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Abstract Computational modeling of visual saliency has become an important research
problem in recent years, with applications in video quality estimation, video compression,
object tracking, retargeting, summarization, and so on. While most visual saliency models
for dynamic scenes operate on raw video, several models have been developed for use with
compressed-domain information such as motion vectors and transform coefficients. This
paper presents a comparative study of eleven such models as well as two high-performing
pixel-domain saliency models on two eye-tracking datasets using several comparison met-
rics. The results indicate that highly accurate saliency estimation is possible based only on
a partially decoded video bitstream. The strategies that have shown success in compressed-
domain saliency modeling are highlighted, and certain challenges are identified as potential
avenues for further improvement.
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1 Introduction

Visual saliency estimation is a process of finding certain parts in an image (or video) that are
likely to draw attention compared to their spatial (and temporal) surroundings. The Human
Visual System (HVS) is able to automatically shift the focus of attention to salient regions
in the pre-attentive, early vision phase. This ability allows the brain to restrict high-level
processing of a scene to a relatively small part at any given time. Many models have been
introduced based on physiological and psychophysical findings to imitate the HVS in order
to predict human visual attention [37]. Visual saliency models find a large number of appli-
cations in image processing and computer vision, such as quality assessment [10, 19, 50, 56,
69, 82], compression [22, 24, 25, 32, 53, 81], retargeting [16, 59], segmentation [21, 67],
object recognition [28], object tracking [63], abstraction [39], guiding visual attention [27,
64], and so on.

Many computational models have been introduced during the past 25 years to estimate
visual saliency. Despite the existence of numerous models, their high computational com-
plexity is a serious drawback when it comes to practical applications that need to run in
real time, or for devices with restricted complexity and memory requirements, such as
mobile devices. One way to reduce the computational cost of saliency estimation is to use
compressed-domain features, such as motion vectors (MVs), motion-compensated predic-
tion residuals or their transform coefficients, and so on. This way, part of decoding can be
avoided, a smaller amount of data needs to be processed compared to pixel-domain methods,
and some of the information produced during encoding (e.g., MVs and transform coeffi-
cients) can be reused [41]. Compressed-domain algorithms for visual saliency estimation
have been developed for various applications such as image retargeting [16], video transcod-
ing [57, 75, 85], quality estimation [55], video retrieval [60], video skimming [61], salient
motion detection [71], and so on. Although there are relatively few compressed-domain
saliency models compared to their pixel-domain counterparts, their potential for practical
deployment makes them an important research topic.

The purpose of this paper is to provide a comprehensive comparison among compressed-
domain visual saliency models for video, similar to what has been done for pixel-domain
models in [6]. The present paper is an extension of our preliminary study in [43] and takes
into consideration two well-known pixel-domain algorithms as benchmarks for comparison,
as well as two more recent compressed-domain algorithms that have appeared since [43].
It also provides a more extensive comparison involving a larger number of videos from
two ground truth data sets, as well as a number of different accuracy metrics. In the liter-
ature, existing models have been developed for different applications and their evaluation
was based on different datasets and quantitative criteria. Furthermore, models are often tai-
lored to a particular video coding standard, and the encoding parameter settings used in
the evaluation are often not reported. All of this makes a fair and comprehensive compar-
ison more challenging. To enable meaningful comparison, in this work we reimplemented
all compared methods on the same platform, and evaluated them under the same encod-
ing conditions on two popular eye-tracking datasets. A number of different metrics has
been employed in the comparison in order to illuminate various aspects of the models’ per-
formance. The results of the comparison indicate which strategies seem promising in the
context of compressed-domain saliency estimation for video, and point the way towards
improving existing models and developing new ones. Last but not least, this study has been
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performed in a reproducible research manner [80]. The MATLAB code and data used in this
study are available online [42].

The paper is organized as follows. Section 2 reviews the visual saliency models used in
the study and the two ground truth gaze point datasets. Section 3 describes the evaluation
framework, including the accuracy metrics employed in the evaluation and the procedures
used to correct for center bias and border effects. Section 4 presents the results of the
evaluation, while Sections 5 and 6 provide discussion and conclusions, respectively.

2 Models and data

Our study includes eleven compressed-domain saliency models. Their performance is com-
pared amongst themselves, and also against two high-performing pixel-domain models in
order to gain insight into the relationship between the accuracy of the current state of the art
in pixel-domain and compressed-domain saliency estimation for video. Among the pixel-
domain models, we chose AWS (Adaptive Whitening Saliency) [2], which takes only spatial
information into account, and GBVS (Graph-Based Visual Saliency) [29] with DIOFM
channels (DKL-color, Intensity, Orientation, Flicker, and Motion), which takes both spa-
tial and temporal information into account for estimating the saliency. AWS is frequently
reported as one of the top performing models on still natural images [6, 47]. GBVS is
another well-known model, often used as a benchmark for comparison. Since MATLAB
implementations of both these models are available, it makes the computational comparison
with MATLAB implementations of compressed-domain models meaningful. This section
briefly describes the eleven compressed-domain visual saliency models included in the
study and the datasets used to evaluate them.

2.1 Compressed-domain visual saliency models

In this study, our goal is to evaluate visual saliency models for video that have been designed
explicitly for, or have the potential to work in, the compressed domain. This means that
they should operate with the kind of information found in a compressed video bitstream,
such as block-based Motion Vector Field (MVF), prediction residuals or their transforms,
block coding modes, etc. We surveyed the literature on the topic and found eleven promi-
nent models listed in Table 1, sorted according to the publication year. Different models
assume different coding standards, for example MPEG-1, MPEG-2, MPEG-4 SP (Simple
Profile), MPEG-4 ASP (Advanced Simple Profile), and MPEG-4 part 10, better known as
H.264/AVC (Advanced Video Coding). For each model, the data used from the compressed
bitstream, their intended application, as well as data and evaluation method, if any, are also
included in the table. As seen in the table, only a few of the most recent models have been
evaluated using gaze data from eye-tracking experiments, which is thought to be the ulti-
mate test for a visual saliency model. This fact makes the present study all the more relevant.
Interested readers are referred to the supplementary material [42] for a brief description of
various models used in the study.

