature description usually cannot stably capture the image information.

As an alternative to the block-based methods, keypoint-based forgery detection methods were
proposed. Unlike block-based algorithms, keypoint-based methods rely on the identification and
selection of high-entropy image regions (i.e., the Bkeypoints^). A feature vector is then extracted
from per keypoint. Consequently, fewer feature vectors are estimated, resulting in reduced
computational complexity of feature matching and postprocessing [42]. The lower number of
feature vectors dictates that postprocessing thresholds are also to be lower than that of block-
based methods. Because the number of the keypoints is much smaller than that of the blocks
divided in an overlappingway, the keypoint-based algorithms require less computational resource
than the block-based ones. In this regard, the keypoint-based methods are faster and more
favorable than the block-based ones. However, on the other hand, keypoint-based method also
has the following three problems. Firstly, these methods are intrinsically less accurate than block-
based ones. For keypoint-based algorithms, the copied regions are often only sparsely covered by
matched keypoints. If the copied regions exhibit little structure, it may happen that the region is
completelymissed. Secondly, they usually cannot effectively detect the forgery regions in smooth
image. The state-of-the-art intensity based image point detectors are always sensitive to texture
region, and most detected keypoints gather in high contrast regions. So, they do not work if
homogenous areas are used to hide an object, as keypoints cannot be extracted from those areas.
Thirdly, these methods are often not robust to many postprocessing operations. The extraction of
image keypoints is a key component of the CMFD schemes. However, the usually utilized image
keypoints detectors, including Harris-Laplace, SIFT, and SURF, are not strongly resistant to some
common image processing operations and geometric transformation, which prevents these
method from being extended to detect the postprocessed duplicated regions.

In this paper, we propose a new keypoint-based copy-move forgery detection approach,
which can identify effectively small hidden objects in smooth background area. The novelty of
the proposed approach includes: 1) By utilizing the content based adaptive feature points
detector, the stable image keypoints are extracted simultaneously from smooth and texture
regions; 2) Robust local visual features, namely exponent moments magnitudes, are construct-
ed for each image keypoint; 3) Best bin first (BBF) and reversed generalized 2 nearest-
neighbor (RG2NN) are combined to find rapidly the matching image keypoints.

The rest of this paper is organized as follows. A review of previous related work is
presented in Section 2. Section 3 recalls some preliminaries about speeded-up robust features
(SURF) detector, and presents the improved SURF detector based on probability density
gradient. Section 4 introduces the Exponent moments, and analyzes the invariant property of
Exponent moments. Section 5 contains the description of our keypoint-based based copy-
move forgery detection procedure. Simulation results in Section 6 will show the performance
of our scheme. Finally, Section 7 concludes this presentation.

2 Related work

Over the past decades, passive copy-move forgery detection has been an active area of research
in many applications, including: criminalization, surveillance systems, medical imaging, and
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news media. Many approaches have been proposed to solve this problem. They can be roughly
divided into two major categories: block-based algorithms and keypoint-based algorithms.
Table 1 summarizes some inspiring and pioneering copy-move forgery detection algorithms.

Block-based algorithms These algorithms seek dependence between the image original area
and the pasted one, by dividing the image into overlapping blocks and then applying a feature
extraction process in order to represent the image blocks through a low-dimensional represen-
tation. Different block-based representations have been previously proposed in the literature
such as FT, DCT, DWT, SVD, PCA, histogram, and geometric moment etc. [11]. Bravo-Solorio
et al. [7] proposed a new method to detect duplicated regions, which used color-dependent
feature vectors to reduce the number of comparisons in the search stage, and one-dimensional

Table 1 Survey of the state-of-the-art passive copy-move forgery detection (CMFD) algorithms

Category Methods Authors

Block-based CMFD
algorithms

Using color-dependent feature vectors and 1-D descriptors Bravo-Solorio et al. [7]

Using Zernike moments of rectangular image blocks Ryu et al. [33]

Using multiresolution local binary patterns Davarzani et al. [17]

Using fast approximate nearest-neighbor search Cozzolino et al. [14]

Multi-level descriptor and hierarchical feature matching Bi et al. [6]

Using approximate 2D-DWT coefficients Fattah et al. [18]

Using Krawtchouk moments Imamoglu et al. [19]

Using histogram of orientated gradients Lee et al. [25]

Using dual tree complex wavelet transform Wu et al. [38]

Using DCT and SVD Jie et al. [21]

Using 1D-Fourier transform Ketenci et al. [23]

Using the histogram of orientated Gabor magnitude Lee et al. [24]

Using undecimated dyadic wavelet transform Muhammad et al. [30]

Using rotation-invariant features computed densely Cozzolino et al. [15]

Using Zernike-moments Al-Qershi et al. [1]

Keypoint-based CMFD
algorithms

Using SIFT features Amerini et al. [3]

Using multi-scale analysis and voting process Silva et al. [34]

Using multiscale Harris operator and MPEG-7 descriptor Kakar et al. [22]

Using the J-Linkage clustering algorithm Amerini et al. [2]

Two-stage feature detection Using MROGH and HH Yu et al. [41]

Using local warping algorithms Caldelli et al. [8]

By matching triangles of keypoints Ardizzone et al. [4]

Using distribution of SIFT keypoints Costanzo et al. [13]

Using segmentation and keypoints extraction Li et al. [26]

Using Harris corner detector Chen et al. [10]

Using color SIFT Ustubioglu et al. [36]

Using adaptive oversegmentation and feature point matching Pun et al. [31]

