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Abstract Sparsifying transform is an important prerequisite in compressed sensing. And it is
practically significant to research the fast and efficient signal sparse representation methods. In
this paper, we propose an adaptive K-BRP (AK-BRP) dictionary learning algorithm. The
bilateral random projection (BRP), a method of low rank approximation, is used to update the
dictionary atoms. Furthermore, in the sparse coding stage, an adaptive sparsity constraint is
utilized to obtain sparse representation coefficient and helps to improve the efficiency of the
dictionary update stage further. Finally, for video frame sparse representation, our adaptive
dictionary learning algorithm achieves better performance than K-SVD dictionary learning
algorithm in terms of computation cost. And our method produces smaller reconstruction error
as well.

Keywords Bilateral random projections (BRP) . AdaptiveK-BRP algorithm . Dictionary
learning . Sparse representation . K-SVD algorithm

1 Introduction

Recently, solving the inverse problem of images has attracted extensive attention of scholars
[4, 9]. In the context of imaging, several methods have been proposed to exploit the sparsity of
image patches in a sparsifying transform domain or learned dictionary to reconstruct images,
especially in the field of Compressed Sensing (CS) [11]. CS conducts sampling and compres-
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sion at the same time by utilizing the redundancy of the signal. This technology mainly
consists of three important stages, i.e., signal sparse representation, sensing matrix design and
signal reconstruction. And finding the best sparsifying basis is the prerequisite for compressed
sensing theory.

The conventional CS sparse representation methods often utilize fixed sparsifying trans-
forms such as Fourier transform, discrete cosine transform, wavelet transform, etc. However,
for lacking of translation and rotation invariance, the orthogonal basis is not enough to capture
the various features of images. In recent years, with the in-depth study of dictionary learning
algorithms [8, 20, 21], researchers have extended CS to the redundant dictionary, which is
adaptively learned from the processed signal itself. Hence, the sparse decomposition of signals
in redundant dictionaries has become a research hotspot in sparse coding field. Various studies
have shown that the learned dictionaries can commendably match the structure of the signal or
image itself, and exhibit great performance in image classification [3], image denoising
[13, 17], image super-resolution [15], etc.

The K-singular value decomposition (K-SVD) [1] algorithm, an iterative method that
alternates between sparse coding stage and dictionary atoms update stage, is one of the
most well-known dictionary learning algorithms. It has been widely used in face recog-
nition [14, 22, 25], image processing [2, 18] and so on. This method updates the dictionary
columns jointly with an update of the sparse representation coefficients related to it. Thus
it helps to avoid matrix inversion calculation and accelerate convergence. However, the
K-SVD algorithm needs to calculate SVD excessively for the whole dictionary atoms
during each iteration procedure. Since SVD operation has large computational cost as the
dimensions of the input vector increases, the speed of the K-SVD algorithm may slow
down. Furthermore, only the largest singular value and its corresponding singular vector
are used while the others are abandoned directly, which results in the waste of computing
resources.

Ref. [26] proposed the K-RBP dictionary learning algorithm, a novel dictionary
update method, to sparsely represent video frame. This algorithm makes changes of K-
SVD in the dictionary update stage and improves the manner of calculating the largest
singular value and its corresponding singular vector. Based on Ref. [26], we exploit a
novel dictionary learning algorithm, called adaptive K-bilateral random projections (AK-
BRP), to relieve the above limitations of the K-SVD algorithm. In the sparse coding
stage, the sparsity constraint is associated with the current dictionary to obtain an
adaptive sparsity constraint; while in the dictionary update stage, the bilateral random
projections (BRP) [6, 7], a method of low rank approximation, is used to directly
compute the largest singular value and its corresponding singular vector. Besides, the
adaptive sparsity is employed by associating the maximal number of dictionary atoms in
the sparse coding stage with the iterated updated dictionaries. Using the dictionaries
learned by our new method as sparse representation for video frame compressed sensing,
experimental results on a wide range of video frames for CS recovery have shown that
our proposed algorithm is better than K-SVD algorithm in terms of computation expense,
running time and sparse representation.