In addition to the visual saliency models described above, two benchmark models were
used in the evaluation: 10 and GAUSS. These are derived from the ground truth data itself
and will be described in Section 2.3, after the two eye-tracking datasets employed in the
study are introduced.
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2.2 Eye-tracking video datasets

Eye-tracking data is the most typical psychophysical ground truth for visual saliency mod-
els [15]. To evaluate saliency models, each model’s saliency map is compared with recorded
gaze locations of the subjects. Two recent publicly available eye-tracking datasets were used
in the study. The reader is referred to [84] for an overview of other existing datasets in the
field.

2.2.1 The SFU dataset

The SFU eye-tracking dataset [26] consists of twelve CIF (352 x 288) sequences that
have become popular in the video compression and communications community: Bus, City,
Crew, Foreman, Flower Garden, Hall Monitor, Harbour, Mobile Calendar, Mother and
Daughter, Soccer, Stefan, and Tempete. A total of 15 participants watched all 12 videos
while wearing a Locarna Pt-mini head-mounted eye tracker. Each participant took part in
the test twice, resulting in two sets of viewings per participant for each video. The first
viewing is used as ground truth for evaluating the performance of saliency models, whereas
the data from the second viewing is used to construct benchmark models, as described in
Section 2.3. The results in [26] showed that gaze locations in the first and second viewings
can differ notably, however they remain relatively close to each other when there is a single
dominant salient region in the scene (for example, the face in the Foreman sequence.) As a
result, it is reasonable to expect that good saliency models will produce high scores for those
frames where the first and second viewing data agree. A sample frame from each video has
been shown in Fig. 1, overlaid with the gaze locations from both viewings. The visualiza-
tion is such that the less-attended regions (according to the first viewing) are indicated by
darker colors. Further details about this dataset are shown in Table 2.

Fig. 1 Sample gaze visualization from the SFU Dataset. The gaze points from the first viewing are indicated
as pink squares, those from the second viewing as yellow squares
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Table 2 Datasets used to evaluate compressed-domain visual saliency models

Dataset SFU DIEM
Year 2012 2011
Sequences 12 85
Display Resolution 704 x 576* varying
Format RAW MPEG-4
FPS 30 30
Frames 90-300 888-3401
Participants 15 35-53%
Viewings 2f 2%
Screen Resolution 1280 x 1024 1600 x 1200
Screen Diagonal 194+7+ 21.37+
Viewing Distance 80 cm 90 cm

*The original video resolution (352 x 288) was doubled during the presentation to the participants
TEach participant watched each sequence twice, after several minutes
*Viewings for the left/right eye are available

SA total of 250 subjects participated in the study, but not all of them viewed each video; the number of
viewers per video was 35-53

2.2.2 The DIEM dataset

Dynamic Images and Eye Movements (DIEM) project [12] provides tools and data to
study how people look at dynamic scenes. So far, DIEM collected gaze data for 85
sequences of 30 fps videos varying in the number of frames and resolution, using the SR
Research Eyelink 1000 eye tracker. The videos were taken from various categories includ-
ing movie trailers, music videos, documentary, news and advertisements. For the purpose
of the study, the frames of the sequences from the DIEM dataset were re-sized to 288
pixels height, while securing the original aspect ratio, resulting in five different resolu-
tions: 352 x 288, 384 x 288, 512 x 288, 640 x 288 and 672 x 288. Among 85 available
videos, 20 sequences similar to those used in [6] were chosen for the study, and, to match
the length of the SFU sequences, only the first 300 frames were used in the comparison.
In the DIEM dataset, the gaze location of both eyes are available. The gaze locations of
the right eye were used as ground truth in the study, while gaze locations of the left eye
were used to construct benchmark models, as described in Section 2.3. Clearly, the gaze
points of the two eyes are very close to each other, closer than the gaze points of the first
and second viewing in the SFU dataset. A sample frame form each selected sequence,
overlaid with gaze locations of both eyes, is illustrated in Fig. 2. The visualization is
such that the less-attended regions (according to the right eye) are indicated by darker
colors.

2.3 Benchmark models

In addition to the computational saliency models, we consider two additional models: Intra-
Observer (IO) and Gaussian center-bias (GAUSS). IO saliency map is obtained by the
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Fig. 2 Sample gaze visualization from the DIEM Dataset. The gaze points of the right eye are shown as pink
squares, those of the left eye as yellow squares

convolution of a 2D Gaussian blob (with standard deviation of 1° of visual angle) with the
second set of gaze points of the same observer within the dataset. Recall that both datasets
have two sets of gaze points for each sequence and each observer — first/second viewing
in the SFU dataset, right/left eye in the DIEM dataset. So the IO saliency maps for the
sequences in the SFU dataset are obtained using the gaze points from the second viewing,
while IO saliency maps for the sequences from the DIEM dataset are obtained using the
gaze points of the left eye. These 10 saliency maps can be considered as indicators of the
best possible performance of a visual saliency model, especially in the DIEM dataset where
the right and left eye gaze points are always close to each other.

On the other hand, GAUSS saliency map is just a 2D Gaussian blob with the standard
deviation of 1° located at the center of the frame. This model assumes that the center of a
frame is the most salient point. Center bias turns out to be surprisingly powerful and has
been used occasionally to boost the performance of saliency models without taking scene
content into account. The underlying assumption is that the person recording the image or
video will attempt to keep the salient objects at or near the middle of the frame. On average,
this assumption is not too bad. Fig. 3 shows the heatmaps indicating cumulative gaze point
locations across all sequences and all participants in the SFU dataset (first viewing) and
DIEM dataset (right eye). As seen in the figure, aggregate gaze point locations do indeed
cluster around the center of the frame. However, since GAUSS does not take content into
account, one could expect a good saliency model to outperform it.