Using mirror reflection invariant feature transform
(MIFT) features

Jaberi et al. [20]
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(1-D) descriptors to perform an efficient search in terms of memory usage. Ryu et al. [33]
proposed a forensic technique to localize duplicated image regions based on Zernike moments
of small image blocks. The rotation invariance properties was exploited to reliably unveil
duplicated regions after arbitrary rotations, and a novel block matching procedure was devised
based on locality sensitive hashing. Davarzani et al. [17] presented an efficient method for
copy-move forgery detection using multiresolution local binary patterns (MLBP). The pro-
posed method is robust to geometric distortions and illumination variations of duplicated
regions. Furthermore, the proposed block-based method recovers parameters of the geometric
transformations. Cozzolino et al. [14] proposed a new algorithm for the accurate detection and
localization of copy-move forgeries, based on rotation-invariant features computed densely on
the image. Here, the PatchMatch algorithm was used to compute efficiently a high-quality
approximate nearest neighbor field for the whole image. Bi et al. [6] proposed a multi-level
dense descriptor (MLDD) extraction method and a hierarchical feature matching method to
detect copy-move forgery in digital images. The MLDD extraction method extracts the dense
feature descriptors using multiple levels, while the extracted dense descriptor consists of two
parts: the color texture descriptor and the invariant moment descriptor. After calculating the
MLDD for each pixel, the hierarchical feature matching method subsequently detects forgery
regions in the input image. Fattah et al. [18] developed a copy-move image forgery detection
scheme based on a block matching algorithm. Instead of considering spatial blocks, 2D-DWT is
performed on the forged image and then DWT domain blocks are considered, where only
approximate DWTcoefficients are utilized. Imamoglu et al. [19] used Krawtchouk moments to
extract features of non overlapping image blocks. For each block, the Krawtchouk moments of
order (n + m) are calculated to form the feature vector. Then, blocks’ similarities are tested by
inspecting the lexicographically sorted array of features. Lee et al. [25] proposed a blind
forensics approach to the detection of copy-move forgery. The input image is segmented into
overlapping blocks, whereupon a histogram of orientated gradients is applied to each block.
Statistical features are extracted and reduced to facilitate the measurement of similarity. Finally,
feature vectors are lexicographically sorted, and duplicated image blocks are detected by
identifying similar block pairs after post-processing. Wu et al. [38] presented a new forensic
method to detect the replicated areas rotated by arbitrary angles, even by JPEG compression. To
achieve this, overlapping blocks of pixels are decomposed using dual tree complex wavelet
transform (DTCWT), and then channel energies are extracted from each subband at each
decomposition level using the L1 norm. Finally, the anisotropic rotationally invariant features
are extracted usingmagnitudes of discrete Fourier transform for these channel energies. Jie et al.
[21] proposed a robust copy-move forgery detection method based on DCT and SVD. Firstly,
the suspicious image is divided into fixed-size overlapping blocks and 2D-DCT is applied to
each block, then the DCT coefficients are quantized by a quantization matrix to obtain a more
robust representation of each block. Secondly, each quantized block is divided nonoverlapping
sub-blocks and SVD is applied to each sub-block, then features are extracted to reduce the
dimension of each block using its largest singular value. Finally, the feature vectors are
lexicographically sorted, and duplicated image blocks will be matched by predefined shift
frequency threshold. Ketenci et al. [23] presented a copy move forgery detection technique that
uses 1D-Fourier Transform (FT) for feature extraction. Each block is transformed into frequen-
cy domain using 1D-FTover the rows. Average values of FTcoefficients along the columns are
calculated to extract the feature vectors from the blocks. Lee et al. [24] proposed a scheme for
detecting instances of copy-move forgery and authenticating images based on the Gabor
transform. The image is first divided into overlapping fixed-size blocks. The histogram of
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orientated Gabor magnitude (HOGM) descriptor is then applied to each block for the extraction
of local features. Finally, each feature vector is lexicographically sorted, and regions of image
forgery are detected through the identification of similar block pairs. Muhammad et al. [30]
proposed a blind method for copy move image forgery detection using undecimated dyadic
wavelets, in which both the LL1 and HH1 subbands are utilized to find similarities and
dissimilarities between the blocks of an image. Cozzolino et al. [15] proposed a new algorithm
for the accurate detection and localization of copy-move forgeries, based on rotation-invariant
features computed densely on the image. Here, a fast approximate nearest-neighbor search
algorithm is utilized to compute the dense descriptor. Al-Qershi et al. [1] proposed an enhanced
matching method that can be used to detect copy-move forgery based on Zernike-moments. By
dividing the blocks into buckets and adopting relative error instead of Euclidean distance, the
proposed method enhanced the detection accuracy significantly.

Keypoint-based algorithms As an alternative to the block-based methods, keypoint-based
forgery detection methods were proposed, where image keypoints are extracted and matched
over the whole image to resist some image transformations while identifying duplicated
regions. Some works have recently appeared on copy-move forgery detection based on Scale
Invariant Features Transform (SIFT) or Speed up Robust Feature (SURF) features. Amerini
et al. [3] proposed a novel methodology to support image forensics investigation based on
SIFT features, which are used to robustly detect and describe clusters of points belonging to
cloned areas. After detection, these points are exploited to reconstruct the parameters of the
geometric transformation. By using multi-scale analysis and voting processes of a digital
image, Silva et al. [34] proposed a new approach to detect copy-move forgeries in digital
images that is focused mainly on investigating and spotting out traces of copy-move forgeries
aided by complex operation. Kakar et al. [22] proposed a copy-move forgery detection
technique using multiscale Harris operator and MPEG-7 image signature tools. They also
used a feature matching process that utilizes the inherent constraints in matched feature pairs to
improve the detection of cloned regions. Amerini et al. [2] presented a novel approach for
copy-move forgery detection and localization based on the J-Linkage algorithm, which
performs a robust clustering after SIFT matching in the space of the geometric transformation.
Yu et al. [41] proposed two-stage feature detection to obtain better feature coverage and
enhance the matching performance by combining the multi-support region order-based gradi-
ent histogram (MROGH) and hue histogram (HH) descriptor. Caldelli et al. [8] investigated the
effectiveness of some methodologies which introduce a local warping onto the copy-pasted
patches in order to reduce the detection capability of SIFT-based approaches. They compared
four different local warping algorithms in terms of removed matches after the attack and visual
quality of the attacked patches. Ardizzone et al. [4] presented a very novel hybrid approach,
which compares triangles rather than blocks, or single points. Interest points are extracted from
the image and objects are modeled as a set of connected triangles built onto these points.
Triangles are matched according to their shapes (inner angles), their content (color informa-
tion), and the local feature vectors extracted onto the vertices of the triangles. Costanzo et al.
[13] proposed three novel forensic detectors for the identification of images whose SIFT
keypoints have been artificially removed and possibly reinserted. The proposed algorithms
scan image regions with sufficiently high variance in search of suspect inconsistencies in the
number and in the distribution of SIFT keypoints. By relying on such algorithms, the forensic
analyst can decide on the authenticity of the image as a whole or localize tampered regions
within the image by means of a sliding window approach. Li et al. [26] proposed a scheme to
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detect the copy-move forgery in an image, mainly by extracting the keypoints for comparison.
The main difference to the traditional methods is that the proposed scheme first segments the
test image into semantically independent patches prior to keypoint extraction. As a result, the
copy-move regions can be detected by matching between these patches. Chen et al. [10]
proposed an effective method to detect region duplication based on the image interest points
detected through the Harris corner detector. After the interest points are obtained, a rotation-
robust image region description method based on step sector statistics is proposed to give a
unique representation for each small circle region around the interest points. Then the
matching of the representations of the interest points will reveal the duplicate regions in the
forged digital images. Ustubioglu et al. [36] made the comparison between SIFT and color
SIFT, and proposed a more effective forgery detection by obtaining more matching points
using color SIFT than SIFT. Pun et al. [31] proposed a new copy-move forgery detection
scheme using adaptive oversegmentation and feature point matching. Jaberi et al. [20] adopted
keypoint-based features for copy-move image forgery detection, which employing a new set of
keypoint-based features, called MIFT, for finding similar regions in an image. To estimate the
affine transformation between similar regions more accurately, an iterative scheme was
proposed which refines the affine transformation parameter by finding more keypoint matches
incrementally.