The remainder of this paper is organized as follows. Section 2 briefly reviews CS theory
and the K-SVD dictionary learning algorithm. Section 3 provides the proposed dictionary
learning algorithm in detail. The compressed sensing algorithm based on our adaptive
redundant dictionary learning for video frame recovery is detailed in Section 4. Experimental
results are reported in Section 5. Finally, in Section 6, we conclude this paper.
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2 Background

2.1 Compressed sensing

Compressed sensing theory indicates that if a signal x ∈ Rn × 1 is sparse or compressible in an
orthogonal basis or tight framework Ψ = (ψ1,⋯,ψn)

T, (here Ψ satisfies Ψ ⋅ ΨT = I), we can use a
random sensing matrix Φ ∈ Rm × n(m < < n), which is irrelevant to the sparsifying transform
base, to obtain the linear observational vector y ∈ Rm × 1 of the sparse transform coefficient
vector Θ = ΨTx. Then the original signal x can be exactly reconstructed from the linear
measurements y, whose number is much smaller than that of the original signal. The CS
model can be formulated as

y ¼ Φx ¼ ΦΨΘ ð1Þ

It has been well known that the sparsity degree of the signal, which is a key to achieve
accurate reconstruction, plays an important role in the field of compressed sensing. The higher
degree of a signal, the higher reconstruction precision it will have. Thus, finding a domain in
which the signal has a high degree of sparsity is one of the main challenges CS recovery
should face [24]. The conventional CS recovery algorithms mainly use a set of fixed
sparsifying domains such as DCT, wavelet and FFT domain. These algorithms are not able
to capture the various geometrical features contained in the high dimensional data and result in
poor CS recovery performance for high dimensional signals. Recently, with the rapid devel-
opment of signal sparse representation methods based on over-complete dictionaries, the study
of CS sparse coding is mostly extended to redundant dictionaries. Nowadays, designing a
more efficient redundant dictionary has become the emphasis.

Another fundamental principle that CS relies on is incoherent projection [5]. CS theory
requires that Φ, the sensing matrix, and Ψ, the sparse basis, must satisfy Restricted Isometry
Property (RIP) [4, 5]. Only in this way can we reconstruct the original signal accurately.

The purpose of CS reconstruction is to recover Θ from the linear measurements y, and then
obtain the approximation of the original signal by x ¼ ΨΘ. It can be described as the following
optimization problem

min
Θ

y−ΦΨΘk k22 þ λ Θk k0 ð2Þ

where λ is a non-negative parameter, ‖v‖0 is the l0 norm, counting the number of nonzero

elements of the vector v, and ‖v‖2 is the l2 norm which is defined as vk k2 ¼
ffiffiffiffiffiffiffiffi
∑v2i

q
.

Though Eq. (2) is a NP-hard problem, greedy algorithms, such as orthogonal matching
pursuit (OMP), can obtain approximate solution with relatively small running time. When l0
norm is replaced with l1 norm, which adds all the absolute values of the entries in the vector,
the minimization problem can be solved by the convex relaxation methods such as BP, least
absolute shrinkage method and LASSO.

2.2 Dictionary learning

In this sub-section, we will describe the K-SVD algorithm, which is one of the most commonly
used methods of dictionary learning, in detail. Given a training set X ∈ Rn ×N whose columns
are the form of {xi}i = 1

N , and A = {ai}i = 1
N ∈ RK ×N is the corresponding coefficient. Then, the
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dictionary learning process is to find a possible optimal dictionary D ∈ Rn ×K(K > n), which
contains K prototype signal atoms for columns {dj}j = 1

K , for sparse representation of the given
training samples X It can be expressed as

min
D;A

X−DAk k2F s:t: ∀i; aik k0≤T 0 ð3Þ

where ‖‖F denotes the Frobenius norm of a matrix, ‖‖0 is the l0 norm, and T0 is the maximum
number of non-zero atoms used in the sparse representation vector.