@ Springer
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SFU DIEM

Fig. 3 The heatmap visualization of gaze points combined across all frames and all observers, for the first
viewing in the SFU dataset and the right eye in the DIEM dataset. Gaze points accumulate near the center of
the frame

3 Evaluation framework
3.1 Implementation settings

In order to have a unified framework for comparison, we have implemented all models
in MATLAB 8.5 on the same machine, an Intel (R) Core (TM) 17 CPU at 3.40 GHz and
16 GB RAM running 64-bit Windows 8.1. Where possible, we verified the implementa-
tion by comparing the results with those presented in the corresponding papers and/or by
contacting the authors. As seen in Table 1, each model assumed a certain video coding stan-
dard.! However, fundamentally, all models except OBDL-MRF [46] rely on the same type
of information — MVs and DCT of residual blocks (DCT-R) or pixel blocks (DCT-P). The
main difference is in the size of the blocks to which MVs are assigned or to which DCT is
applied. OBDL-MRE, on the other hand, directly uses block description length as an indi-
cator of saliency, without the need to decode MVs or prediction residuals. In standards up
to MPEG-4 ASP, the minimum block size was 8 x 8, whereas H.264/AVC allowed block
sizes down to 4 x 4 [83]. In pursuance of a fair comparison, for which all models should
accept the same input data, we chose to encode all videos in two currently most widely
used video formats — MPEG-4 ASP and H.264/AVC. Each choice ensured that seven out of
eleven models in the study did not require modification. Minor modification was necessary
in order for APPROX [23] to accept compressed input data. Specifically, for MPEG-4 ASP
input data, where the spatial saliency map relies on DCT values of 16 x 16 pixel blocks, the
16 x 16 DCT was computed from the 8 x 8 DCTs using a fast algorithm from [30]. Also,
minimum MYV block size was set to 8 x 8. In case of H.264/AVC input data, only P-frames
were considered. In summary, the first group of models that takes MPEG-4 ASP bitstream
as an input comprises of models {1, 2, 3, 4, 6, 7, 8, 9} from Table 1, while the second group
that takes H.264/AVC bitstreams includes models {1, 2, 3, 4, 5, 8, 10, 11} in the table.

We considered two configurations to encode the videos used in the evaluation. For the
first group, the Group-of-Pictures (GOP) structure was set to IPPP with the GOP size of 12,
i.e., the first frame is coded as intra (I), the next 11 frames are coded predictively (P), then
the next frame is coded as I, and so on. The MV search range was set to 16 with 1/4-pel
motion compensation with QPe{l1, 4, 7, ..., 31}. In the decoding stage, the DCT-P values

1A block diagram of a generic video encoder/decoder is provided in the supplementary material [42].
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(in I-frames) and DCT-R values (in P-frames), as well as MVs (in P-frames) were extracted
from the encoded MPEG-4 ASP bitstream for each 8 x 8 block. For the second group,
encoding was done using H.264/AVC with QP&(3, 6, 9, ..., 51} in the baseline profile. In
our setting, for each macroblock, there exists up to four MVs having 1/4-pixel accuracy
with no range restriction. Other settings were set to default. Encoding and partial decoding
to extract the required data was accomplished using the FFMPEG library [20].

3.2 Accuracy evaluation

A number of methods have been used to evaluate the accuracy of visual saliency models
with respect to gaze point data [5, 6, 14, 33, 34, 52]. Since each method emphasizes a
particular aspect of model’s performance, to make the evaluation balanced, a collection of
methods and metrics is employed in this study. A model that offers high score across many
metrics can be considered to be fairly accurate.

3.2.1 Area under curve (AUC)

The area under curve or, more precisely, the area under Receiver Operating Characteristic
(ROC) curve, is computed from the graph of the True Positive Rate (TPR) versus the False
Positive Rate (FPR) at various threshold parameters [77]. In the context of saliency maps,
the saliency values are first divided into positive and negative sets corresponding to gaze
and non-gaze points. Then for any given threshold, TPR and FPR are, respectively, obtained
as the fraction of elements in the positive set and in the negative set that are greater than
the threshold. Essentially, by varying the threshold, the ROC curve of TPR versus FPR is
generated, visualizing the performance of a saliency model across all possible thresholds.
The area under this curve quantifies the performance and shows how well the saliency map
can predict gaze points. A larger AUC implies a greater correspondence between gaze loca-
tions and saliency predictions. A small AUC indicates weaker correspondence. The AUC is
in the range [0, 1]: the value of 1 indicates the saliency algorithm performs well, the value
of 0.5 represents pure chance performance, and the value of less than 0.5 represents worse
than pure chance performance. This metric is also invariant to monotonic scaling of saliency
maps [7].

It is worth mentioning that instead of using all non-gaze saliency values, these are usu-
ally sampled [14, 74]. The idea behind this approach is that an effective saliency model
would have higher values at fixation points than at randomly sampled points. Control points
for non-gaze saliency values are obtained with the help of a nonparametric bootstrap tech-
nique [13], and sampled with replacement, with sample size equal to the number of gaze
points, from non-gaze parts of the frame multiple times. Finally, the average of the statistic
over all bootstrap subsamples is taken as a sample mean.

3.2.2 Kullback-Leibler divergence (KLD) and J-divergence (JD)

The KLD is often used to obtain the divergence between two probability distributions. It is
given by the relative entropy of one distribution with respect to another [49]

r P .
KLD(P|Q) = Z P(i) - log,, <£> , 1)
i=1
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where P and Q are discrete probability distributions, b is the logarithmic base, and r indi-
cates the number of bins in each distribution. Note that KD is asymmetric. The symmetric
version of KLD, also called J-Divergence, is [38]

JD(P|Q) = KLD(P|Q)+ KLD(Q| P). 2

To assess how accurately a saliency model predicts gaze locations based on the symmet-
ric KLD, the distribution of saliency values at the gaze locations is compared against the
distribution of saliency values at some random points from non-gaze locations [33-35]. If
these two distributions overlap substantially, i.e., the divergence JD approaches zero, then
the saliency model predicts gaze points no better than a random guess. On the other hand,
as one distribution diverges from the other and the divergence JD increases, the saliency
model is better able to predict gaze points.

Specifically, let there be n gaze points in a frame. Another n points different from the
gaze points are randomly selected from the frame. The saliency values at the gaze points
and the randomly selected points constitute the two distributions, P and Q. A good saliency
model would produce a large JD. The process of choosing random samples and computing
the JD is usually repeated many times and the resulting JD values are averaged to minimize
the effect of random variations. While JD has certain advantages (please refer to [5, 34] for
details), it also faces several problems. One of the problems with KLLD and JD is the lack of
an upper bound [48]. Another problem is that if P (i) or Q(i) is zero for some i, one of the
terms in (2) is undefined. For these reasons, JD was not used in the present study.