3 Improved SURF detector based on probability density gradient

In recent years, some feature points detectors, including Harris-Laplace, SIFT, and SURF
operators etc., have been proposed and applied in object recognition and image processing [5,
27]. However, these state-of-the-art feature points detectors are based on intensity gradient,
which cannot describe efficiently image texture information. So, they can usually detect the
feature points at image textured portions or on the image edges. In other words, these detectors
cannot always extract image feature points from smooth area. Besides, they are not strongly
resistant to some common image processing operations and geometric transformation, which
prevents these methods from being extended to detect the postprocessed duplicated regions.

In this paper, we will extract the stable and uniform image keypoints by utilizing improved
SURF detector, in which the probability density gradient is considered.

3.1 Introduction to SURF detector

Recently, the SURF image feature points detector has appeared as an alternative to SIFT [5].
Its main advantage is its fastest computation, while keeping a high descriptive power (includ-
ing repeatability, robustness, and distinctiveness). It is partially inspired by SIFT, but instead of
using the gradient image, SURF algorithm [5] use the determinant of the approximate Hessian
matrix as the base of the feature points detector. To locate the feature point, the blob-like
structures are detected at locations where the determinant is at maximum. Integral images are
used in Hessian matrix approximation, which reduce computation time drastically.

Given a point x = (x, y)T in an image I, the Hessian matrix H(x; σ) in x at scale σ is defined
as follows

H x;σð Þ ¼ Lxx x;σð Þ Lxy x;σð Þ
Lxy x;σð Þ Lyy x;σð Þ

� �
ð1Þ
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where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2
.

∂x2
g σð Þ with the

image I in point x, g σð Þ ¼ 1
2πσ2 e

− x2þy2ð Þ=2σ2 , and similarly for Lxy(x, σ) and Lyy(x, σ).
To reduce computation time, the convolution of 9 × 9 box filters, Dxx(x, σ), Dyy(x, σ), and

Dxy(x, σ), are introduced to compute the approximations of Hessian’s determinant

det Happrox
� � ¼ DxxDyy− 0:9Dxy

� �2 ð2Þ
Then, a pyramid scale-space is constructed by utilizing box filters and integral images, and

a non-maximum suppression in a 3 × 3 × 3 neighborhood is applied to localize candidate
feature points in the image and over scales. Finally, image feature points can be obtained by
removing the candidate feature points when their approximate determinants of Hessian matrix
are smaller than the Hessian response threshold T.

3.2 Probability density gradient computation

The SURF detector serves as a powerful feature points extraction tool. For SURF detector, an image
is regarded as a two-dimensional intensity function, and the local image regions are classified into
three categories: 1) uniform region where the intensity gradient of each pixel is very small or nearly
zero, 2) edge region where the intensity gradient magnitude of each pixel is large and the gradient
direction is perpendicular to edge, and 3) textured region where the intensity gradient magnitude of
each pixel is large and the gradient direction is different from each other. And then, the feature points
are chosen inside the textured image regions with intensity variations in scale space. However,
broad categories of real-world images have non-textured regions. It is very likely that regular SURF
detector will miss stable feature points there. Furthermore, SURF detector is built by using local
image intensity gradients and thus loses its distinctiveness when built on non-textured areas. In this
paper, we will utilize the improved SURF detector to extract the uniform and robust feature points,
in which the probability density gradient is used instead of intensity gradient.

In fact, not only can an image be regarded as a two-dimensional intensity function, but also
can be described as a random distribution of pixel intensities in an even grid [16, 37]. So, we can
redefine second order moment matrix by using intensity probability density gradient instead of
intensity gradient, and compute the stability measure of SURF detector to extract the uniform
and robust feature points.

Kernel density estimation is the most popular density estimation method [16]. The intensity
probability density of each image pixel can be obtained by Kernel density estimation, and the
intensity probability density P(X) in the point X(x, y) is given by

P Xð Þ ¼
X
W

C

h2s hr
k1

X−X j

hs

����
����

� �
k2

c −c j
hr

����
����

� �
ð3Þ

whereW denotes the viewing window centered at X, Xj is an image pixel in windowW, c and cj
are the intensities of points X and Xj respectively, hs denotes the employed kernel bandwidths in
image space, hr denotes the employed kernel bandwidths in intensity space, C is the correspond-
ing normalization constant, k1 and k2 are the kernel functions (generally, Gaussian function), and

k1 ¼ g σð Þ ¼ 1

2πσ2
e− x2þy2ð Þ=2σ2 k2 ¼ gt σð Þ ¼ 1ffiffiffiffiffiffi

2π
p

σ
e−t

2=2σ2
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From the Eq. (3), we can derive the intensity probability density gradient estimator G(x, y)
of image pixel X

G x; yð Þ ¼ ∇sP x; yð Þ ¼ Pxx;Pyy
� � ð4Þ

Pxx ¼ d2P Xð Þ
dx2

¼
X
W

C

h2s hr

d2

dx2
k1

X−X j

hs

����
����

� �
k2

c−c j
hr

����
����

� �� �
ð5Þ

Pyy ¼ d2P Xð Þ
dy2

¼
X
W

C

h2s hr

d2

dy2
k1

X−X j

hs

����
����

� �
k2

c−c j
hr

����
����

� �� �
ð6Þ

3.3 Improved SURF detector based on probability density gradient

The SURF detector is a powerful feature points extraction tool. It has been proven that feature
points extracted by SURF detector are invariant to image rotation, scaling, viewpoint changes,
and JPEG compression. In this paper, we will extract the stable and uniform image feature points
by utilizing improved SURF detector, in which the probability density gradient is considered.

The new image feature point detector contains three key steps [37]: (1) Compute the
probability density gradient of the image, (2) Compute the new second order moment matrix
(Hessian matrix H) by using the probability density gradient of the image, (3) Detect the
feature points by using SURF detector with the new second order moment matrix.

Figure 1 shows the image feature points detection results by using SURF detector and our
probability density-based SURF detector. Obviously, for our probability density-based SURF

Fig. 1 The feature point detection results using SURF detector and our probability density-based SURF detector
(Lena): a SURF detector and no attack, b SURF detector and JPEG compression (QF = 50), c SURF detector and
image blurring (1.0), d SURF detector and viewpoint change (10°), e Probability density-based SURF detector
and no attack, f Probability density-based SURF detector and JPEG compression (QF = 50), g Probability density-
based SURF detector and image blurring (1.0), h Probability density-based SURF detector and viewpoint change
(10°). Note: yellow circle denotes the repeated feature points, red plus denotes the detected useful feature points
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detector, the feature points are chosen inside both the textured regions and non-textured areas,
so the feature points are distributed evenly. Additionally, our probability density-based SURF
detector is more robust than SURF detection methods under various attacks.

