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Abstract A variety of saliency models based on different schemes and methods have been
proposed in the recent years, and the performance of these models often vary with images and
complement each other. Therefore it is a natural idea whether we can elevate saliency detection
performance by fusing different saliency models. This paper proposes a novel and general
framework to adaptively fuse saliency maps generated using various saliency models
based on quality assessment of these saliency maps. Given an input image and its
multiple saliency maps, the quality features based on the input image and saliency
maps are extracted. Then, a quality assessment model, which is learned using the
boosting algorithm with multiple kernels, indicates the quality score of each saliency
map. Next, a linear summation method with power-law transformation is exploited to
fuse these saliency maps adaptively according to their quality scores. Finally, a graph
cut based refinement method is exploited to enhance the spatial coherence of saliency
and generate the high-quality final saliency map. Experimental results on three public
benchmark datasets with state-of-the-art saliency models demonstrate that our saliency
fusion framework consistently outperforms all saliency models and other fusion
methods, and effectively elevates saliency detection performance.
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1 Introduction

Visual saliency, inspired by the mechanism of visual attention in humans, aims to make certain
regions in the scene stand out from their surroundings, and has received more and more
attention in the recent years. Numerous applications such as content-based image/video
compression [14, 46], salient object detection and segmentation [30, 32, 48], content-aware
image/video retargeting [10–12, 44], classification [45], retrieval [16], to name a few, benefit
from saliency detection as a preprocessing step to focus on the area of great importance.

There are numerous literatures on saliency detection, and two benchmarks have been reported
in [3, 4], which show the comprehensive comparison among a variety of saliency models. The
early research on saliency model is motivated by stimulating the visual attention mechanism of
human visual system (HVS), by which only the significant portion of the scene projected onto
retina can be processed by human brain for semantic understanding. As a pioneering work on
saliency detection, Itti et al. proposed a well-known bottom-up saliency model [19], in which the
center-surround differences across multi-scale image features are calculated and then the opera-
tion of normalization and summation is used for generating saliencymap. A graph-based saliency
model is proposed in [15], which utilizes the Markovian approach on an active map. In [17], the
spectral analysis in frequency domain is used to detect salient region. In [30], a set of saliency
features including multi-scale contrast, center-surround histogram, and color spatial distribution
are fused to generate the saliencymap under the framework of conditional random field (CRF). A
saliency model which exploits the statistics of natural images and introduces the Bayesian
framework for saliency computation is proposed in [55]. In [1], an efficient and simple saliency
model is proposed based on the center-surround scheme by comparing the color features of each
pixel with the average color of the whole image. Multiple cues including local low-level features,
visual organization rules and high-level features are simultaneously modeled to improve saliency
detection performance with the context of salient object in [13]. Another successful saliency
model based on kernel density estimation (KDE) is proposed in [29], where a set of KDEmodels
are constructed based on the region segmentation result. A global contrast based saliencymodel is
proposed in [8], which considers the global region contrast with respect to the entire image and
spatial relationships across regions to compute saliency map. In [31], the Gaussian model is
adopted to represent each region, and both color and spatial saliency measures of Gaussian
models are evaluated and integrated to measure the pixel-level saliency. Background prior is
studied in [50] to formulate a geodesic distance based saliency model. Under the framework of
low-rank matrix recovery, a region segmentation based object prior is exploited for saliency
detection in [58]. Distinctiveness and compactness of regional histograms in [33] as well as global
contrast and spatial sparsity of superpixles in [34] are proposed for saliency measurement.