3.2.3 Jensen-Shannon divergence (JSD)

The Jensen-Shannon divergence (JSD) is a KLD-based metric that avoids some of the prob-

lems faced by KLD and JD [54]. For two probability distributions P and Q, JSD is defined

as [11]:

KLD(P|R)+ KLD(Q|R)
) )

JSD(P||Q) = 3

where

“)

Unlike KLD, JSD is a proper metric, is symmetric in P and Q, and is bounded in [0, 1]
if the logarithmic base is set to b = 2 [54]. The value of the JSD for the saliency map that
perfectly predicts gaze points will be equal to 1. The same sampling strategy employed in
AUC computation can also be used for computing JSD.

3.2.4 Normalized scanpath saliency (NSS)

NSS measures the strength of normalized saliency values at gaze locations [73]. Normaliza-
tion is affine so that the resulting normalized saliency map has zero mean and unit standard
deviation. The NSS is defined as the average of normalized saliency values at gaze points.
A positive normalized saliency value at a certain gaze point indicates that the gaze point
matches one of the predicted salient regions, zero indicates no link between predictions and
the gaze point, while a negative value indicates that the gaze point has fallen into an area
predicted to be non-salient.
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3.2.5 Pearson correlation coefficient (PCC)

PCC measures the strength of the linear relationship between a predicted saliency map S
and the ground truth map G. First, the ground truth map G is obtained by convolving the
gaze point map with a 2D Gaussian function having the standard deviation of 1° of visual
angle [52]. Then § and G are treated as random variables whose paired samples are given
by values of the two maps at each pixel position in the frame. The Pearson correlation

coefficient is defined as

G.S
corr(G. §) = G5 (5)
0GOS

where cov(-, -) denotes covariance and o and oy are, respectively, the standard deviations
of the ground truth map and the predicted saliency map. The value of PCC is between
—1 and 1; the value of £1 indicates the strongest linear relationship, whereas the value
of 0 indicates no correlation. If the model’s saliency values tend to increase as the values
in the ground truth map increase, the PCC is positive. Otherwise, if the model’s saliency
values tend to decrease as the ground truth values increase, the PCC is negative. In this
context, a PCC value of —1 would mean that the model predicts non-salient regions as
salient, and salient regions as non-salient. While this is the opposite of what is needed, such
model can still be considered accurate if its saliency map is inverted. While PCC is widely
used for studying relationships between random variables, in its default form it has some
shortcomings in the context of saliency model evaluation, especially due to center bias, as
discussed in the next section.

3.3 Data analysis considerations

Here, we discuss several considerations about the ground truth data, and the methods and
metrics used in the evaluation.

3.3.1 Gaze point uncertainty

Eye-tracking datasets usually report a single point (x, y) as the gaze point of a given sub-
ject in a given frame. However, such data should not be treated as absolute. There are
at least two sources of uncertainty in the measurement of gaze points. One is the eye-
tracker’s measurement error, which is usually on the order of 0.5° to 1° of the visual angle
[58, 68, 76]. The other source of uncertainty is the involuntary eye movement during fix-
ations. The human eye does not concentrate on a stationary point during a fixation, but
instead constantly makes small rapid movements to make the image more clear [9]. Depend-
ing on the implementation, the eye tracker may filter those rapid movements out, either due
to undersampling or to create an impression of a more stable fixation. For at least these two
reasons, the gaze point measurement reported by an eye tracker contains some uncertainty.
At the current state of technology, the eye tracker measurement errors seem to be larger than
the uncertainty caused by involuntary drifts, and so we take them as the dominant source of
noise in the ground truth data. To account for this noise, we apply a local maximum opera-
tor in a radius of 0.5° of visual angle. In other words, when computing a saliency value of a
given point in a frame, the maximum value within its small neighborhood is used.

The use of the local maximum operator is meant to counter the effects of measurement
noise in the gaze tracking system, which is usually rated at around 0.5° of visual angle.
Hence, the true fixation point may be within 0.5° of visual angle away from what the gaze
measurement system reports. An accurate saliency model produces small saliency values at

@ Springer



26308 Multimed Tools Appl (2017) 76:26297-26328

locations far from fixation points and high saliency values at locations near fixation points.
Therefore, for an accurate model, applying a local maximum operator does not change
saliency values away from fixations while it ensures that near fixations, the maximum pre-
dicted saliency value within the measurement tolerance is considered. So we expect that
the accuracy score for an accurate model will increase using this approach. For an inaccu-
rate model (one that produces low saliency values near fixations and large ones away from
fixations), we expect little or no change in the score. This is because its predicted saliency
values near fixations (which are low) will not increase, while its predicted saliency values
away from fixations may get a boost, but they don’t matter because they are away from
fixations anyway.

3.3.2 Center bias and border effects

A person recording a video will generally tend to put regions of interest near the center
of the frame [72, 79]. In addition, people also have a tendency to look at the center of the
image [78], presumably to maximize the coverage of the displayed image by their field of
view. These phenomena are known as center bias. Figure 3 illustrates the center bias in the
SFU and DIEM datasets by displaying the locations of gaze points accumulated over all
sequences and all frames.

Interestingly, Kanan et al. [40] and Borji et al. [6] showed that creating a saliency map
merely by placing a Gaussian blob at the center of the frame may result in fairly high scores.
Such high scores are partly caused by using a uniform spatial distribution over the image
when selecting control samples. Specifically, the computation of AUC, KLD and JSD for a
given model involves choosing non-gaze control points randomly in an image. If these are
chosen according to a uniform distribution across the image, the process results in many
control points near the border, which, empirically, have little chance of being salient. As a
result, the saliency values of those control points tend to be small, resulting in an artificially
high score for the model under test. At the same time, since gaze points are likely located
near the center of the frame, a centered Gaussian blob would tend to match many of the
gaze points, which would make its NSS and PCC scores high.

Additionally, Zhang et al. [86] thoroughly investigated the effect of dummy zero borders
against evaluation metrics. Adding dummy zero saliency values at the border of the image
changes the distribution of saliency of the random samples as well as the normalization
parameters in NSS, leading to different scores while the saliency prediction is unchanged.
To decrease sensitivity to center bias and border effect, Tatler et al. [79] and Parkhurst
and Niebur [72] suggested to distribute random samples according to the measured gaze
points. To this end, Tatler et al. [79] distributed random samples from human saccades
and choose control points for the current image randomly from fixation points in other
images in their dataset. Kanan et al. [40] also picked saliency values at the gaze points in
the current image, while control samples were chosen randomly from the fixations in other
images in the dataset. For both techniques, control points are drawn from a non-uniform
random distribution according to the measured fixations, decreasing the effect of center
bias. Furthermore, this way, dummy zero borders will not affect the distribution of random
samples.