4 Introduction to exponent moments

In 2011, Meng & Ping [29] extended radial harmonic Fourier moments and introduced a new
moment named Exponent moments (EMs). Compared with other orthogonal moment, EMs
has many desirable properties such as better image reconstruction and lower computational
complexity. The EMs modulus has good robustness against various noises, and geometric
transformations. Besides, the EMs is free of numerical instability issues so that high order
moments can be obtained accurately. So, the EMs modulus is suitable for descripting image
content, especially for small image regions.

A function set Pn,m(r, θ) defined in a polar coordinate system (r, θ) contains the radial
function An(r) and Fourier factor in angle direction exp(jmθ)

Pn;m r; θð Þ ¼ An rð Þexp jmθð Þ ð7Þ

where An rð Þ ¼ ffiffiffiffiffiffi
2=r

p
exp j2nπrð Þ, n,m = −∞,⋯, 0,⋯, +∞, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. According to

the characteristic of radial function and Fourier factor in angle direction, the set of Pn,m(r, θ) is
orthogonal and sound over the interior of the unit circleZ 2π

0

Z 1

0
Pn;m r; θð ÞP*

k;l r; θð Þrdrdθ ¼ 4πδn;kδm;l ð8Þ

where 4π is the normalization factor, δn,k and δm,l are the Kronecker symbols, and Pk,l
* (r, θ) is

the conjugate of Pk,l(r, θ).
The image f(r, θ) can be decomposed with the set of Pn,m(r, θ) as

f r; θð Þ ¼
Xþ∞

n¼−∞

Xþ∞

m¼−∞
En;mAn rð Þexp jmθð Þ ð9Þ

where En,m is the EMs of order n with repetition m, whose definition is

En;m ¼ 1

4π

Z 2π

0

Z 1

0
f r; θð ÞA*

n rð Þexp − jmθð Þrdrdθ ð10Þ

here, An
*(r) is the conjugate of An(r).

Following the principle of orthogonal function, the image function f(r, θ) can be recon-
structed approximately by limited orders of EMs (n ≤ nmax, m ≤ mmax). The more orders used,
the more accurate the image description

f 0 r; θð Þ ¼
Xþ∞

n¼−∞

Xþ∞

m¼−∞
En;mAn rð Þexp jmθð Þ≈

X
n¼−nmax

nmax X
m¼−mmax

mmax

En;mAn rð Þexp jmθð Þ ð11Þ

where f ' (r, θ) is the reconstructed image. The basis functions An(r)exp(jmθ) of the EMs are
orthogonal over the interior of the unit circle, and each order of the EMs makes an independent
contribution to the reconstruction of the image.
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Below, we will derive and analyze the geometric invariant property of EMs. Let
fr(r, θ) = f(r, θ + α) denote the rotation change of an image f(r, θ) by the angle α, then EMs
of f(r,θ +α) and f(r, θ) have the following relations

En;m f rð Þ ¼ En;m fð Þexp μmαð Þ

where En,m(f
r) and En,m(f ) are the EMs of f r(r, θ) and f(r, θ), respectively. According to above

equation, we know that a rotation of the image by an angle α induces a phase shift eμmα of the
En,m(f ). Taking the norm on both sides, we have

En;m f rð Þ

 

 ¼ En;m fð Þexp μmαð Þ

 

 ¼ En;m fð Þ

 

 exp μmαð Þj j ¼ En;m fð Þ

 


So, the rotation invariance can be achieved by taking the norm of the images’ EMs. In other

words, the EMs modulus |En,m(f )| are invariant with respect to rotation transform. Besides, the
EMs modulus is invariant to scaling if the computation area can be made to cover the same
content. In practice, this condition is met because the EMs are defined on the unit disk.

Figure 2 gives the reconstructed images and reconstruction errors using EMs for standard
image Lena (moment orders n = 5, 10, 15, 20, 25, 30), and Fig. 3 shows the EMs modulus
distribution for image Lena under various attacks. It can be seen that, EMs can effectively
capture the image information, and the reconstructed images get closer to the original images
when more moments are added to the reconstruction process. Also, the EMs modulus has good
robustness against various noises, geometric transformations, and image variations.

5 The proposed robust copy-move forgery detection

Figure 4 shows original image and tampered image Japan tower from image dataset FAU [9]. The
proposed framework for robust copy-move forgery detection shown in Fig. 5 is carried out in four
key steps here. Firstly, superpixels segmentation (See Fig. 5a). The given image is segmented into
nonoverlapping and irregular superpixels by using the entropy rate superpixel (ERS) algorithm,
wherein the number of superpixels is assigned adaptively according to image size and content.
Secondly, superpixels classification and adaptive keypoints extraction (See Fig. 5b and c). The
superpixels are classified into smooth, texture and strong texture ones based on local information
entropy and the stable image keypoints are extracted from each superpixel by utilizing probability

Fig. 2 The reconstructed images and reconstruction errors for image Lena of size 128 × 128 (moment orders
n = 5, 10, 15, 20, 25, 30): a Reconstructed images, b Reconstruction errors

Multimed Tools Appl (2017) 76:23353–23382 23363



density-based SURF detector. Thirdly, the keypoint feature construction and keypoints matching
(See Fig. 5d and e). The feature vectors, namely exponent moments magnitudes, are constructed
for each keypoints, and the Rg2NN algorithm is utilized to find rapidly the matching keypoints.
Finally, detected copy-move forgery regions postprocessing (See Fig. 5f and h). The RANSAC
algorithm is utilized to estimate the homographies corresponding to the transformations that the
copied regions have undergone. Also, morphological operation is applied to generate the detected
forgery regions. The following sections provide detailed steps in this proposed framework.

5.1 Superpixels segmentation

In this paper, we employed the entropy rate superpixel (ERS) algorithm [28] to segment the
host image into meaningful irregular superpixels, which are further used for content based
adaptive feature points detection. The ERS algorithm adapts a new objective function for
superpixel segmentation. This objective function consists of two components: entropy rate of a
random walk on a graph and a balancing term. The entropy rate favors compact and

Fig. 3 The EMs modulus for image Lena under various noises, geometric transformations, and image variations:
a Original image, b Blurring, c Sharpening, d Contrast changing, e Average filtering, f Rotation (45°), g Scaling
(1.2), h Scaling (0.8), i Translation

Fig. 4 Original image and tampered image (Japan tower): a Original image, b Tampered image
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homogeneous clusters-encouraging division of images on perceptual boundaries and favoring
superpixels overlapping with only a single object; whereas the balancing term encourages
clusters with similar sizes-reducing the number of unbalanced superpixels.