In order to improve saliency detection performance on the basis of existing saliency models,
some meaningful works [3, 25, 38, 51] explore the fusion of different saliency models. In [3], a
simple fusion method (sum) using three normalization schemes (identity, exponential and
logarithmic) is used for combining saliency models, and their results show that combining
several best saliency models enhance the saliency detection performance. Bayesian integration is
proposed to fuse low-level and mid-level cues for saliency map generation in [51]. A data-driven
saliency aggregation approach (denoted as SA) under the CRF framework is proposed in [38],
which focuses on modeling the contribution of individual saliency map and the interaction
between neighboring pixels. In [25], supervised and unsupervised learning methods are tested to
aggregate different saliency models for fixation prediction, and the simple average of saliency
maps generated using the two best models is already a good candidate for saliency fusion.
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Actually, there are some other methods [20, 26, 53, 57] proposed for the optimization on
individual saliency model. In [53], the saliency maps computed on the hierarchical image
segmentations are integrated using a tree-structure graphical model. In order to meet several
hypotheses on saliency including visual rarity, center bias and mutual correlation, a quadratic
programming function which optimizes the saliency values of all superpixels in an image to
simultaneously meet all the hypotheses is proposed in [26]. A similar optimization-based
framework is proposed in [57] to integrate multiple foreground/background cues. To fuse the
high-level object information with pixel-level appearances effectively, a Markov Random
Field (MRF) is adopted to enforce the consistence between salient regions in [20]. Although
the above mentioned methods [20, 26, 53, 57] cannot be directly used as the fusion method for
different saliency models, the research of saliency fusion may refer to these methods and make
some adaptations to design an effective fusion method.

With the rapid and continuous development of saliency detection, more and more advanced
models are proposed recently. According to the rankings of recently published benchmark [4],
there are six state-of-the-art saliency models [2, 21, 22, 27, 35, 57] with the highest perfor-
mance. In [57], a new boundary prior called Bboundary connectivity^ and a principled
optimization framework are proposed to improve saliency detection performance. In [22],
the random forest regression is used to map the regional discriminative feature vector to the
saliency score of each region, and saliency scores across multiple levels are fused to obtain the
final regional saliency score. In [27], a saliency measure via dense and sparse representation
errors of each region is proposed and the final saliency map is generated by integrating
multiscale reconstruction errors. A bottom-up saliency detection model is proposed in [21],
which considers the appearance divergence and spatial distribution of salient objects and
background using the time property in an absorbing Markov chain. The saliency tree
model in [35] enables the hierarchical representation of saliency and improves salien-
cy detection performance. The link between quantum mechanics and graph cuts is
exploited to generate the saliency map in [2]. In [42], the cellular automaton is used
to detect salient object intuitively. In [23], a global saliency model via high dimen-
sional color space transformation and a local saliency model via random forest
regression are combined to generate a new saliency model, which estimates object regions
from a trimap. In [18], a novel compactness hypothesis including color and texture is proposed
as a remedy to address the weakness of contrast hypothesis from the perspective of both color
layout and texture layout.

Although the above state-of-the-art saliency models achieve the higher performance statis-
tically on the public benchmarks, there still exists a large margin for performance improve-
ment. In addition, the performance of an individual model varies with images. As illustrated in
Fig. 1, the discriminative regional feature integration (DRFI) model [22] performs effectively
in the 1st row, which achieves a similar quality with our result by comparing to the ground
truth. The saliency tree (ST) model [35] performs better than other models in the 2nd row, the
robust background detection (RBD) model [57] achieves the better performance in the 3rd row,
and the background-based map optimized via single-layer cellular automata (BSCA) model
[42] outperforms other models in the 4th row. The quantum cuts (QCUT) model [2] and the
dense and sparse reconstruction (DSR) model [27] work well in the 5th and 6th row,
respectively. The high-dimensional color transform (HDCT) model [23] and Markov chain
model (MC) [21] generate saliency maps with the highest quality in the 7th and 8th row,
respectively. It can be clearly seen from Fig. 1 that all these saliency models cannot perform
well in all the eight rows. However, it can be also seen from Fig. 1 that these models often
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complement each other, for example, in the 2nd row, though RBD suppresses the central part
of cactus, DSR could complement it by highlighting the central part.