The specific implementation steps of the K-SVD algorithm is outlined in Algorithm 1 [1]:

Algorithm 1: K-SVD

Input: training samples 
N
iixX

1
, max number of iterations P and sparsity threshold 

0T

Initialization: set the dictionary matrix 
KnRD 0

with 2l normalized columns 

For Pj ,,2,1

A. Sparse coding stage

Use any pursuit algorithm to compute the representation vectors ia under the fixed 

dictionary D , by solving the following constrained optimization 

NiTatsDax iiiai
,,2,1,..min 00

2

2
(4)

B. Dictionary update stage

Fix the sparse representation matrix A , for each column Kk ,,2,1

1) Define the index set of examples that use atom kd : 

0,1| kaNii ik ;

2) Compute kE by 
kj

kkjjk adDAXadXE , wherein kE means

the overall representation error matrix;

3) Constraint kE corresponding to k , and then obtain 
R
kE by kk

R
k EE ,

wherein k is a matrix of size kN with ones on the iik , th entries and 

zeros elsewhere;

4) Decompose 
R
kE with singular value decomposition (SVD) by 

TR
k VUE ;

Update the dictionary column and the coefficient vector respectively:

1,

1,

1,1 va
ud

updatedk

updatedk

Output: the trained dictionary PDD

3 The proposed algorithm

From the process of the K-SVD algorithm, it is not difficult to find that the singular value
decomposition (SVD), which is used for low rank approximation, plays a significant role in K-
SVD. However, the use of SVD restrains K-SVD in terms of execution time. Especially when
the dimension of the input vectors increases, the computation time will rapidly increase, which
worsen the K-SVD algorithm. Consequently, we would like to propose a novel fast dictionary

23742 Multimed Tools Appl (2017) 76:23739–23755



learning algorithm named adaptive K-BRP algorithm. Since dictionary learning algorithm is
usually treated as iterations of sparse coding stage and dictionary update stage, we will
describe our new dictionary learning algorithm in these two stages.

3.1 Sparse coding stage

Unlike the sparse coding stage of K-SVD algorithm, in our method, we associate the sparsity
upper-bound with the iterated updated dictionary by using the coherence of the current
dictionary, to obtain an adaptive sparsity constraint, sequentially reducing the reconstruction
errors iteratively.

Suppose that Tj is the sparsity upper-bound for each iteration process, Tj denotes

T j ¼ 1

2
1þ 1

μ Dj
� � !

j ¼ 1; 2;⋯;P ð5Þ

where μ(D) is the mutual coherence of the dictionary D, which describes the maximum
similarity between the over-complete dictionary atoms, expressed as [10]

μ Dð Þ ¼ max di⋅d j
� ��� ��; i≠ j ð6Þ

Here, the μ(D) function is valued between 0 and 1. The minimum is reached for an
orthogonal dictionary and the maximum for a dictionary containing at least two collinear
atoms [16].

In order to expound the rationality of our adaptive sparsity constraint Tj, the following
theorem is introduced [10, 12]:

Theorem 3.1 Let D ∈ Rn ×K(K > n) be the dictionary and μ(D) denote the mutual coherence
of the dictionary D. Suppose that x =Da, where a is sparse, if the sparsity S, the number of
nonzero entries of the correct coefficients, satisfies Eq. (7)

S <
1

2
1þ 1

μ Dð Þ
� 	

ð7Þ

then the following conclusions can be deduced:

1) The solution a of the minimization problem (4) must be the sparsest and unique;
2) The l0 norm minimization problem in Eq. (3) can be equivalent to the l1 norm;
3) Any pursuit algorithm (such as OMP) can find out the best linear combination of S atoms

from the dictionary D

Hence, the defined Tj can ensure precise reconstruction of the sparse signal, and is
reasonably practicable.