In this paper, we use a similar approach for handling center bias and border effects.
Instead of directly using the accumulated gaze points over all frames in the dataset (Fig. 3),
we fit a 2D Gaussian distribution to the accumulated gaze points across both SFU and
DIEM datasets. Then, control samples are chosen randomly from the fitted 2D Gaussian
distribution. This reduces center bias in AUC and JSD.
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Table 3 Summary of evaluation metrics used in the study

Metric Symmetric Bounded Center-biased Applicability Input

AUC Yes Yes Yes General Location
AUC Yes Yes No Saliency Location
KLD No No Yes General Distribution
D Yes No Yes General Distribution
JSD Yes Yes Yes General Distribution
JSD' Yes Yes No Saliency Distribution
NSS Yes No Yes Saliency Value

NSS’ Yes No No Saliency Value

PCC Yes Yes Yes General Distribution

To reduce center bias and border effects in NSS, we modify the normalization as

SCe. ) — i
S (x,y) = w7 (6)
where 1
A= (Z,)F(x’ ) - S, ), 7
- 1 5
7= \NZ1 (2 (Fx, y) - SGx,y) = 2. ®
X,y

In the above equations, (x, y) are the pixel coordinates, N is the total number of pixels,
and F(x, y) is the fitted 2D Gaussian density evaluated at (x, y) normalized such that it
sums up to 1. In the normalization described by the above three equations, the pixels located
near the center of the image are given more significance due to F. In other words, saliency
predictions have the same bias as observers’ fixations. These accuracy measures that are
modified to reduce the center bias and border effects are indicated by prime (') and referred
to as NSS’, AUC’, and JSD’. We summarize all above-mentioned metrics in Table 3. Metrics
can be divided by symmetry (column 2) or boundedness (column 3). Some metrics favor
center-biased saliency models (column 4). Also, some metrics are specific to saliency while
others have more general applicability (column 5), e.g., for comparing two distributions.
The input data for various metrics comes from three sources (column 6): 1) the locations
associated with estimated saliency 2) the distribution of estimated saliency and 3) the values
of estimated saliency at fixation points.

4 Results
4.1 Qualitative comparison
In this section, we show a qualitative comparison of saliency maps produced by various

models on two specific examples.? Figures 4 and 5 show the saliency maps for frame #150
of City and frame #150 of one-show produced from MPEG-4 ASP and H.264/AVC

2 Additional examples are provided in the supplementary material [42].
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(2) MPEG-4 ASP
MVF PMES

MSM-SM APPROX AWS

Fig. 4 Sample saliency maps obtained by various models for City

bitstreams. The QP values for MPEG-4 ASP and H.264/AVC were set to 16 and 36, respec-
tively. This selection brings about the same average PSNR (& 30.0d B) over the whole
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(a) MPEG-4 ASP
10 MVF

-

PIM-ZEN PIM-MCS

”

PIM-ZEN PIM-MCS MCSDM APPROX

Fig. 5 Sample saliency maps obtained by various models for one-show

sequence. In the figure, the MVF of each frame is also shown. Note that due to the differ-
ences in MVs and residuals of MPEG-4 ASP and H.264/AVC, the resulting saliency maps
for those models that are able to accept both formats can be different. In the figures, these
would be PMES, MAM, PIM-ZEN, PIM-MCS and APPROX. On City, saliency maps pro-
duced by the same model from two different bitstreams do resemble each other, but on
one-show they could be quite different. This is mainly due to the fact that the MVF on City
is more consistent between MPEG-4 ASP and H.264/AVC, whereas on one-show, the two
encoders produce fairly different MVFs.

In City, all the motion is due to camera movement. While observers typically look at the
building in the center of the frame (see 1O in Figs. 4 and 5), all models, no matter which
encoding is used, declare the boundary of the building as salient, where local motion is
different from the global motion. Meanwhile, APPROX is also able to detect the central
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building as salient. Note that APPROX is the only model in the study that employs global
motion compensation (GMC) and its high scores on Ciry (e.g. AUC' = 0.57 over MPEG-
4 ASP and AUC’ = 0.58 over H.264/AVC encoded bitstream) comparing to IO score
(AUC’ = 0.65) are an indication that other models could benefit from incorporating GMC.

In one-show, large noisy MVs in low-texture areas cause all compressed-domain models
except MSM-SM and OBDL-MREF to mistakenly declare them as salient regions. Note that
MSM-SM does not directly use motion magnitude but rather uses processed MVs in the
form of a motion binary map. Meanwhile, OBDL-MRF uses the number of bits per block,
rather than any direct measure of motion magnitude, to predict saliency. In this sequence,
observers mostly focus on the face (see IO in Figs. 4 and 5) so a model that was able to
perform face detection would have done well in this example. Unfortunately, none of the
models is currently able to do face detection in the compressed domain - this seems like a
rather challenging problem. AWS and GBVS also declare some part of non-salient regions
as salient.

4.2 Quantitative comparison

First, we present quantitative assessment of the saliency models using the MPEG-4 ASP
encoded data from the SFU and DIEM datasets. We start with the assessment based on
AUC'. Figure 6 shows the average AUC’ scores of various models across the test sequences.
Note that all models are able to produce saliency maps for P-frames, while only some of
them are able to produce a saliency map for I-frames. Hence, Fig. 6a shows the average
AUC’ scores on I-frames for those models able to handle I-frames, while Fig. 6b shows
the average AUC’ scores for all models on P-frames. Sequences from the SFU dataset are
indicated with capital first letter.

As seen in the figure, all models achieved average AUC’ scores between those of 10,
which represents a kind of an upper bound (especially on the DIEM dataset), and GAUSS,
which represents center-biased, content-independent static saliency map. Note that GAUSS
itself has a slightly better AUC’ score than the pure chance score of 0.5. Recall that AUC’
corrects for center bias by random sampling of control points based on empirical gaze dis-
tribution across all frames and all sequences. It is encouraging that all models are able to
surpass GAUSS and achieve average AUC’ scores around 0.6.