Therefore, it is a natural idea to study whether the fusion of different saliency models could
make improvements on saliency detection performance or not. Specifically, formulating an
effective fusion framework to combine different saliency models may generate the better
saliency map. Besides, quality estimation recently attracts more and more attention and has
been applied in the recommender system [41], which proposes a novel graph-based regularized
algorithm that learns the ranking function in the semi-supervised learning framework. Fur-
thermore, for multi-focus image fusion, a dense scale invariant feature transform [36] is
proposed to evaluate the clarity of source images, and for integration of multi-view
information, a multi-view intact space learning algorithm [52] is proposed to integrate
the encoded complementary information in multiple views to discover a latent intact
representation of the data.

Motivated by the above analysis, in this paper, we propose a novel and general framework
to fuse different saliency models adaptively based on quality assessment of their saliency
maps. First, given an input image and its saliency maps generated using different saliency
models, we extract effective quality features on the input image and its saliency maps.
Second, a quality assessment model is constructed based on quality features using the
boosting algorithm with multiple kernels to estimate the appropriate quality scores for
these saliency maps. Third, based on the obtained quality scores, a linear summation
method with power-law transformation is exploited to fuse these saliency maps
adaptively and then generate the fused saliency map. Finally, a graph cut based
refinement method is exploited to improve the spatial coherence of the fused saliency
map and generate the high-quality final saliency map. The flowchart of the proposed
saliency fusion framework is illustrated in Fig. 2.

Fig. 1 The performance of individual saliency model varies with images. a Images; saliency maps generated
using b DRFI [22], c ST [35], d RBD [57], e BSCA [42], f QCUT [2], g DSR [27], h HDCT [23] and iMC [21],
respectively; j our fusion results; k ground truths
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The most related work (denoted as IS) to this paper is proposed in [56], which presents a
quality based adaptive fusion method for improving saliency detection performance of an
existing saliency model. The two works are considerably different. First, their scopes of
application are different. The method in [56] can only be used for fusing two saliency maps,
since it is used in [56] to fuse initial saliency map and complementary saliency map, which is
generated based on initial saliency map, and to achieve an improvement for individual saliency
model. In contrast, our method can be used to fuse any number of saliency maps with the aim to
elevate saliency detection performance. Second, the quality assessment models are different on
the following two aspects: a) The selection strategies of positive and negative samples are
different. The AUC (area under the ROC curve) score is exploited in [56], while the coverage
score is adopted by our method. b) The use of quality features and the learning algorithms are
different, the method in [56] simply concatenates all quality features to form a feature vector
and adopts a simple SVM classifier to generate the quality assessment model, while our method
adopts the boosting algorithm with multiple kernels [54] to take full use of quality features and
to formulate a quality assessment model. Third, the fusion schemes based on quality scores are
different. The method in [56] uses the simple linear weighted summation, while our method
introduces the power-law transformation and the graph cut based refinement for saliency fusion.

Another related work (denoted as CS) to this paper is proposed in [37], which mainly aims
to rank saliency maps according to their quality features without ground truth. Based on
quality features, the best salient object detection result from saliency maps are selected to
improve saliency detection performance. Overall, our work uses the same quality features as
[37], but there are considerable difference between [37] and our work. First, the work in [37]
mainly aims to rank saliency maps based on quality features, and simply selects the best one
from saliency maps based on the ranking result to improve saliency detection performance;
while our work proposes a method to fuse various saliency maps based on quality features.
Second, regarding the training strategy, a pairwise-based learning-to-rank methodology [7] is
adopted in [37], while our method trains a general quality assessment model for different
saliency maps and fuses them based on quality scores. Third, the use of quality features and
selection of training samples are different. In [37], each saliency map is represented using a
concatenation of all kinds of quality features, and meanwhile AUC values are exploited to
obtain the label of each saliency map in the training set. In contrast, our method adopts
multiple kernel boosting [54] to take full use of quality features for each saliency map, and

Fig. 2 Flowchart of the proposed saliency fusion framework
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utilizes coverage score to select high-quality/low-quality saliency maps as positive/negative
training samples.

Overall, the main contribution of this paper lies in the following three aspects:

1) We propose a general quality assessment model, which assigns an appropriate quality
score for each saliency map. Specially, in order to take full advantage of different kinds of
quality features, we exploit a boosting algorithm with multiple kernels as the core of our
quality assessment model.