Replacing T0 in Eq. (4) with Tj, then the sparse coding stage is to solve the following
optimization problem

min
ai

xi−Djai


 

2

2
s:t: aik k0≤T j ∀ i ¼ 1; 2;⋯;N ; j ¼ 1; 2;⋯;P ð8Þ

This problem can be solved by greedy algorithms, such as OMP, ROMP, etc.
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3.2 Dictionary update stage

As is known to all, K-SVD algorithm employs singular value decomposition (SVD), a low
rank approximation method, to obtain the update of dictionary atoms, since SVD can achieve
the minimum reconstruction error. However, the use of SVD restricts K-SVD algorithm in
terms of computation time, especially for high dimensional data. To this end, we would like to
adopt another method of low rank approximation, named bilateral random projections (BRP)
[6, 7], to reduce the computation time.

Given ER
k ∈R

n� ωkj j, the restricted representation error matrix that corresponds to examples
that use the atom dk in the update stage of the K-SVD algorithm, then the r rank bilateral
random projections (BRP) of Ek

R is described as

Y 1 ¼ ER
k A1

Y 2 ¼ ER
k

� �T
A2

(
ð9Þ

wherein A1∈R ωkj j�r and A2 ∈ Rn × r are random matrices.
Then the fast rank-r approximation of Ek

R can be expressed as

Ê
R

k ¼ Y 1 AT
2Y 1

� �−1
YT
2 ð10Þ

However, it has been pointed out in reference [6] that when singular values of Ek
R decay slowly,

Eq. (10)may perform poorly. At this point, we need to apply power scheme [19] toÊk
R for improving

the approximation precision. In the power scheme modification, we instead calculate the BRP of a
matrix ẼkR= (EkR(EkR)T)qEkR, whose singular values decay faster than EkR. Particularly, λi(ẼkR) =λi(EkR)2
q+ 1, here λi(⋅) denotes the ith singular value of the matrix. Both EkR and ẼkR share the same singular
vectors. Thereafter, we will be able to obtain the BRP of ẼkR according to that of EkR as

Y 1 ¼ ~E
R

k A1

Y 2 ¼ ~E
R

k

� 	T

A2

8><>: ð11Þ

According to Eq. (10), the BRP based r rank approximation of Ẽk
R is

b~ER

k ¼ Y 1 AT
2Y 1

� �−1
YT
2 ð12Þ

In order to obtain the fast r rank approximation of Ek
R, we need to calculate the QR

decomposition of Y1 and Y2 respectively

Y 1 ¼ Q1R1

Y 2 ¼ Q2R2

�
ð13Þ

The fast low-rank approximation of Ek
R with rank r is then given by

Êr ¼ ~E
R

k

� 	 1
2qþ1

¼ Q1 R1 AT
2Y 1

� �−1
RT
2

h i 1
2qþ1

QT
2 ð14Þ

23744 Multimed Tools Appl (2017) 76:23739–23755



Because in each dictionary atom update process, only the largest singular value and its
corresponding singular vector are used, we just need to calculate the fast 1-rank approximation
of Ek

R. Then, the random matrices A1 and A2 can be transformed into random vectors, which
will greatly accelerate the speed of the algorithm.

4 Compressed sensing algorithm based on the AK-BRP dictionary learning

In this section, we will elaborate the scheme of video frame compressed sensing based on the
proposed dictionary learning algorithm in detail.