Another interesting point in Fig. 6 is an indication of how difficult or easy is saliency
prediction in a given sequence according to AUC’. In the figure, the sequences are sorted
along the horizontal axis in decreasing order of average AUC’ score across all models.
Although the order is not the same for I- and P-frames, overall, it seems that one-show is
the one for which saliency prediction is easiest, whereas City is the one for which saliency
prediction is hardest. We will return to this issue shortly. Note that IO has better performance
on the sequences from the DIEM dataset. Here, 1O saliency maps are formed by the left eye
gaze points and represent an excellent indicator of the ground-truth right eye gaze points. In
the sequences from the SFU dataset, where IO saliency map is formed from the gaze points
of the second viewing, the IO scores are not as high because the second-viewing gaze points
are not as good of a predictor of the ground-truth first-viewing gaze points.

A similar set of results quantifying the models’ performance according to NSS’ is shown
in Fig. 7.3 As seen in Figs. 6 and 7, the models that are able to handle I-frames ((a) parts

3Results for other metrics are provided in the supplementary material [42].
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(a)

APPROX
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GAUSS
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(b)

GAUS-CS 1

PNSP-CS 1

AWS 1

GBVS 1

PMES 1

PIM-ZEN 1

PIM-MCS 1

MAM 1

APPROX 1

MSM-SM 1

GAUSS 1

Fig. 6 Accuracy of various saliency models over MPEG-4 ASP encoded sequences according to AUC’ score
for (a) I-frames and (b) P-frames. The 2D color map shows the average AUC’ score of each model on each
sequence. Top: Average AUC’ score for each sequence, across all models. Right: Average AUC’ score for
each model across all sequences. Error bars represent standard error of the mean (SEM), o/4/n, where o is
the sample standard deviation of n samples

of the figures) achieve similar average scores on the I-frames as they do on the P-frames
((b) parts of the figures). For this reason, and to save space, in the remainder of the paper
the results for I- and P-frames will sometimes be reported jointly. That is, in such cases,
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Fig.7 Accuracy of various saliency models over MPEG-4 ASP encoded sequences according to NSS’ score
for (a) I-frames and (b) P-frames. The 2D color map shows the average NSS’ score of each model on each
sequence. Top: Average NSS’ score for each sequence, across all models. Right: Average NSS’ score for each

model across all sequences. Error bars represent standard error of the mean (SEM), o/+/n, where o is the
sample standard deviation of n samples

all scores will be the averages across all frames that the model is able to handle. Since the
number of I-frames is much smaller than the number of P-frames, for the models that are
able to handle I-frames, the effect of I-frame scores on the combined score is relatively
small.
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Table 4 Ranking of MPEG-4 ASP encoded test sequences according to average scores across all models
excluding 10 and GAUSS

Rank AUC’ JSD NSS’ PCC

1 os os abl Stefan

2 abl Mobile Mobile mtnin

3 Mobile Stefan mtnin abl

4 Stefan Hall os Mobile
30 tucf ufci tucf City

31 Tempete nim Tempete pnb

32 City pnb City Tempete

Table 4 shows the ranking of test sequences according to the average scores across all
models except I0 and GAUSS.* The sequences are ranked in decreasing order of average
scores — the highest-ranked sequences are those for which the average scores are highest,
and therefore seem to be the easiest for saliency prediction. Meanwhile, the lowest-ranked
sequences are those for which saliency prediction seems the most difficult. Although the
ranking differs somewhat for different metrics, overall, one-show, advert-bbc4-library, Ste-
fan and Mobile Calendar seem to be among the easiest sequences for saliency prediction,
while City and Tempete are among the hardest. one-show, advert-bbc4-library and Stefan
have only one salient object, and all models are generally able to correctly identify them.
Mobile Calendar contains several moving objects, including a ball and a train. The motion
of each of these is sufficiently strong and different from the surroundings that almost all
models are able to correctly predict viewers’ gaze locations. It should be noted that the
background of this sequence involves many static colorful regions that, in the absence of
motion, would have the potential to attract attention. It is encouraging that the compressed-
based models are generally able to identify the salient moving objects against such colorful
and potentially attention-grabbing background. Meanwhile, the two pixel-domain models
show a relatively poor performance on this sequence.

On the other hand, City and Tempete do not contain salient moving objects. In fact, City
does not contain any moving objects; all the motion in this sequence is due to camera move-
ment. Tempete also contains significant camera motion (zoom out) and in addition shows
falling yellow leaves that act like motion noise, as they do not attract viewers’ attention.
While all models get confused by the falling leaves in Tempete, APPROX achieves a decent
performance on City due to its use of global motion compensation (GMC). APPROX is the
only model in the study that employs GMC and its success on City is an indication that other
models could be improved by incorporating GMC. Note that AWS also scores well on City
because, as a spatial saliency model, it ignores motion and therefore does not get confused
by it in this sequence.

The average scores of MPEG-4 ASP based saliency models across all sequences in both
datasets are shown in Fig. 8 for various accuracy metrics. Please note that the horizontal
axis has been focused on the relevant range of scores. Not surprisingly, IO achieves the
highest scores regardless of the metric. At the same time, the effect of center bias is easily

4The full ranking across the computational models and the I0 model are separately provided in the
supplementary material [42].
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PIM-ZEN

PIM-MCS

GAUS-CS

MSM-SM
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PNSP-CS

AWS

GBVS

GAUSS
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Avg AUC' AvgAUC AvgJSD' AvgJSD AvgNSS' AvgNSS AvgPCC

Fig. 8 Evaluation of models depending on MPEG-4 ASP video bitstream using various metrics

revealed by comparing AUC and NSS scores to their center bias-corrected versions AUC
and NSS'. For example, the AUC measures the accuracy of saliency prediction of a particu-
lar model against a control distribution drawn uniformly across the frame. Since the uniform
distribution is a relatively poor control distribution for saliency and easy to outperform, all
models achieve a higher AUC score compared to their AUC’ score, which uses a control
distribution fitted to the empirical gaze points shown in Fig. 3. This effect is most visible
in the GAUSS benchmark model, which has the AUC score of around 0.8 (higher than all
the models except 10), but the AUC’ score of only slightly above 0.5 (lower than all other
models). This over-exaggeration of the accuracy of a simple scheme such as GAUSS when
plain AUC used was the reason why [40, 72] suggest center bias correction via non uniform
control sampling. The center bias-corrected AUC’ score is a better reflection of the models’
performance. Center bias also has a significant effect on NSS, but a less pronounced effect
on JSD. It can also be observed that GAUSS (and then GBVS) achieves a higher PCC score
than any other method except 10, due to the accumulation of fixations near the center of the
frame.