2) Different from previous fusion methods, we propose a linear summation method with
power-law transformation to effectively utilize quality scores for adaptive fusion of
various saliency maps, and thereafter a graph cut based refinement method to enhance
the spatial coherence of saliency map.

3) We performed extensive experiments with state-of-the-art saliency models on three public
benchmark datasets and detailed comparisons with previous fusion methods. The results
demonstrate the effectiveness of our method and show a possible way to further push
forward saliency detection performance.

The rest of this paper is organized as follows. Section 2 details the proposed saliency fusion
framework. Experimental results and analysis are presented in Section 3, and conclusions are
given in Section 4.

2 Proposed method

As shown in Fig. 2, the proposed saliency fusion framework starts from running a total of M
saliency models on a given image I with a size of W ∗H, and generates M saliency maps,

Sif gMi¼1. Each saliency map Si is normalized to [0, 1]. The following subsections are arranged
as follows: Sect. 2.1 briefly introduces the quality features; Sect. 2.2 describes the quality
assessment model to obtain quality scores for saliency maps; Sect. 2.3 presents the fusion
method based on quality scores for generating the fused saliency map; Sect. 2.4 details the
graph cut based saliency refinement for generating the final saliency map.

2.1 Quality feature

A number of quality features has been proposed in [37], and here we classify these quality
features into two classes: quality features based on only saliency map, and quality features
based on interaction between saliency map and input image. The quality features are summa-
rized in Table 1 and briefly described in the following.

Saliency histogram this feature represents the distribution of saliency values. Given a
saliency map Si, its saliency histogram qiH is defined as follows:

qiH b j
� � ¼ nj

W*H
; j ¼ 1; 2; :::;NH ð1Þ

where nj denotes the number of pixels falling into the jth bin bj, and NH is the total number of
bins in the histogram.
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Saliency coverage This feature indicates the estimated size of salient object based on
saliency map. The feature value of a low-quality saliency map is usually abnormally
large or small. Given a saliency map Si, its saliency coverage qiC is defined as
follows:

qiC tð Þ ¼ 1

W*H

X
p∈Si

Ψ Si pð Þ−t½ � ð2Þ

where Ψ[r] is the sign function with a value of 1 when r > 0 and 0 otherwise. The threshold
t ∈ [0, 1] is set to 10 different values in the range of [0, 1].

Saliency compactness This feature evaluates the density of salient pixels distributed
in the most salient area. Given a saliency map Si, its saliency compactness qiCP is
defined as follows:

Rj
� �NT

j¼1 s:t:
X
p∈R j

Si pð Þ
.X

p

Si pð Þ
0
@

1
A ¼ T

j* ¼ argmin
j

W Rj
� �

*H Rj
� �� �

; j ¼ 1; :::;NT

qiCP Tð Þ ¼
X
p∈R j*

Si pð Þ
.

Rj*
�� ��

ð3Þ

where Rj denotes the j
th rectangular window covering a proportion of the total saliency in Si,

and there are totally NT windows for each threshold T (here we set T to 0.25, 0.5 and 0.75,
respectively). For each window Rj, we first compute its area W(Rj) *H(Rj), then find the
window Rj* with the smallest area, and compute its mean saliency value as the feature qiCP
where Rj*

�� �� is the number of total pixels in Rj* .

Table 1 Quality features of saliency map Si

Class Quality Feature Description Dim

Quality features based
on only saliency map

Saliency histogram qiH The histogram shows peaks at two ends with
high-quality saliency map, while the uniform
distribution with low-quality saliency map.

20

Saliency coverage qiC The saliency coverage is abnormally large or
small for low-quality saliency map.

10

Saliency compactness qiCP A high-quality saliency map usually concen-
trates its salient pixels in a compact region.

3

Quality features based
on interaction
between saliency
map and input image

Color separation qiCS A high-quality saliency map tends to have a
smaller color separation value.