Assuming that a video sequence is composed of I frames, of size W × L, then the video
sequence can be expressed as

squ ¼ f r x; yð Þ ð15Þ
where 1 ≤ x ≤ L, 1 ≤ y ≤W, 1 ≤ r ≤ I,

Dividing each frame of the video sequence into small non-overlapping blocks of equal size
(i.e., size

ffiffiffi
n

p � ffiffiffi
n

p
), here we suppose that W and L are both the integral multiple of

ffiffiffi
n

p
, then

each frame can be divided into WL/n blocks. Among them, the corresponding vector xr
t of the

tth image patch fr
t(x, y) in the rth frame can then be formed by the way of row stacking or

column stacking, expressed as

xtr ¼ f tr 1; 1ð Þ; f tr 1; 2ð Þ⋯ f tr 1;
ffiffiffi
n

p� �
; f tr 2; 1ð Þ;⋯ f tr 2;

ffiffiffi
n

p� �
⋯ f tr

ffiffiffi
n

p
; 1

� �
⋯ f tr

ffiffiffi
n

p
;
ffiffiffi
n

p� �� �T
ð16Þ

where the vector xr
t ∈ Rn × 1, 1 ≤ t ≤WL/n, 1 ≤ r ≤ I,

For each image patch, the corresponding measurements vector of CS is yr
t =Φxr

t + εr
t , where

εr
t is the random noise in measurement process (here in this paper, we assume the same
sampling matrix is applied to each block). In the compressed sensing process, we exploit the
proposed AK-BRP dictionary learning algorithm to train the redundant dictionary D =DP, and
then represent each patch xr

t by a linear combination of Dar
t (i.e. xr

t =Dar
t), wherein D ∈ Rn ×K

(each atom of D has unit norm), ar
t ∈ RK × 1 is the sparse representation coefficient. Because the

sparsest representation of xr
t corresponds to the vector of weight coefficient ar

t with the smallest
number of non-zeros, we use greedy iterative algorithms, such as OMP, to find the coefficient
vector ar

t , and then reconstruct the tth block by xr
t =Dar

t. And lastly, the reconstructed rth frame
of the video sequence can be obtained by reshaped every tth block in the rth frame. The whole
procedure is as follows

5 Experiment simulations and analysis

In this section, we carry out several experimental simulations on two standard CIF (frame size:
352 × 288, luminance only) video sequences: Foreman and Akiyo, to evaluate the performance
of our proposed dictionary learning algorithm for CS sparse representation.
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In our experiments, each test frame is divided into 8 × 8 non-overlapping blocks and the CS
measurements are obtained by applying a Gaussian random projection matrix to each block
(here, each block is sampled by the same sensing matrix). The other parameter setting of
proposed algorithm is as follows: the over-complete dictionary size is chosen to be 64 × 256
and the number of iterations for training is set to 30. All implementations involved in the
experiments are coded in Matlab R2011a. Computations are performed on a ThinkPad

Algorithm 2: AK-BRP-CS

(1) Input: training samples 
1

N
i i
x , max number of iterations P , measure matrix and 

linear measurement 
t
ry of the t th block in the r th frame

(2) Output: the trained dictionary PD D and reconstructed r th video frame ˆ

rX

(3) Initialization: set the dictionary matrix 
(0) n KD R with 

2l normalized columns and   

obtain the initial sparsity 
0T using Equation (5) 

(4) For 1, 2, ,j P
A. Sparse coding stage

Use OMP algorithm to compute the sparse coefficient jA under the fixed current 

dictionary 1jD and sparsity constraint 
1jT , by solving Equation (8) 

B. Dictionary update stage

Given jA , for each column 1, 2, ,k K in 1jD

a. Define the index set of examples that use atom kd : |1 , ( ) 0ik i i N a k ;

b. Compute overall representation error matrix k j j
j k

E X d a ;

c. Restrict kE by choosing only the columns corresponding to k , and then obtain 

R
kE by 

R
k k kE E , wherein k is a matrix of size kN with ones on the 

( ( ), )k i i th entries and zeros elsewhere;

d. Apply BRP algorithm to get 
R
kE th 1-rank approximation ˆ

rE ;

e. Update the dictionary column and the coefficient vector respectively by:

))1(:,ˆ(:),1(ˆ

))1(:,ˆ(/)1(:,ˆ

,

,

rrupdatedk

rrupdatedk

EnormEa

EnormEd

Obtain the updated dictionary jD
Compute the sparsity jT by Equation (5)

End 

(5) Given , 
t
ry , compute coefficient ˆ

t
ra in sparsifying transform PD D , by Equation (1)

(6) Obtain the t th reconstructed image patches, using 
t t
r rx Da

(7) Rebuild the reconstructed r th frame rXˆ from ˆ

t
rx
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computer with Intel (R) Core (TM) i5-5250U CPU@ 1.6 GHz, 8GBmemory, and Windows 8
operating system.