Thus far, we showed the results for saliency models that accept MPEG-4 ASP encoded
bitstream. The accuracy assessment according to AUC’ and NSS’ over the saliency models
that accept H.264/AVC-encoded data is shown in Fig. 9.> Two recent compressed-domain
methods, MVE+SRN and OBDL-MREF, top all other methods, including pixel-domain ones,
on both metrics. Based on these results, MVE+SRN seems like the best saliency predic-
tor, while OBDL-MRF comes a closes second. Both of these models have been built upon
compressed-domain features that are highly correlated with human gaze, and are therefore
able to compete even with high-performing pixel-domain models such as GBVS and AWS.

In addition to the average scores, another type of assessment of a model’s performance is
counting its number of appearances among top performing models for each sequence [65].

5The same results according to JSD’ and PCC are shown in supplementary material [42].
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Fig. 9 Accuracy of various saliency models over H.264/AVC encoded bitstream of SFU and DIEM dataset
according to (a) AUC’ and (b) NSS'. The 2D color map shows the average score of each model on each
sequence. Top: Average score for each sequence, across all models. Right: Average scores each model across
all sequences. Error bars represent standard error of the mean (SEM), o /./n, where o is the sample standard
deviation of n samples

To this end, a multiple comparison test is performed using Tukey’s honestly significant
difference as the criterion [31]. Specifically, for each sequence, we compute the average
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Fig. 10 The number of appearances among top performers, using various evaluation metrics. Results based
on MPEG-4 ASP are shown at the fop, those based on H.264/AVC at the bottom

score of a model across all frames, as well as the 95 % confidence interval for the average
score. Then we find the model with the highest average score (excluding 10), and find all the
models whose 95 % confidence interval overlaps that of the highest-scoring model. All such
models are considered top performers for the given sequence. The number of appearances
among top performers for each model is shown in Fig. 10. These results show similar trends
as average scores, with MVE+SRN, OBDL-MRF, AWS, GBVS, PMES, GAUS-CS and
PNSP-CS often being among top performers, while MCSDM, MAM and APPROX rarely
offering top scores.

4.3 Sensitivity to compression

In the assessments presented thus far, the QP value was set to a constant value (in MPEG-4
ASP, QP = 16 and in H.264/AVC, QP = 36). The quality of encoded video drops as the QP
increases due to the larger amount of compression. Figure 11 shows how the average AUC’
score changes as a function of the average PSNR by (a) varying QPe{1, 4, 7, ..., 31} for
MPEG-4 ASP and (b) varying QP&{3, 6, 9, ..., 51} for H.264/AVC.% The results in Fig. 11

SThe relationship between the average NSS’ score and the average PSNR is provided in the supplementary
material [42].
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Fig. 11 The relationship between the average PSNR and the models’ accuracy over SFU and DIEM dataset.

(a) the sensitivity over MPEG-4 ASP encoded bitstream, (b) the sensitivity over H.264/AVC encoded
bitstream

indicate the sensitivity of the models’ saliency prediction relative to encoding parameters. In
this experiment, AWS and GBVS were applied to the decoded video, hence they effectively

used the same data as compressed-domain models, but in the pixel domain after full video
reconstruction.
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The figure shows that pixel-domain models GBVS and AWS score lower at low video
qualities, while their accuracy improves as the video quality increases. Their accuracy is
fairly consistent beyond a certain level of video quality, around 35 dB, suggesting that so
long as video quality is sufficiently high, compression does not affect the models’ ability to
estimate saliency. This observation is consistent with studies undertaken by Le Meur [51],
and Milanfar and Kim [47].

Compressed-domain models exhibit a somewhat different behavior. Their accuracy is
also generally low at low video qualities, because M Vs are less accurate and there is a large
amount of quantization noise present in prediction residuals. But unlike pixel-domain mod-
els, compressed-domain models also seem to suffer at high video qualities. As the quality
increases, compressed domain features become less informative. Small quantization step
size makes most transform coefficients non-zero, which makes some of the models predict
high spatial saliency throughout the frame. At the same time, MVs may become too noisy,
since rate-distortion optimization does not impose sufficient constraints on motion estima-
tion. The results suggest that the PSNR range in which most compressed-domain saliency
models tend to be most accurate is 30-40 dB, which also happens to be a range in which a
good trade-off is thought to be achieved between video quality and the required bitrate.

4.4 Complexity

The average processing time per frame on the SFU dataset (CIF resolution videos at 30 fps)
using two different input formats is listed in Table 5. The time taken for extracting MVs
and DCT values from the bitstream is excluded. Please note that these results correspond
to MATLAB implementations of the models and the processing time can be significantly
decreased by implementation in a low-level programming language such as C/C++. Despite
this, some of the models are fast enough for real time performance (under 33 ms per frame)
even when implemented in MATLAB. Discussion of accuracy and complexity of the models
is presented in the next section.

5 Discussion

Considering the results in Figs. 8 and 10, MVE+SRN, OBDL-MRF, AWS, GBVS, PMES
and GAUS-CS consistently achieve high scores across different metrics. It is encouraging
that the performance of some compressed-domain models is superior to that of high-
performing pixel-domain models. Note that, in general, achieving a high score with one
metric does not guarantee a high score with other metrics. As an example, MSM-SM
achieves a relatively high average scores across several metrics, but the lowest JSD and
JSD’ score. Hence, the fact that MVE+SRN, OBDL-MRF, AWS, GBVS, PMES and GAUS-
CS perform consistently well across all metrics considered in this study lends additional
confidence in their accuracy.

PMES was the first compressed-domain saliency model, proposed in 2001, and it only
uses MVs to estimate saliency. It is well known that motion is a strong indicator of saliency
in dynamic visual scenes [34, 62, 66], so it is not surprising that MVs would be a pow-
erful cue for saliency estimation. PMES estimates saliency by considering two properties:
large motion magnitude in a spatio-temporal region, and the lack of coherence among MV
angles in that region. These two properties seem to describe salient objects reasonably
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well in most cases, as demonstrated by the results. Taken together, they resemble a center-
surround mechanism where a region is considered salient if it sufficiently “stands out” from
its surroundings.