For our superpixel content based adaptive feature points detection, the selection of optimal
number of the superpixels in ERS segmentation is a key component. This is because that the
original tampered image and forgery regions are always of different sizes and have different
content, and different number of the superpixels can usually produce different feature points
detection results. For example, the smaller number of the superpixels will lead to a significantly
higher computational load, but the larger one will make the feature points detection results not
be sufficiently accurate. So, we should select the number of the superpixels by considering both
the computational expense and the detection accuracy. Here, we assign adaptively the optimal
number K of superpixels according to the tampered image size and content as follow

K ¼ n1
n2

� Max M ;Nð Þ
5

� �

where n1 and n2 denote the number of pixels with maximum gray value, and the number of all
pixels in the gray version of the tampered color image, respectively. M ×N denotes the host
image size. ⌊x⌋ returns the lower integer part of x.

Using the above selection method, we can obtain adaptively the optimal number of the
superpixels, K = 118, 193, for tampered image Red tower (1632 × 1224) and Ship
(1632× 1224). Figure 6 shows the non-overlapping and irregular superpixels, which are
further used for content based adaptive feature points detection.

5.2 Superpixels classification and adaptive keypoints extraction

5.2.1 Superpixels classification

In order to extract the stable and uniform image feature points from each superpixel, we must
analyze the superpixel content to define the adaptive Hessian response threshold. In this paper,
we firstly classify the superpixels into smooth, texture and strong texture ones according to

Fig. 5 The key steps of the proposed copy-move forgery detection approach: a Superpixels segmentation, b
Superpixels classification (red denotes smooth, green is texture, and blue denotes strong texture), c Adaptive
keypoints extraction, d Keypoint feature construction, e Keypoints matching, f Falsely matched keypoints
removing, g Localizing the duplicated regions, h Morphology processing
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their local information entropy, and then define adaptively the Hessian response threshold
based on superpixel content.

Suppose that the given image I have been segmented into K nonoverlapping and irregular
superpixels Sk(k=1,⋯,K), andwe firstly define the local information entropyEk of superpixels Sk as

Ek ¼ −
X

i

PSk ið Þlog2 PSk ið Þ

where PSk ið Þ is the probability of the pixel value i in superpixels Sk.
Then, we formulate a superpixel type code, denoted asBk(k=1,⋯,K), to classify the superpixels

Sk into smooth, texture and strong texture ones according to their local information entropy, where

Bk ¼
0
1
2

8<
:

smoothð Þ
textureð Þ

strongtextureð Þ

if Ek < EA
if EA < Ek < EB

if Ek > EB

And

EA ¼ min
k

Ekð Þ þ E
2
; EB ¼ min

k
Ekð Þ þ 3E

4
;E ¼ max

k
Ekð Þ−min

k
Ekð Þ

Finally, the adaptive Hessian response threshold for superpixel Sk feature points detection
can be defined according to their local information entropy, where

Tk ¼
T �M 2 � min

Bk¼0
Skð Þ

T �M 2 � min
Bk¼1

Skð Þ
T � min

Bk¼2
Skð Þ

8>>><
>>>:

if Bk ¼ 0

if Bk ¼ 1

if Bk ¼ 2

where T = 0.0002 is the original Hessian response threshold for SURF detector, andM=0.01 is
a constant factor for adjusting Hessian response threshold.

5.2.2 Adaptive keypoints extraction

Robust image feature points extraction is a key component of the keypoint-based CMFD
schemes. In recent years, some image feature points detectors have been proposed, and have

Fig. 6 Non-overlapping and irregular superpixels using ERS algorithm: a Red tower, b Ship
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been widely applied in image forgery detection. For example, scale-invariant feature transform
(SIFT) by Lowe et al. and speeded-up robust features (SURF) by Bay et al. However, these
state-of-the-art feature points detectors are based on intensity gradient, which cannot describe
efficiently image texture information. So, they can usually detect the feature points at image
textured portions or on the image edges. In other words, these detectors cannot always extract
image feature points from smooth area. Besides, they are not strongly resistant to some
common image processing operations and geometric transformation, which prevents these
methods from being extended to detect the postprocessed duplicated regions.

In this paper, we extract evenly image feature points from each superpixel using
our probability density-based SURF detector and adaptive Hessian response threshold,
which have been proven to be robust against common image processing operations
and geometric distortion, such as rotation, scaling, and lossy compression etc.
Figure 7 shows the superpixels classification and adaptive keypoints extraction pro-
cedure for image Red tower and Ship.

5.3 Keypoint feature construction and keypoints matching

5.3.1 Keypoint feature construction

Keypoint feature construction is a prerequisite step for CMFD and crucial to detection
accuracy. It is desired that the keypoints in a copy-move pair can be mapped to similar
features even in the presence of post-processing. At the same time, the features should
correctly distinguish distinct keypoints in the image, even under some severe conditions. From
the foregoing, we know that EMs can effectively capture the image contents, especially for
small image regions. Besides, EMs modulus has good robustness against various noises and
geometric transformations. So, we employ the EMs modulus to extract keypoint features from
the local feature region in this paper. Our process for constructing the EMs based keypoint
feature can be summarized as follows.

Step 1 The local feature regions (LFRs) are constructed. Here, LFR refers to the
image region around keypoints in the given image, which reflects the important
image keypoint semantics. Theoretically, the LFRs can be any shapes such as
triangle, rectangle, and circle etc., but it is important to assure that LFRs should
be invariant to various noises and geometric transformations. In this paper, we
construct the circular LFRs to extract keypoint feature, which can achieve better
robustness property. Based on the fact that the feature scales of keypoints vary
with the local image feature, we chose the radius of the LFRs in accordance with

Fig. 7 The superpixels classification and adaptive keypoints extraction for image Red tower and Ship: a
Superpixels classification (Red tower), b Adaptive keypoints extraction (Red tower), c Superpixels classification
(Ship), d Adaptive keypoints extraction (Ship)
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the feature scale of the keypoint. As a result, a set of adaptive circular regions
(LFRs) are generated. The radius of the circular LFRs is defined as:

ℜ ¼ τ ⋅ round δð Þ

where ℜ is the radius of the LFR, δ is the feature scale of the keypoint, and τ is
a positive integer, which is used to adjust the size of the local image regions.
Step 2 The keypoint features, EMs modulus coefficients, are computed. In order to
compute the EMs of circular LFR, we need to apply the zero-padding operation to the
circular LFR so as to obtain the square LFR. Then, we can compute the EMs of the square
LFR, and select EMs modulus as the keypoint feature.

According to the better reconstruction property of EMs, we know that image features
can normally be captured by just a few low-frequency EMs. Further, the EMs modulus
coefficients |En,−m| = |En,m|, and the values of |E0,0| and |E1,0| are nearly constant for all
images, so we only chose some low-frequency EMs modulus coefficients as the keypoint
feature E(i,j) in this paper.