1

Segmentation quality qiSQ A high-quality saliency map usually generate a
good segmentation result.

3

Boundary quality qiBQ The accurate and well-defined object boundary
is an important property of high-quality
saliency maps.

4
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Color separation this feature denotes the separation on color distribution between salient
regions and background regions. It is a weighted color histogram incorporating saliency
values. Given a saliency map Si, its color separation qiCS is defined as follows:

his jð Þ ¼
X

p∈I
Si pð Þδ I pð Þ∈bj

� �
X

p∈I
Si pð Þ

hib jð Þ ¼
X

p∈I
1−Si pð Þð Þδ I pð Þ∈b j

� �
X

p∈I
1−Si pð Þð Þ

qiCS ¼
1

NCS

X
j¼1

NS

min his jð Þ; hib jð Þ� �

ð4Þ

where bj denotes the color range of the j
th bin (here we set 16 bins per channel in the RGB

color space), and δ{⋅} is the indicator function with a value of 1 if its argument is true and 0

otherwise. his and hib are the color histogram for salient regions and background, respectively.

The feature qiCS indicates the intersection between the two color histograms, and NCS is the
number of histogram bins.

Segmentation quality This feature represents the quality of saliency map by assessing the
segmentation result induced by the saliency map. Given a saliency map Si, its segmentation
quality qiSQ can be computed by using the normalized cut based energy function [47] as follows:

qiSQ tð Þ ¼
X

p∈Sti;S ;q∈S
t
i;B;q∈N pð ÞwpqX

p∈Sti;S ;q∈N pð Þwpq

þ
X

p∈Sti;B;q∈S
t
i;S ;q∈N pð ÞwpqX

p∈Sti;B;q∈N pð Þwpq

ð5Þ

where Sti;S and S
t
i;B denote salient regions and background regions generated from the saliency

map Si with the threshold t, and here we use three thresholds: 0.5, 0.75 and 0.95. N(p) denotes
the neighborhood of the pixel p, and wpq represents the color similarity between the neigh-
boring pixels, p and q, with the same definition as [30].

Boundary quality this feature evaluates the correlation between the boundary map BM
Si

generated using the saliency map Si and the strong edge map EI generated by performing
the structured-forests edge detection [9] on the input image I. Concretely, the boundary quality
feature qiBQ for Si is defined as follows:

wp ¼ Si pð Þmax Si pð Þ−Si p1ð Þj j; Si pð Þ−Si p2ð Þj jð Þ

BM
Si pð Þ ¼ wp Si p1ð Þ−Si p2ð Þj jX

p∈M
wp

qi;nBQ Ið Þ ¼
X
p∈I

BM
Si pð ÞEI pð Þ

ð6Þ
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where p1 and p2 are two neighboring pixel of p, and they locate orthogonally with respect to
the edge direction at p. wp is the saliency-weighted edge magnitude. The superscript n denotes
the nth scale of input image I, and here we use four scales with the scaling ratio of 0.25, 0.5,
0.75 and 1, respectively. The boundary quality feature qiBQ is the concatenation of feature

values qi;nBQ calculated at the four scales.

Therefore, for a given saliency map Si with the corresponding input image I, there are
totally six different kinds of quality features: saliency histogram qiH , saliency coverage
qiC , saliency compactness qiCP, color separation qiCS , segmentation quality qiSQ and

boundary quality qiBQ, and the quality feature of the saliency map Si is finally defined

as qi ¼ qiH ; q
i
C; q

i
CP; q

i
CS ; q

i
SQ; q

i
BQ

n o
¼

n
qik
on F

k¼1
with nF = 6.

