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Abstract Detecting and localizing abnormal events in crowded scenes still remains a
challenging task among computer vision community. An unsupervised framework is pro-
posed in this paper to address the problem. Low-level features and optical flows (OF) of
video sequences are extracted to represent motion information in the temporal domain.
Moreover, abnormal events usually occur in local regions and are closely linked to
their surrounding areas in the spatial domain. To extract high-level information from
local regions and model the relationship in spatial domain, the first step is to calcu-
late optical flow maps and divide them into a set of non-overlapping sub-maps. Next,
corresponding PCANet models are trained using the sub-maps at same spatial location
in the optical flow maps. Based on the block-wise histograms extracted by PCANet
models, a set of one-class classifiers are trained to predict the anomaly scores of test
frames. The framework is completely unsupervised because it utilizes only normal videos.
Experiments were carried out on UCSD Ped2 and UMN datasets, and the results show
competitive performance of this framework when compared with other state-of-the-art
methods.
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1 Introduction

In recent decades, the use of surveillance cameras has grown considerably due to a height-
ened security demand. This has significantly increased the number of videos produced,
making the ability to automatically process these videos an urgent issue. A detailed survey
[16] in this research field shows the growth in video publications in the recent years. The
sheer number of videos being produced has turned the detection of abnormal events into
a practical and challenging task. Abnormal event detection cannot be treated as a typical
classification problem because the infinite types of abnormal events makes defining them
impossible. In addition, negative samples are not sufficient for building models. In this case,
building models using normal videos in an unsupervised way has drawn substantial atten-
tion. Models of normal events are first trained from positive samples, which means all the
events that do not fit the normal models are abnormal events. The process of running an
unsupervised abnormal event detection model can be summarized as, first, extracting fea-
tures to represent normal video frames; second, building normal models using features of
positive samples; and third, checking test frames against normal models.

Much research on unsupervised abnormal event detection has been published in recent
years. In [10], object-of-interest trajectories are extracted and designated as the represen-
tation of normal events. Trajectories that do not follow the normal patterns are treated as
anomalies. How well this method performs depends on the accuracy of the object tracking.
In [13], spatial-temporal changes are used to learn a set of sparse basis combinations, and
test samples are checked by reconstruction error.

Lately, the use of deep learning algorithms has taken off in the computer vision com-
munity, and the performance of image classification has reached impressive new levels. In
the context of abnormal event detection, deep learning tools extract high-level features from
videos in order to detect these abnormal events. In [19], a deep learning model auto-encoder
is learned and serves to extract features, while Gaussian models are trained to detect anoma-
lies. Method in [8] utilizes the PCANet to extract global features of video frames from
saliency information (SI) and multi-scale histogram of optical flow (MHOF), so it has lim-
itation in detecting and localizing anomalies in local areas. In order to detect and localize
abnormal events simultaneously and make the best of PCANet, a new method is proposed
in this paper. The PCANet is revised to extract local information from raw motion infor-
mation of video sequences rather than from higher level features, i.e., SI and MHOF. Then
corresponding one-class classifiers are used to detect anomalies.

The remainder of the paper is organized as follows: In Section 2, related work is covered in
order to give background on the proposal. The proposed method is discussed in Section 3.
Followed by experimental results and their analysis in Section 4. Finally, conclusions are
presented in Section 5.

2 Related work

With the wide use of surveillance systems around the world, computer vision researchers
have taken a keen interest in algorithms for intelligent video processing. One practical appli-
cation of this research is the ability to detect abnormal events in surveillance videos, such
that users can be alerted to suspicious activity as it occurs.

The detection of abnormal events in videos involves identifying events with abnormal
patterns. The lack of negative samples has led to the use of unsupervised learning methods
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as a sensible solution. In order to build normal models from training videos, extracting dis-
criminative features becomes crucial to the success of the methods. Algorithms for abnormal
event detection can be categorized into one of two types based on their methods of feature
extraction: trajectory-based algorithms and spatio-temporal domain-based algorithms.

In [10, 18, 21], extracted trajectories of normal events represent normal patterns, and tra-
jectories that do not follow the normal patterns are treated as anomalies. However, there are
some limitations to applying the trajectory-based methods to crowded scenes because of the
occlusion among multiple moving objects severely influences the efficiency and accuracy of
object tracking and the extraction of trajectories of multiple objects. Social attribute-aware
force model (SAFM) are proposed in [26] to incorporate social characteristics of crowd
behaviors to improve the description of interactive behaviors, which effectively reduces the
influence of occlusion between multiple moving objects. And in [24], 3-D discrete cosine
transform (DCT) is used to design a robust multi-object tracker to associate the targets in
different frames.