GAUS-CS and PNSP-CS show high performance in both I- and P-frames. Both mod-
els are based on the center-surround difference mechanism, and both employ MVs for
saliency estimation in P-frames and DCT of pixel values in I-frames. The capability of
center-surround difference mechanism to predict where people look has been discussed
extensively [37], so their success is also not surprising.

Although PIM-MCS and MSM-SM also attempt to employ the center-surround dif-
ference mechanism, their scores are not as consistently high as those of GAUS-CS and
PNSP-CS. The reason may be that in GAUS-CS and PNSP-CS models, the contrast is
inversely proportional to the distance between the current DCT block and all other DCT
blocks in the frame, which means that they consider not only the contrast between blocks,
but also the distance between them. This seems to be a good strategy for compressed-domain
saliency estimation.

OBDL-MRF and MVE-SRN are two of the most recent compressed-domain saliency
models. Taking advantage of the availability of gaze point data for video, which was not the
case when earliest models such as PMES were developed, both OBDL-MRF and MVE-SRN
were built upon compressed-domain features that have been shown to be highly correlated
with gaze points in video. Their advantage over other compressed-domain models is there-
fore not surprising. What is perhaps surprising is their ability to go toe-to-toe with the
best pixel-domain models, and be more accurate in many cases. Their success lends fur-
ther support to the hypotheses that relate saliency to compressibility [8, 34], although their
operational realization is quite different from these earlier works.

According to the results in the previous section, the lowest-scoring models on most met-
rics were APPROX and MCSDM. Incidentally, APPROX was originally developed for a
different type of input data and had to be modified for this comparison, which may have
had a negative impact on its performance.

The influence of global (camera) motion on visual saliency is still a fairly open research
problem, with limited work in the literature addressing this issue. Reference [1] studied
separately the effect of pan/tilt and zoom-in/-out. It was found that in the case of pan/tilt, the
gaze points tend to shift towards the direction of pan/tilt, in the case of zoom-in, they tend
to concentrate near the frame center, and in the case of zoom-out, they tend to scatter further
out. On the other hand, according to [4], the presence of camera motion tends to concentrate
gaze points around the center of the frame “according to the direction orthogonal to the
tracking speed vector.”

Among the models tested in the present study, only APPROX took global motion into
account by removing it prior to the analysis of MVs. This paid off in the case of City,
which was overall the most difficult sequence for other spatio-temporal saliency models in
Figs. 6 and 7. However, global motion compensation (GMC) did not help much in the case
of Tempete or Flower Garden. In fact, Tempete contains strong zoom-out, which, accord-
ing to [1], would tend to scatter the gaze points around the frame. However, Figs. 6 and 7
show that GAUSS, with its simple center-biased saliency map, scores well here (even with
center-bias-corrected metrics), suggesting that the gaze points are still located near the cen-
ter of the frame. This is due to the presence of a yellow bunch of flowers in the center of
the frame, which turns out to be highly attention-grabbing. Apparently, the key to accu-
rate saliency estimation in Tempete is not in the motion, but rather in the color present in
the scene. Flower Garden is another example where GMC did not pay off. The viewers’
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gaze in this sequence is attracted to the objects in the background, specifically the wind-
mill and the pedestrians, whose motion tends to be zeroed out after GMC on 8 x 8§ MVs.
Overall, the results suggest that global motion is not sufficiently well handled by current
compressed-domain methods, and that further research is needed to make progress on this
front.

Considering models’ complexity and processing time in Table 5, MSM-SM, PIM-MCS
and MCSDM are the fastest while AWS is the most demanding. Note that the smallest block
size is 4 x 4 in H.264/AVC encoded bitstream and 8 x 8 in MPEG-4 ASP encoded bit-
stream, and therefore more data typically needs to be processed in the H.264/AVC case,
which is why compressed-domain models that are able to accept both input formats tend
to take more time when applied on H.264/AVC bitstreams. MSM-SM, PIM-MCS and
MCSDM are the least complex models, but unfortunately not the most accurate.

While MVE+SRN and OBDL-MREF scored the highest in terms of accuracy, this did not
come at a cost of high complexity. In fact, according to complexity, they are in the middle
of the pack, with processing times below those of other high-performing saliency models.
MVE+SRN appears twice as fast as OBDL-MRF because entropy decoding time of MVs
and DCT residuals was not taken into account (as with other compressed-domain models).
But OBDL-MREF does not require any such decoding and would therefore likely end up
being faster in a real-world scenario.

6 Conclusions

In this study we attempted to provide a comprehensive comparison of eleven compressed-
domain visual saliency models for video. All methods were reimplemented in MATLAB
and tested on two eye-tracking datasets using several accuracy metrics. Care was taken
to correct for center bias and border effects in the employed metrics, which were issues
found in earlier studies on visual saliency model evaluation. Pixel-domain saliency models
have the potential for higher accuracy compared to compressed-domain saliency models,
but also have higher computational complexity. In contrast to the pixel-domain methods,
compressed-domain approaches make use of the data from the compressed video bitstream,
such as motion vectors, block coding modes, motion-compensated prediction residuals or
their transform coefficients, etc. The lack of full pixel information often leads to lower
accuracy, but the main advantage of compressed-domain methods in practical applications
is their generally lower computational cost. This is due to the fact that part of decoding
can be avoided, a smaller amount of data needs to be processed compared to pixel-domain
methods, and some of the information produced during encoding (e.g., motion vectors and
transform coefficients) can be reused. Therefore, compressed-domain methods are more
suitable for real-time applications.

The results of the study indicate that reasonably accurate visual saliency estimation is
possible using only a limited set of data from the compressed bitstream, such as motion vec-
tors, prediction residuals, or even just the number of bits per block, without further decoding.
Several compressed-domain saliency models showed competitive accuracy with some of
the best currently known pixel-domain models. On top of that, some of the compressed-
domain methods are fast enough for real-time saliency estimation on CIF video even with a
relatively inefficient MATLAB implementation, which suggests that their optimized imple-
mentation could be used for online saliency estimation in a variety of applications, even for
higher-resolution video.
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Many sequences that have turned out to be difficult for models to handle contain global
(camera) motion. The influence of global motion on visual saliency is not very well under-
stood, and most models in the study did not account for it. A number of compressed-domain
global motion estimation methods, based on motion vectors alone, have been developed
recently, so it is reasonable to expect that compressed-domain saliency models should be
able to benefit from these developments.
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