2.2 Quality assessment

Our aim is to learn the quality assessment model from a set of training examples and then
assigns an appropriate quality score to each saliency map. As aforementioned, there are totally
six different kinds of quality features for a given training sample. In order to take full
advantage of these quality features, one of the common schemes is to adopt the kernel
transformation of these features with support vector machine (SVM). However, it is not
appropriate for our situation, because it is difficult to select an appropriate kernel for the
diverse samples with different properties of quality features. To cope with this problem
effectively, we exploit multiple kernel boosting (MKB) method [54] to include multiple
kernels of different quality features. In the framework of MKB, SVMs with different kernels
are regarded as weak classifiers and then a strong classifier can be learned by using the

AdaBoost method. Here four types of kernels Kmf gnKm¼1 (linear, radial basis function (RBF),
sigmoid and polynomial, nK = 4) with six kinds of quality features are included in our model.

For learning the quality assessment model, we construct the training set consisting of
quality features as follows. First, we select nD color images and the corresponding ground

truths, Id ;Gdf gnDd¼1, from a public image dataset. Second, for a given color image Id, we obtain

the quality features qif gMi¼1 with the saliency maps Sif gMi¼1 generated usingM saliency models,

and each one is defined as qi ¼ qik
� �n F

k¼1. Finally, in order to obtain deterministic quality feature

samples, we make a selection among the samples qif gMi¼1 with the ground truth Gd, and assign

labels yif gMi¼1 simultaneously:

Ti ¼

X
p

Si pð Þ*Gd pð Þ
X
p

Gd pð Þ
; yi ¼ þ1 Ti≥T high

−1 Ti≤Tlow

�
ð7Þ

where Ti denotes the ratio of actual salient pixels indicated by the saliency map Si compared to
the ground truth Gi. Tlow and Thigh are the low and high threshold, respectively. According to
Eq. (7), we can see that if Ti falls into the range of (Tlow, Thigh), the corresponding quality
feature sample will be discarded. The quality feature sample qi is labeled as a positive sample
and yi is set to +1 if Ti ≥ Thigh, or labeled as a negative sample and yi is set to −1 if Ti ≤ Tlow. So
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for each color image and its ground truth, {Id,Gd}, we obtain a set of quality feature samples

qi; yif gM*

i¼1 where M* ≤M. The quality feature samples are collected from all training images

and their ground truths, and the training set is finally denoted as qn; ynf gnTn¼1 .
Following the framework of MKB, the decision function is defined as follows:

F qð Þ ¼
XJ

j¼1

β jð ÞH jð Þ qð Þ ð8Þ

where H jð Þ qð Þ ¼ αT
jð ÞK jð Þ þ b jð Þ denotes a SVM classifier (weak classifier), J = nF × nK is the

number of weak classifiers, and β(j) is the kernel weight for the j
th weak classifier. The kernel is

defined asK jð Þ ¼ K jð Þ q; q1ð Þ;…;K jð Þ q; qnT
� 	h iT

, the Lagrange multiplier vector is defined as

α jð Þ ¼ α1
jð Þy

1;…;α
nT
jð Þy

nT
h iT

, and b(j) is the bias in the SVM classifier. All the above

parameters are obtained after the AdaBoost optimization process.
Since the raw decision value F(q) is unbounded, we transform it to the quality score in the

range of [0, 1] by using the following function:

QS qð Þ ¼ 1

1þ e−θ⋅F qð Þ ð9Þ

where θ is the parameter for the decay rate of quality score, and is set to 1 for a
moderate decay effect.

By using the MKB algorithm, we obtain the quality assessment model via adaptively
integrating the most discriminative features and the corresponding kernels. For each saliency
map S*, using its quality feature as the input, q = q*, the quality assessment model outputs the
estimated quality score, QS(q*) for the saliency map S*.