5.1 Visual effect of dictionary learning

In order to validate that the improved dictionary learning algorithm has better performance in
sparse representation, the K-SVD dictionary learning algorithm and the proposed AK-BRP
dictionary learning algorithm are respectively used to represent the 23th frame of the Foreman
video sequence by learning dictionaries from the processed frame itself. In the experiment, the
sparsity of K-SVD is set to be 5, where sparsity is defined as the maximum number of non-
zero coefficients used to represent each block in the sparse coding stage. The redundant
dictionaries trained by these two algorithms are shown in Fig. 1.

5.2 Improvement on accuracy in video frame compressed sensing

In this sub-section, we will show the influence of the proposed dictionary learning algorithm
on the performance of CS recovery. In our simulation, the K-SVD redundant dictionary and
the AK-BRP redundant dictionary are respectively selected as the sparsifying basis of CS, and
the OMP algorithm is used as CS reconstruction algorithm to restore every test frame. For
conveniently describing, the two methods are credited as KSVD-CS and AK-BRP-CS,
respectively.

Table 1 Time Comparison with Various CS Methods Based on Different Sparsifying Basis

Ratio Algorithms foreman1 foreman6 foreman10 foreman15 foreman23 Average

r = 0.4 KSVD-CS 60.41634 59.49138 60.0947 59.20356 59.6849 59.77818

Proposed 25.4466 25.58294 24.46592 24.22988 26.04726 25.15452

r = 0.5 KSVD-CS 56.45354 54.72946 56.02416 57.04094 56.44854 56.13933

Proposed 22.27688 22.0898 22.15242 22.62102 22.00844 22.22971

r = 0.6 KSVD-CS 60.1871 59.42668 61.48126 59.55592 61.33816 60.39782

Proposed 27.46088 27.3018 28.00678 27.49906 26.86626 27.42696

Fig. 1 Visual comparison of two types of learned dictionaries. From left to right: the redundant dictionary
trained by K-SVD algorithm; the redundant dictionary trained by AK-BRP algorithm
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To evaluate the reconstruction quality of each algorithm, PSNR (Peak Signal to Noise
Ratio, unit: dB) is used to evaluate the objective image quality. Besides, a recently proposed
powerful perceptual quality metric FSIM (Feature SIMilarity) [23] is also calculated to
evaluate the visual quality. It has been recognized that the higher FSIM value means the better
visual quality. Comparisons of execution time (unit: s), PSNR and FSIM for five gray test
frames of Foreman in the case of 0.4 to 0.6 sampling rate are provided in Tables 1, 2 and 3,
respectively. Here, in order to eliminate the randomness, all the values of each test frame are
averaged over 10 executions.

Tables 1, 2 and 3 show that compared with KSVD-CS algorithm, our proposed algorithm is
not only time saving, but also achieves the highest PSNR and FSIM, which can effectively
reduce the reconstruction error. In order to compare the merits and demerits of each algorithm
more intuitively, we carry out experiments at different sampling rates ranging from 0.3 to 0.9,
and the comparison results are presented in Fig. 2. Wherein, the values of running time, PSNR
and FSIM are averaged over 5 or 10 random gray test frames. And two types of videos
(Foreman and Akiyo) are used.