E i; jð Þ ¼ E i; jð Þ
1;1
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5.3.2 Keypoints matching

After we have obtained the image keypoints and keypoint features, we must locate the matched
keypoints through the keypoint features. Generally, we consider that two image keypoints are
matched each other when their Euclidean distance of the EMs features is smaller than the
predefined threshold, which means that the image keypoint (i, j) is matched to the image
keypoint (k, l) only if they can meet the following condition

E i; jð Þ−E k;lð Þ�� ��≤D
where E(i,j) and E(k,l) denote the EMs feature vector of image keypoints (i, j) and (k, l),
respectively. D is feature Euclidean distance threshold. But, due to the high-dimensionality of
the feature space, the above simple matching approach usually obtains a low accuracy because
some keypoint features are much more discriminative than others. For this reason, more
effective nearest-neighbor matching techniques, including 2NN and g2NN, are proposed by
using the ratio between the distance of the closest neighbor to that of the second-closest one,
and comparing it with a threshold [40]. However, they have one main drawback: they are
unable to manage multiple keypoint matching. This is a key aspect in case of copy-move
forgeries since it may happen that the same image area is cloned over and over. In other words,
they only find matches between keypoints whose features are very different from those of the
rest of the set. Therefore, the case of cloned patches is very critical since the keypoints detected
in those regions are very similar to each other. In this paper, we improve the structure of image
keypoint pairs matching algorithm and propose an enhanced model based on the reversed-
generalized 2 nearest-neighbor (Rg2NN) [40], in which reverse order is used in keypoints
matching, so that all keypoints that match with the detected point can be calculated accurately.
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Rg2NN is the improved version of g2NN algorithm, which considers the ratio between the
nearest neighbor and the second nearest one. For a given keypoint, D = {dn, dn − 1,⋯, d2} is
defined as the sorted Euclidean distances in reverse order with respect to other keypoints. The

keypoint corresponding to di is considered a match of the given keypoint only if the ratio Ti

¼ di−1=di (n ≥ i ≥ 2) is larger than a fixed threshold TR2gNN and Ti − 1 is smaller than TR2gNN (in
our experiments we set TR2gNN to 0.6). A very high ratio (e.g. greater than TR2gNN) means two
random features.

The Rg2NN algorithm iterates the g2NN test in reverse order between di−1=di until this ratio
is greater than TR2gNN, which is able to match multiple copies. That is to say, if k is the value in
which the Rg2NN procedure stops, each keypoint in correspondence to a distance in {dn,dn
− 1,⋯, dk} (where n ≥ k ≥ 2) is regarded as a match for the inspected keypoint. After using the
Rg2NN test on all the keypoints, we can obtain a set of matched keypoint pairs.

Figure 8 shows the image keypoints matching procedure for image Red tower and Ship.

5.4 Reducing false matching

After the set of matched image keypoints xm has been obtained, it is necessary to cluster these
data in such a way so as to be able to distinguish the different matched regions. For clustering
on the spatial locations (i.e., x, y coordinates) of the matched keypoints, an agglomerative
hierarchical clustering is used in this paper. Hierarchical clustering creates a hierarchy of
clusters which may be represented by a tree structure. The algorithm starts by assigning each
keypoint to a cluster; then it computes all the reciprocal spatial distances among clusters, finds
the closest pair of clusters, and finally merges them into a single cluster. Such computation is
iteratively repeated until a final merging situation is achieved. Considering that we have at
least two matched areas, the result of agglomerative hierarchical clustering provides P ≥ 2
different sets of matched keypoints Mp, so xm =M1 ∪M2 ∪⋯ ∪Mp, and this allows the
definition of the different duplicated regions.

When an image has been classified as nonauthentic, we utilize the RANSAC algorithm to
determine which geometrical transformation was used between the original area and its copy-
moved version. Besides, another benefit is that we can further filter out mismatches through
this procedure. RANSAC algorithm was first introduced by Fischler and Bolles [2], which is a
simple, yet powerful parameter estimation approach designed to cope with a large proportion
of outliers in the input data. In essence, RANSAC is a resampling technique that generates
candidate solutions using the minimum number data points required to estimate the underlying
model parameters. This algorithm estimates a global relation that fits the data, while

Fig. 8 The image keypoints matching results: a Red tower, b Ship
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simultaneously classifying the data into inliers and outliers. Due to its ability to tolerate a large
fraction of outliers, RANSAC is a popular choice for a variety of robust estimation problems.

Denoting the set of all Rg2NN-matched image keypoints pairs as P, and a reduced set P* is
constructed from P by keeping only those pairings for which at least one spatially adjacent
image keypoint pair is also included in P. Assuming that a pair of matched image keypoints are
(i, j) and (k, l), we select three spatially adjacent collinear pairs from P* to infer their 2 × 2
affine transformation R in the spatial domain,

i; jð ÞT ¼ R⋅ k; lð ÞT þ t

R ¼ sx 0
0 sy

� �
� cosϕ −sinϕ

sinϕ cosϕ

� �
; t ¼ tx

ty

� �

where
tx
ty

� �
,

sx 0
0 sy

� �
; and

cosϕ −sinϕ
sinϕ cosϕ

� �
are shift vector, scaling matrix and rotation

matrix, respectively.
All image keypoints pairs in P* are classified into inliers or outliers by checking the condition





 i; jð ÞT ¼ R ⋅ k; lð ÞT þ t







 < T

for classification threshold T. This procedure is repeatedNiter times, each time initializedwith a triple
of keypoints pairs randomly drawn from set P*. The algorithm outputs the set of pairings with the
largest number of inliers as duplicated region. In this paper, the RANSAC parameters are set to
classification threshold T= 2 and iteration times Niter= 100, which resemble literature settings [5].

Figure 9 shows the false matching removal result for image Red tower and Ship.

5.5 Localizing duplicated regions

In order to localize the duplicated regions, we use a block-wise correlation measure based on
zero mean normalized cross-correlation (ZNCC) between the gray-scale of the original image
and the warped image [2]. It is computed as

ZNCC xð Þ ¼

X
v∈Ω xð Þ

I vð Þ−I
 �

W vð Þ−W
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v∈Ω xð Þ

I vð Þ−I
 �2

W vð Þ−W
 �2

s

Fig. 9 The false matching removal results: a Red tower, b Ship
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where Ω(x) is a 7 pixels neighboring area centered at every pixel x of I; I(v) and W(v) denote
the pixel intensities at the location v; Ī and W are the average pixel intensities of I and W,
respectively, computed on Ω(x). Once the correlation map is obtained, we apply a Gaussian
filter of size 7 pixels with standard deviation 0.5 in order to reduce the noise.

After the above postprocessing to reduce missing detections, we can construct a duplication
map to visualize the forgery detection result. We firstly create an all-zeros matrixM that has the
same size as the tampered image, and set the entry Mi,j to one if the coordinate (i, j) in the
image is covered by a copy-move pair. Then, we use a forged area threshold A, a value
denoting the minimum area of the duplicated region, to remove small isolated regions. Finally,
we use mathematical morphological operations to smooth and connect the boundaries of the
detected duplicated regions, and the duplication map can be obtained by multiplying the binary
matrix with the tampered image. Figure 10 shows the duplicated regions localizing, morpho-
logical operations, and final forgery detection results for image Red tower and Ship.