2.3 Power-law transformation based linear summation

With the quality scores, which are obtained by the learned quality assessment model for different
saliency maps, and for the purpose of utilizing quality scores reasonably and performing an
adaptive fusion of saliency maps, a linear summation method with the power-law transformation
is proposed to fuse saliency maps adaptively. Specifically, for a test image Id and the correspond-

ing saliency maps Sif gMi¼1 generated using different saliency models, we extract quality features

qif gMi¼1 for these saliency maps and estimate the quality scores QS qið Þf gMi¼1 via the quality

assessment model. The fusion weights for these saliency maps Sif gMi¼1 are computed as

wi ¼ QS qið Þ=∑M
j¼1QS qj� �

, and the fused saliency map is defined as follows:

S F pð Þ ¼ P yp ¼ 1j Si pð Þ;wif gMi¼1

� 	
¼ Norm

XM
i¼1

Si pð Þð Þwi

" #
ð10Þ

where the operation Norm[.] normalizes the saliency map into the range of [0, 1]. SF(p) indicates
the probability of each pixel p being salient given a total of M saliency maps and their
corresponding weights. Eq. (10) performs the linear summation with the power-law transforma-
tion, which is illustrated in Fig. 3. According to the quality assessment model, the obtained
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quality score of each saliency map ranges from 0 to 1. For the high-quality saliency map Siwith a
high quality score, such as wi = 0.95, the saliency value of each pixel after power-law transfor-
mation, Si pð Þwi , is similar as the original saliency value, Si(p), and it indicates that the change of
high-quality saliency map after power-law transformation is negligible. With the decrease of
quality score, it can be seen from Fig. 3 that the dynamic range of moderate saliency values is
progressively narrowed. For example, with wi = 0.6, the range [0.2, 0.8] of original saliency
values is mapped to the range [0.38, 0.87] after power-law transformation. Furthermore, for the
low-quality saliency map with a rather low quality score, such as wi = 0.01, the original saliency
values in the nearly complete range [0, 1] are all transformed to very close to 1.0, and thus a
uniform saliency map is generated for fusion. The contribution of such a uniform saliency map to
the fused saliency map can be neglected, since it merely adds nearly the same amount of saliency
to all pixels and actually cannot change the spatial distribution of saliency values after normal-
ization. Based on the above analysis, using Eq. (10), the quality score reasonably adjusts the
contribution of the corresponding input saliency map to the fused saliency map, and such an
adaptive fusion method effectively emphasizes high-quality saliency maps and suppresses low-
quality saliency maps to generate the fused saliency map.

2.4 Graph cut based refinement

In the previous subsection, we have fused different saliency maps based on their quality scores,
but the fused saliency map SF may introduce some noises around object boundaries and may
non-uniformly highlight object regions. Therefore, based on the fused saliency map, we
exploit a simple yet effective refinement method incorporating saliency and color based on
graph cut [24] to improve the spatial coherence of saliency map. Specifically, for the test image
Id, we construct an undirected graph G = (V, E), in which each pixel corresponds to a node in

Fig. 3 Illustration of power-law transformation. Si denotes the original saliency map, and Swi denotes the
saliency map after power-law transformation
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the set V, and E is a set of undirected edges connecting neighboring nodes. The graph cut
solves a binary pixel labeling problem, and employs the following energy function:

E Lð Þ ¼
X

p
D Lp; S F pð Þ� �þ λ

X
p;qð Þ∈Nθ LP; Lq; Id

� � ð11Þ

where D(⋅) is the data term, θ(⋅) is the smoothness term, and the parameter λ is used to balance
the two terms. Lp denotes the label of pixel p and Lp = {0, 1} with Lp = 1 for object label and
Lp = 0 for background label. The data term is defined as follows:

D Lp; S F pð Þ� � ¼ S F pð Þ; Lp ¼ 0
1−S F pð Þ; Lp ¼ 1

�
: ð12Þ

The smoothness term models the spatial relationship between two adjacent pixels. Follow-
ing the contrast function in [5], the smoothness term is defined in a similar way with the
incorporation of spatial distance as follows:

θ Lp; Lq; Id
� � ¼ ψ Lp; Lq

� �
⋅
exp −μ−1 Id pð Þ−Id qð Þk k2

� 	
dist p; qð Þ ð13Þ

where ψ(Lp, Lq) = 1 if Lp ≠ Lq, and 0 otherwise, dist(p, q) denotes the Euclidean distance
between p and q, and the decay factor μ =α ∗ E(‖Id(p) − Id(q)‖2) equals to α times of E(⋅),
the expectation over the whole image. Here α is set to 5 as suggested in [43]. The smoothness
term introduces the penalty when adjacent pixels with similar colors are assigned with different
labels.