From Fig. 2a, we can discover that the running time of our AK-BRP-CS algorithm is much
lower than that of the KSVD-CS algorithm for both Foreman and Akiyo videos. The reason is
that our method can obtain adaptive sparsity in the sparse coding stage, and only calculates the
largest singular value and the corresponding singular vector during each dictionary atom
update stage, which accelerates the speed of the algorithm. Moreover, Fig. 2b shows that the
reconstruction performances of the two algorithms are not very good for low sampling rate.
However, with the increase of sampling rate, the two algorithms’ reconstruction results both
have a significant facelift. It is clear that our method improves the CS reconstruction PSNR
remarkably compared to KSVD-CS. Figure 2c once again demonstrates that the proposed
algorithm has better visual quality than the KSVD-CS algorithm.

Table 2 PSNR Comparison with Various CS Methods Based on Different Sparsifying Basis

Ratio Algorithms foreman1 foreman6 foreman10 foreman15 foreman23 Average

r = 0.4 KSVD-CS 20.60804 20.8893 21.63212 19.50334 18.6784 20.26224

Proposed 25.81312 25.6872 25.7925 24.9706 25.31566 25.51582

r = 0.5 KSVD-CS 23.6426 23.94142 24.69418 21.73652 21.54268 23.11148

Proposed 27.9898 27.9002 27.4323 27.22904 27.36548 27.58336

r = 0.6 KSVD-CS 24.33136 25.55038 25.94274 23.99478 23.9586 24.75557

Proposed 29.00098 28.4917 28.49266 27.77302 28.0987 28.37141

Table 3 FSIM Comparison with Various CS Methods Based on Different Sparsifying Basis

Ratio Algorithms foreman1 foreman6 foreman10 foreman15 foreman23 Average

r = 0.4 KSVD-CS 0.6115 0.62452 0.65486 0.60564 0.56398 0.61210

Proposed 0.78094 0.78564 0.78872 0.7692 0.77142 0.77918

r = 0.5 KSVD-CS 0.70444 0.71626 0.74728 0.67614 0.65306 0.69944

Proposed 0.85106 0.83964 0.84246 0.84014 0.833 0.84126

r = 0.6 KSVD-CS 0.7334 0.76426 0.78432 0.73952 0.7227 0.74884

Proposed 0.87262 0.85916 0.8696 0.85086 0.84936 0.86032
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Figure 2a-c also show that there is negligible difference between performances of 5 and 10 test
frames. As a result, it is reasonable to consider 5 random test frames and the performance is
acceptable. In addition, since for both Foreman andAkiyo video sequences, AK-BRP-CS algorithm
is superior to KSVD-CS, only results on BForeman^ will be shown in the following experiments.

Specifically, some visual results of the recovered 6th frame of BForeman^ by the two
algorithms are presented in Fig. 3. Here, the sampling rate is equal to 0.4.
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Fig. 2 Comparison of reconfiguration performance of KSVD-CS and AK-BRP-CS algorithms. a Comparison of
CS reconstruction running time; b comparison of CS reconstruction PSNR; c comparison of CS reconstruction
FSIM

Fig. 3 Visual quality comparison of CS recovery on the 6th frame with subrate = 0.4. From left to right: the
KSVD-CS recovered frame; the AK-BRP-CS recovered frame
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Obviously, the proposed algorithm shows much clearer and better visual results than the
KSVD-CS algorithm in the same experimental conditions. And the results fully reflect the
superiority of our algorithm. However, because of the randomicity and adaptivity of our
algorithm, there is some poor local performance of AK-BRP-CS, e.g. the top-left corner of
the AK-BRP-CS recovered frame.