For spatio-temporal domain-based algorithms, features extracted based on spatio-
temporal methods represent normal videos, and then normal models are learned in order to
detect abnormal events. For example, extracted HOG [7, 9], optical flow [11, 15], or multi-
scale histogram of optical flow [6] represents videos, and then normal models are learned
in order to detect abnormal events. Various models are used to depict the features based
on spatio-temporal changes. In [1], a location-based approach is proposed for illustrating
behavior. In the study [2], a learned nonparametric model analyzes statistics of a multi-scale
local descriptor. The study [15] proposes a social force model that estimates interaction
forces between moving particles. The [12] studies the use of a joint detector that works with
temporal and spatial anomalies, as well as the use of mixture of dynamic textures (MDT)
models. In [1, 25], normal patterns are fitted into a Markov random field. Latent Dirichlet
allocation models are utilized to detect abnormal events in [15, 20]. In [5, 6, 12, 13], sparse
representations of normal events are proposed to reconstruct test frames.

3 Proposed method

Figure 1 shows the overall framework of the proposed method, which can be regarded as a
kind of spatio-temporal domain-based method. Abnormal events differ from normal events
in their motion patterns, so the first step is to extract optical flows from the video frames.
Next, the calculation of the magnitude of optical flow at each pixel forms an optical flow
map which can be regarded as the spatio-temporal representation of video frames. Because
abnormal events generally occur in local regions, optical flow maps are uniformly parti-
tioned to non-overlapping patches to extract local and discriminative information. Patches
at same spatial coordinates in optical flow maps are then used to learn models. A set of
PCANet models are learned separately based on patches at corresponding spatial coordi-
nates. For each patch, removed block-wise histograms represent each block in the patch, as
opposed to linking them all to a single vector. After obtaining training features, one-class
classifiers are trained. This method also utilizes simple and efficient classifiers based on
k-medoids, as discussed in Section 3.2.

The extraction of block-wise features is the first step for a test frame. Then, one-class
classifiers calculate anomaly scores of each block to form a map. However, in crowded
scenes, high anomaly scores of some normal isolated blocks may occur due to the occlusion
and interference among multiple moving objects, as this leads to a high false positive rate.
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Fig. 1 Framework of the proposed method. Optical flow maps are firstly calculated from video frames.
Then block-wise features are extracted by revised PCANet from local patches. Finally, detection results are
obtained by the operation of one-class classifier and mean filter

The influence by misclassified isolated points is efficiently eliminated in this method by
processing anomaly score maps through a mean filter. Experimental results demonstrate the
overall effectiveness of the method.

3.1 Feature extraction based on PCANet

As a part of the trending deep learning field, PCANet was a new deep learning network
proposed in [4]. Compared with other deep learning networks, such as convolutional deep
neural network (ConvNet) that requires obscure expertise and large amounts of labeled
training data, PCANet trains more easily and better suits the issue at hand. The structure
of a two-stage PCANet is illustrated in Fig. 2. Similar to ConvNet, two stages of PCANet
is a model with two layers. PCA filters in different stages is linearly cascaded to extract
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Fig. 2 Structure of a Two-Stage PCANet. Input is the optical flow map and output is the extracted feature.
Features of input maps are extracted by three operations: PCA filters, binary hashing, and histogram

high-level features. And two-stage PCANet is more effective than one-stage PCANet in
extracting higher level features as shown in [4].

Optical flow maps are uniformly partitioned to non-overlapping patches referred to
as sub-maps with size h × w. And sub-maps at same spatial coordinates are gath-
ered temporally for training. Suppose there are N sub-maps for each spatial location,
denoted as X = [X1, X2, ..., XN ] ∈ R

hw×N . For a given sub-map Xi , a patch
with size k1 × k2 is taken around each point, and all overlapping patches of Xi are
collected as Xi,1, Xi,2, ..., Xi,(h−k1+1)×(w−k2+1), where each Xi,j denotes the j th vec-
torized patch in Xi . By subtracting patch mean from each patch, we obtain X̄i =
[X̄i,1, X̄i,2, ..., X̄i,(h−k1+1)×(w−k2+1)]. Similar matrices for all sub-maps can be obtained
using the same approach. Putting all the matrices together forms:

X̄ = [X̄1, X̄2, ..., X̄N ] ∈ R
k1k2×Nq (1)

where q = (h − k1 + 1) × (w − k2 + 1). The PCA filters in the first stage are expressed as:

W 1
l = vec2matk1,k2(ql(X̄X̄T )) ∈ R

k1×k2 , l = 1, 2, ..., L1 (2)

where L1 is the number of PCA filters in the first stage, ql(X̄X̄T ) denotes the lth principal
eigenvector of X̄X̄T , vec2matk1,k2(v) is a function that reshapes the vector v ∈ R

k1k2 to a
matirx W ∈ R

k1×k2 .
The process of the second stage is similar to the first stage. Given the lth filter W 1

l and Xi

from the first stage, output is Xl
i = Xi ∗W 1

l . By collecting all patches in Xl
i and subtracting

patch mean from each patch, Y l = [Y l
1, Y

l
2, ..., Y

l
N ] ∈ R

k1k2×Nq is obtained for all the filter
outputs and is concatenated as:

Y = [Y 1, Y 2, ..., YL1 ] ∈ R
k1k2×L1Nq (3)

The PCA filters of the second stage are obtained as:

W 2
� = vec2matk1,k2(ql(YY T )) ∈ R

k1×k2 , � = 1, 2, ..., L2 (4)

For each input Xl
i in the second stage, a single integer-valued map is obtained with:

T l
i =

L2∑

�=1

2�−1H(Xl
i ∗ W 2

� ) (5)
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where H(·) is a function whose value is one for positive entries and zero for all others. Each
map of T l

i is partitioned into B blocks. Histograms of the decimal values in each block are
computed and concatenated into one vector in traditional PCANet. In order to extract local
information from optical flow maps and localize abnormal motion patterns, histograms of
each block are not concatenated into one vector. Histograms of all the partitioned blocks are
obtained as BlockHistb(T

l
i ), b = 1, 2, ..., B. Given a input sub-map Xi , the features are

defined as:

fi,b = [BlockHistb(T
1
i ), ..., BlockHistb(T

L1
i )] ∈ R

2L2×L1 , b = 1, 2, ...B (6)

The local blocks can be overlapping or non-overlapping. In this method, the blocks
are kept as non-overlapping. Assume the size of optical flow maps is 240 × 360, and
the size of each sub-map is 40 × 40, so a set of PCANet models can be obtained as
PCANets = {PCANeti,j }, i = 1 ∼ 6, j = 1 ∼ 9. Additionally, for each sub-map
Xk , the PCANet model, extracts a corresponding set of block-wise features, denoted as
{fk,b}, b = 1, 2, ...16.

3.2 Abnormal events detection by one-class classifier

The training dataset contains only normal events, so one-class classifier is more suitable
in this case than other classifiers. Suppose there are N normal training optical flow maps,
and each training sample is partitioned to M non-overlapping sub-maps. Now, N sub-maps
at same spatial coordinates are gathered temporally for training. Then, N feature vectors
are extracted by PCANet for each block location, denoted as F = {f1, f2, ..., fN }. The K-
mediods clustering algorithm is then used to divide F into k clusters. The k cluster centers
can be obtained asC = {c1, c2, ..., ck} for each block location. Given a test sample, PCANet
extracts feature vectors for each block, and anomaly scores are calculated as:

g(x) = min(x − ci)
T (x − ci) (7)

The scores are arranged according to the spatial location of each block in order to con-
struct an anomaly score map. To eliminate the noise of isolated points, anomaly score maps
are processed by a mean filter, and g′(x) is obtained. Then, the classifier is defined as:

h(x) =
{

normality g′(x) < θ

anomaly g′(x) ≥ θ
(8)

4 Experiments

Experiments were carried on UCSD Ped2 [14] and UMN [17] datasets. Comparisons with
other state-of-the-art methods were also made, and experimental results demonstrate the
superiority of the proposed method.

4.1 Experiments on UCSD Ped2 dataset

The UCSD Ped2 dataset [14] was acquired with a stationary camera at 10 fps, with resolu-
tion of 240×360. The video footage was split into various clips with approximate lengths of
200 frames. In the normal setting, the video contains only pedestrians. Events are considered
abnormal when abnormal pedestrian motion patterns are present or when non pedestrian



Multimed Tools Appl (2017) 76:23213–23224 23219

False Positive Rate

0 10 20 30 40 50 60 70 80 90 100

T
r
u

e
 P

o
s
it
iv

e
 R

a
te

0

10

20

30

40

50

60

70

80

90

100

Dan Xua et al.[23]

IBC[3]

MDT[14]

Tan Xiao et al.[22]

Ours

False Positive Rate

0 10 20 30 40 50 60 70 80 90 100

T
r
u

e
 P

o
s
it
iv

e
 R

a
te

0

10

20

30

40

50

60

70

80

90

100

MDT[14]

Dan Xua et al.[23]

MPCCA[11]

Ours

Fig. 3 ROC curves of UCSD Ped2. a ROC curves based on frame-level evaluation. b ROC curves based on
pixel-level evaluation

objects are in the walkways. The training set contains 16 normal short clips, and the test-
ing set contains 12 clips in which some of the frames include one or more abnormal events.
Similar to [14], receiver operating curve (ROC) and equal error rate (EER) were analyzed at
both the frame and pixel levels, and comparisons with other state-of-the-art methods were
examined.