6 Simulation results

In this section, we present the results of our proposed copy-move forgery detection approach.
We present quantitative results and examples for the detection of copy-move forgeries
subjected to many image processing operations. Also, experimental results are compared with
schemes in [2, 14, 15]. All measurements are performed on a desktop computer with Dual
Core 3.4-GHz Pentium CPU and 8 GB RAM memory, running Matlab R2011a.

6.1 Test image dataset and error measures

In this paper, the public available image dataset FAU is used to evaluate the performance of
different CMFD schemes, which was constructed by Christlein et al. [9]. The image dataset is
formed based on 48 high-resolution uncompressed PNG true color images. In the dataset, the

Fig. 10 The duplicated regions localizing, morphological operations, and final forgery detection results: a Red
tower, b Ship
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copied regions are from the categories of living, nature, man-made and mixed, and they range
from overly smooth to highly textured; the copy-move forgeries are created by copying,
scaling and rotating semantically meaningful image regions. Table 2 shows the assignment
of images to categories. In summary, the dataset has 1826 images in total, which are realistic
copy-move forgeries. These images are quite large, with typical size 3000 × 2400 pixels, with
tampered areas covering about 6 % of each image on average. We also perform experiments
over 80 images from GRIP image database [15]. All these images have size 768 × 1024 pixels,
while the forgeries have arbitrary shapes aimed at obtaining visually satisfactory results, with
size going from about 4000 pixel (less than 1 % of the image) to about 50000 pixels.

For practical use, the most important aspect is the ability to distinguish tampered and
original images. However, the power of an algorithm to correctly annotate the tampered region
is also significant, especially when a human expert is visually inspecting a possible forgery. In
this work, we evaluate the CMFD performance at two levels: at image level, where we focus
on whether the fact that an image has been tampered or not can be detected; at pixel level,
where we evaluate how accurately tampered regions can be identified. At image level, the
important measures are the number of correctly detected forged images, Tp, the number of
images that have been erroneously detected as forged, Fp, and the falsely missed forged images
FN. From these we computed the error measures Precision and Recall. They are defined as

Precision ¼ TP

TP þ FP
; and Recall ¼ TP

TP þ FN

Precision denotes the probability that a detected forgery is truly a forgery, whileRecall shows the
probability that a forged image is detected. Recall is often called true positive rate.We also compute
another criterion F as a measure which combines Precision and Recall in a single value.

F ¼ 2 ⋅
Precision ⋅ Recall
Precisionþ Recall

ð12Þ

We used these measures at pixel level, too. In that case, Tp is the number of correctly detected
forged pixels. Fp denotes the number of falsely detected forged pixels and FN are the falsely missed
pixels. The previous definition of Precision, Recall and F measures also hold on the pixel level.

In this paper, we evaluate the proposed CMFD method at the pixel level and image level
simultaneously. This is because that, the pixel-level metrics are useful for assessing the general

Table 2 Categorization of Christlein’s FAU dataset by texture properties

Category Assigned images

Small copied area Large copied area

Smooth ship, motorcycle, sailing, disconnected s2hift,
noise pattern, berries, sails, mask, cattle,
swan, Japan tower, wading

four babies, Scotland, hedge, tapestry, Malawi

Rough supermarket, no beach, fisherman, barrier,
three hundred, writing history, central
park

lone cat, kore, white, clean walls, tree,
christmash edge, stone ghost, beach
wood, red tower

Structured bricks, statue, giraffe, dark and bright,
sweets, Mykene, jellyfish chaos, Egyptian,
window, knight moves

fountain, horses, port, wood carvings,
extension
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localization performance of the algorithm when the ground-truth data are available, and the
image-level decisions are especially interesting with respect to the automated detection of
manipulated images. In general, a higher precision, a higher recall, and a higher F-measure
indicate superior performance.

6.2 Detection results at pixel level

The goal of this experiment is to evaluate how precisely a copy-moved region can bemarked. So, we
focusedmainly on the number of detected (ormissed, respectively) copied-movedmatches. For each
detected match, we check the centers of two matched blocks against the corresponding (pixelwise)
ground truth image. All boundary pixels are excluded from the evaluation. Please note that all the
measures, e. g. false positives and false negatives, are computed using all the pixels in the tampered
images only. In the practical test, we first evaluate the proposed scheme under ideal conditions (no
postprocessing) of the pixels. Subsequent experiments examine the cases of: JPEG compression on
the copied region, noise on the copied region, rotation and scaling of the copied region.

1) Plain Copy-Move: As a baseline, we evaluated how the CMFD methods perform under
ideal conditions (no postprocessing). Here, we used the 128 forgery images from FAU
and GRIP dataset without any additional modification to evaluate the detection perfor-
mance. Note that we calibrated the thresholds for all methods in a way that yields very
competitive (comparable) detection performances.

2) JPEG Compression: We introduced a common local disturbance on the copied region, lossy
JPEG compression, for which the quality factors varied between 30 and 100 in steps of 10.
Per evaluated quality level, we applied the same JPEG compression to the copied regions of
the 128 forgeries images, so a total of 128 × 8 = 1024 forgeries images are tested. For very
low quality factors, the visual quality of the image is strongly affected. However, we consider
at least quality levels down to 70 as reasonable assumptions for real-world forgeries.

3) Additive White Gaussian Noise (AWGN): We applied additive white Gaussian noise to
the copied regions of the 128 forgeries images from FAU and GRIP dataset. The strength
of distortion is parametrized via the noise’s standard deviation and the filter’s radius. We
considered zero-mean AWGN with standard deviation 2, 4, 6, and 8, as well as average
filters of radius 0.5, 1, 1.5, 2, and 2.5, respectively.

4) Rotation: One question that recently gained attention was the resilience of CMFD
algorithms to affine transformations, like scaling and rotation. We rotated the copied
regions with the rotation angle varying from 2 to 10°, in increments of 2°, and with the
rotation angles of 20°, 60° and 180° as well. In this case, we tested a total of
128×8=1024 forgeries images.

5) Scaling: We conducted an experiment where the copied region was slightly rescaled, as is
often the case in real-world image manipulations. Specifically, we rescaled the copied
region between 91 and 109 % of its original size, in steps of 2 %. We also evaluated
rescaling by 50, 80, 120 and 200 % to test the degradation of algorithms under larger
amounts of copied region resizing.

Figures 11 and 12 shows the detection results on some test images from FAU dataset [9] with
copy-move regions fused in the background, and Fig. 13 shows the detection results on some test
images from GRIP database [15]. It can be observed that the proposed scheme detects most copy-
move regions (But the scheme [15] cannot detect correctly some forged images, such as tree, giraffe
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from FAU dataset). Figure 14 shows the average CMFD performance at pixel level under various
attacks on the copied region, including common signal processing and geometric distortions.