5.3 Effect of sparse coding stage

The superior performance of the proposed algorithm has been adequately demonstrated
in the previous section. In this sub-section, we will verify the influences of our adaptive
sparsity constraint on the algorithm performance. To make a better comparison, we
change the sparse coding stage of the proposed AK-BRP dictionary learning algorithm
by using the sparse coding method of the conventional KSVD algorithm, forming the K-
BRP dictionary learning algorithm. In our comparison experiments, the K-BRP dictio-
nary and the AK-BRP dictionary are respectively selected as the sparsifying basis of CS,
and the OMP reconstruction algorithm is used to restore each test frame. For ease of the
elaboration, the CS based on these two dictionaries are credited as K-BRP-CS and AK-
BRP-CS, respectively. Figure 4 shows the comparison of reconfiguration performance of
K-BRP-CS, whose sparsity is respectively set to 3, 5 and 8, and AK-BRP-CS algorithms.
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Fig. 4 Comparison of reconfiguration performance of K-BRP-CS and AK-BRP-CS algorithms in the case of
different sparsity. a Comparison of CS reconstruction running time; b comparison of CS reconstruction PSNR; c
comparison of CS reconstruction FSIM
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Wherein, the values of running time, PSNR and FSIM are averaged over the five gray
test frames of BForeman^, whose values are all averaged over 10 executions.

As can be seen from Fig. 4a, with the increase of the sparsity, the running time of the K-BRP-
CS algorithm increases progressively. Especially, when the sparsity is 3, the running time of K-
BRP-CS algorithm is close to that of AK-BRP-CS algorithm, which means that the adaptive
selection of sparsity in each iteration of our proposed algorithm is less than 3. In addition,
Fig. 4b, c both illustrate that the change of sparsity has little effect on the reconstruction
performance of K-BRP-CS algorithm, since the CS reconstruction PSNR and FSIM are almost
unanimous in the four cases. To sum up, our AK-BRP-CS algorithm simultaneously ensures the
reconstruction accuracy and selects the smaller sparsity in every iteration step to decrease the
running time, which fully reflects the feasibility of the designed adaptive sparse coding mode.

5.4 Effect of dictionary update stage

In this sub-section, the superiority of the proposed dictionary learning algorithm in the dictionary
update stage will be further certificated by the simulation results. In order to make a better
comparison, we improve the dictionary updatemode of the traditional K-SVD algorithm by using
the proposed adaptive sparse coding method, forming an adaptive K-SVD (AK-SVD) dictionary
learning algorithm. Similar to Sub-section 5.3, the CS based on AK-SVD dictionary also be
credited as AK-SVD-CS for conveniently describing. The comparisons of reconstruction
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Fig. 5 Comparison of reconfiguration performance of AK-SVD-CS and AK-BRP-CS algorithms. a Comparison
of CS reconstruction running time; b comparison of CS reconstruction PSNR; c comparison of CS reconstruction
FSIM
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property of AK-SVD-CS and AK-BRP-CS algorithms are presented in Fig. 5. Wherein, the
values of running time, PSNR and FSIM are averaged over the five gray test frames of
BForeman^, whose values are all averaged over 10 executions.

Obviously, compared with the AK-SVD-CS algorithm, our AK-BRP-CS algorithm saves
as much as half the running time, and improves the CS reconstruction PSNR and FSIM about
3–5 dB, 0.07-0.15 respectively, when the sampling rate among 0.3 to 0.9. The reason is that
the AK-BRP-CS algorithm only calculates the largest singular value and the corresponding
singular vector in the dictionary update stage by exploiting the bilateral random projections
(BRP) method, and results in a great reduction in the computation cost. In addition, due to the
stronger robustness of the BRP method in comparison with SVD decomposition, our algo-
rithm can improve the reconstruction accuracy to some extent. Above all, the way of updating
the dictionary in this paper is more practical.

6 Conclusion

We present a new method, named adaptive K-BRP (AK-BRP), for learning patch-sparse
adaptive redundant dictionaries to improve the accuracy of CS reconstruction. The proposed
dictionary learning algorithm associates the sparsity upper-bound with the iterated updated
dictionary in the sparse coding stage and adopts bilateral random projections to update each
dictionary atom in the following dictionary update stage. A great deal of comparative
experiments show that our proposed algorithm achieves significant sparse representation
performance improvements over the traditional K-SVD dictionary learning algorithm.
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