In frame-level evaluation, a frame is considered correctly detected if at least one pixel is
judged as an anomaly, and an exact location of the anomaly is not necessary. Therefore, it is
possible for some true positive detections to identify abnormal events in the wrong location.
In pixel-level evaluation, a frame is considered detected correctly if at least 40 percent of
the truly anomalous pixels have been identified. In order to create an ROC curve, a set of
false positive and true positive rates are extracted from the detection procedure repeated on
multiple thresholds.

For UCSD Ped2, where the frame size is 240×360, optical flow maps with the same size
are calculated. The size of sub-maps was set as 40 × 40, the size of mean filters was set as
3×3, and the PCANet parameters were set as f litersize = 5×5, blocksize = 10×10, L1
is set to 8 to reserve 90 % of the variance, K-mediods parameter k is empirically set equal to
L1, L2 is set to 6 to restrict the dimension of extracted features and reserve enough variance.
The original optical flow map was partitioned into 54 sub-maps, and the corresponding 54
PCANet models were learned. Each sub-map was divided into 16 blocks and features with

Table 1 Comparison of EER on
UCSD Ped2 (%) Method Frame-level Pixel-level

MDT [14] 24 54

IBC [3] 13 26

MPCCA [11] 30 71

Li et al. [12] 18.5 29.9

Tan Xiao et al. [22] 10 17

Dan Xua et al. [23] 20 42

Ours 10 18
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Fig. 4 Examples of anomaly detection and localization. Red regions are abnormal pixels. Each column of
the frame is the same. The top row of frames shows the ground truth, and the bottom row of frames shows
the abnormal events detected by our method

dimension of 2L1L2 = 512 were extracted to represent each block. Finally, one 24 ∗ 36
anomaly score map was obtained for each frame.

Threshold θ was altered to produce ROC curves for frame-level and pixel-level eval-
uations. And the threshold can be set according to the application’s requirements to get
reasonable false positive rate and true positive rate. ROC curves and comparisons with other
methods are illustrated in Fig. 3.

The comparisons of EER with other methods are shown in Table 1. Smaller EER
indicates better performance.

Experimental results show that this method achieves respectable performance in both
detecting and localizing abnormal events in surveillance videos. Figure 4 provides a portion
of detection results of this method.

Fig. 5 Examples of Each Scene in UMN Dataset. The frames in the top row show normal crowd behavior,
and the frames in the bottom row show abnormal behavior
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4.2 Experiments on UMN dataset

The UMN dataset [17] consists of three scenes containing crowds executing rapid escape
behaviors, which are considered as abnormal events. Scene (a) contains 1453 frames, scene
(b) contains 4144 frames and scene (c) contains 2142 frames, all of which have a resolution
of 240 × 320. Figure 5 shows snapshots from each of the three scenes.

PCANet models and one-class classifiers are trained by using the first 600 normal frames
of each scene, and other frames are used for testing. The UMN dataset contains no pixel-
level ground truth, so the EER in frame level is used to evaluate the method. The parameter
settings of experiments on UMN and UCSD Ped2 dataset are the same. In UMN dataset,
rapid escape behaviors of crowds are considered as abnormal events. And the escape behav-
iors of each individual can be regarded as local anomalies. Our method is able to extract
high-level information from local regions, so abnormal events in local areas can be detected
to generate reasonable results in UMN dataset. ROC curves and comparisons with other
methods are illustrated in Fig. 6. The comparisons of EER with other methods are shown in
Table 2.

Table 2 Comparison of EER on
UMN Dataset (%) Method EER

Li et al. [12] 3.7

Chaotic invariants [21] 5.3

Sparse [5] 2.8

Ours 2.6
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5 Conclusion

The proposed method involves an unsupervised learning framework for abnormal event
detection and localization in surveillance videos. Optical flows are calculated to represent
the motion information in video sequences. The deep learning model, PCANet, is used to
extract high-level features from low-level optical flows. To localize abnormal events, the
PCANet is revised to extract local information from video frames. Experimental results
show that the method can effectively detect and localize abnormal events in surveillance
videos.
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