Table 3 shows the average F-measure of 128 test images under ideal conditions (no
postprocessing), which combine both the precision and recall into a single value, for the
proposed scheme compared with the existing methods. This table indicates that the forgery
detection result of the proposed scheme is better than that of the existing state-of-the-art
methods when under plain copy-move. Table 4 reports the run times of the proposed copy-
move forgery detection, including the CPU-time of each key steps and the whole approach, for
color images with different size.

Fig. 11 Detection results on some test images from FAU dataset: a Forged images, bGround-truth forgery regions,
c Detected forgery regions using Cozzolino’s method (2015), d Detected forgery regions using our approach

Fig. 12 Detection results on some test images from FAU dataset: a Forged images, b Ground-truth forgery
regions, c Detected forgery regions using Cozzolino’s method (2015), d Detected forgery regions using our
approach
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Fig. 13 Detection results on some test images from GRIP database: a Forged tampered images, b Ground-truth
forgery regions, c Detected forgery regions using Cozzolino’s method (2015), d Detected forgery regions using
our approach

Fig. 14 Average CMFD performance (F-measure) at pixel level on 80 test images from GRIP dataset: a JPEG
compression, b Additive white Gaussian noise, c Rotation, d Scaling
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6.3 Detection results at image level

Area based pixel level performance measures such as Precision, Recall, and F rates are useful
when we know that the tested image is a forgery. Yet, in practice, this is usually not known a
priori. In the next set of experiments, we test the overall image-level detection performance of
our method. Specifically, for a forgery image, a successful detection is deemed when our
method detects a duplicated region larger than the area threshold. For an untampered image, a
true negative occurs when our method does not detect any duplicated region.

We split these image level experiments in a series of separate evaluations. We first evaluate
the proposed approach under ideal conditions (plain copy-move); in other words, we have 128
original images and 128 forgery images, in which a one-to-one copy-move is implemented.
We must distinguish the original and forgery images in this case. Then, the proposed copy-
move forgery approach is evaluated under different types of attacks: the geometric transforms,
such as scaling and rotation; common signal processing, such as JPEG compression and
additive white Gaussian noise.

Figure 15 shows the average CMFD performance at image level on 128 test images from
FAU and GRIP dataset under various attacks.

1) Plain Copy-Move: We evaluated the proposed approach under ideal conditions. We used
the 128 original images and 128 forgery images, and chose per-method optimal thresholds
for classifying these 256 images. Similarly to the experiment at pixel level, all regions
have been copied and pasted without additional disturbances.

Table 3 Average detection results
under plain copy-move at pixel
level and image level

Methods F-measure image level F-measure pixel level

Cozzolino [14] 0.9470 0.8740

Amerini [2] 0.9304 0.7973

Li [26] 0.9489 0.8909

Cozzolino [15] 0.9426 0.8785

Our scheme 0.9680 0.9226

Table 4 CPU-time of each key steps for color images with different size (seconds)

Image sizes Key steps Total

Superpixels
segmentation

Adaptive
keypoints
extraction

Keypoint
feature
construction

Feature
points
matching

Postprocessing

Giraffe (400 × 266) 5.29 6.42 6.95 24.99 82.42 126.07

Tree (512 × 342) 5.81 12.36 6.40 25.66 99.05 149.28

Cattle (640 × 427) 7.60 15.96 7.11 44.63 217.21 292.51

Window (1520 × 1007) 13.06 30.67 13.56 76.84 113.05 267.18

Red tower (1632 × 1224) 13.77 34.85 15.28 82.96 94.83 241.69

Kore (1936 × 1296) 17.55 41.06 18.96 185.51 185.98 449.06

Sails (1944 × 1296) 19.93 41.76 19.51 197.15 90.02 368.37
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2) JPEG Compression: We used the same experimental setup as in the pixel level evaluation,
i. e. added JPEG compression between quality levels 30 and 100 in steps of 10.

3) Additive White Gaussian Noise (AWGN): We again used the same experimental setup as in
the pixel level evaluation, i. e. zero-meanAWGNwith standard deviation 2, 4, 6, and 8, as well
as average filters of radius 0.5, 1, 1.5, 2, and 2.5, has been inserted snippets before splicing.

4) Rotation: We evaluated cases where the copied region has been rotated between 2 and 10°
in steps of 2°, and also tested three larger rotation angles of 20°, 60° and 180°. We
assumed this to be a reasonable range.

5) Scaling: The experimental setup is the same as on the pixel level analysis. The copied
region is scaled between 91 and 109 % of its original size in steps of 2 %. Additionally,
more extreme scaling parameters were evaluated, including 50, 80, 120 and 200 %.

From the above experimental results, we can see that the newly proposed approach can
achieve much better detection results for copy-move forgery images under various challenging
conditions, such as geometric transforms, JPEG compression, and additive white Gaussian
noise, compared with the existing state-of-the-art copy-move forgery detection schemes. This is
because that 1) By utilizing the content based adaptive feature points detector, the stable image
keypoints are extracted simultaneously from smooth and texture regions; 2) Robust local visual
features, namely exponent moments magnitudes, are constructed for each image keypoint; 3)
Best bin first (BBF) and reversed generalized 2 nearest-neighbor (RG2NN) are combined to
find rapidly the matching image keypoints; 4) The RANSAC algorithm is utilized to estimate
the homographies corresponding to the transformations that the copied regions have undergone.
Also, morphological operation is applied to generate the detected forgery regions.

Despite the present advances, there is still much room for improvements. As an example,
the proposed copy-move forgery approach is computationally more demanding, and the

Fig. 15 Average CMFD performance (F-measure) at image level on 80 test images from GRIP dataset: a JPEG
compression, b Additive white Gaussian noise, c Rotation, d Scaling
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average detection time of 128 forgery images from FAU and GRIP database, on a desktop
computer with Dual Core 3.4-GHz Pentium CPU and 8 GB RAM, is 221 s, which makes the
proposed approach cannot be used effectively in real-time applications.

7 Conclusion

In this paper, we presented a new keypoint-based copy-move forgery detection for small
smooth regions. The main novelty of the work consists in introducing the superpixel content
based adaptive feature points detector, robust EMs-based keypoint features, and fast Rg2NN
based keypoint matching. We demonstrate the effectiveness of the proposed approach with a
large number of experiments. Experimental results show that the proposed approach can
achieve better detection results for copy-move forgery images if the forged image is rotated,
scaled or highly compressed. We compared the robustness of our method with the previously
proposed block-based and keypoint-based forgery detection schemes, and we showed that our
method is more robust to various types of processing.

The limitation of the proposed copy-move forgery detection is that it has higher computational
complexity, which makes the proposed approach cannot be used effectively in real-time applica-
tions. In our future work, we will focus on eliminating these drawbacks. Also, we will investigate
the use of our approach in detecting regions which have undergone nonaffine transformations.
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