The max-flow algorithm [6] is exploited to perform the graph cut and obtain the binary
object mask SM. The final saliency map is generated by combining the fused saliency map SF
and the binary object mask SM for the better spatial coherence as follows:

Sfinal ¼ SM þ S F

2
ð14Þ

3 Experimental results

3.1 Datasets

We evaluate the performance of our method over three widely used benchmark datasets, which
contains a large number of images and have different biases [4].

MSRA10K Dataset Based on the Microsoft Research Asia (MSRA) Salient Object
Database [30], MSRA10K dataset [49] was created by randomly selecting 10,000 images
with consistent bounding box labeling in MSRA Salient Object Database and annotating
salient objects with pixel-level accuracy. There is a large variation among images
including natural scenes, animals, indoor, outdoor and human, etc. in this dataset.
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ECSSD Dataset The dataset Extended Complex Scene Saliency Dataset (ECSSD) is
proposed in [53] for overcoming the weakness of existing datasets, in which background
structures are primarily simple. This dataset contains 1000 semantically meaningful but
structurally complex natural images, in which objects and background show similar
colors or/and objects are non-homogeneous, and is challenging for saliency detection.
PASCAL-S Dataset The PASCAL-S dataset [28] contains 850 images with multiple
objects and cluttered background, and the pixel-level ground truth annotations. This
dataset provides both fixations and salient object annotations. It is a challenging dataset
with abnormally large or small salient objects in many images.

We randomly divided theMSRA10K dataset into three parts: training set, validation set and test
set, with 3000, 3000 and 4000 images, respectively. The training set is used for training the quality
assessmentmodel, and the validation set is used for setting the parameters (Tlow, Thigh) in the quality
assessment model and the parameter λ in the graph cut based refinement method. The test set
includes the remaining 4000 images in the MSRA10K dataset and all images in both ECSSD
dataset and PASCAL-S dataset, which are used for quantitative and qualitative comparison.

3.2 Evaluation metrics

In our experiments, four measures are adopted for evaluation, i.e., mean absolute error (MAE),
precision-recall (PR) curve, F-measure, Fw

β−measure, Receiver Operating Characteristics

(ROC) curves and Area Under ROC Curve (AUC) score [39]. As suggested in [4], different
measures should be used for comprehensively evaluating the saliency detection performance.

1) Mean absolute error (MAE)

MAE calculates the average difference at pixel level between the saliency map S and the
ground truth G, which are normalized into the range of [0, 1], and is defined as follows:

MAE ¼ 1

W*H

XW*H

P¼1

S pð Þ−G pð Þj j: ð15Þ

MAE represents how close a saliency map is to the ground truth, and is more meaningful
for applications such as salient object segmentation.

2) Precision-recall (PR) curve

For a saliency map S, we can convert it to a binary object mask B using the thresholding
operation, and precision and recall are computed by comparing B with the ground truth G
at pixel-level as follows:

Precision ¼

X
p

B pð Þ⋅G pð Þ
X
p

B pð Þ
; Recall ¼

X
p

B pð Þ⋅G pð Þ
X
p

G pð Þ
ð16Þ
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In order to obtain the binary mask B, we binarize the saliency map using each integer
threshold from 0 to 255 and calculate the precision value and recall value to plot the PR
curve with the x-axis as the recall value and the y-axis as the precision value.

3) F-measure

F-measure is defined as the weighted harmonic mean of precision and recall for a
comprehensive evaluation, with the following form:

Fβ ¼ 1þ β2
� �

Precision� Recall

β2Precisionþ Recall
ð17Þ

where β2 is set to 1 indicating the equal importance of precision and recall. Similarly as the
PR curve, we plot the F-measure curve, in which the average F-measure is plotted against
the threshold from 0 to 255. Besides, we also compute the average F-measure for the
binary object masks, which are obtained by using the adaptive thresholding method [40],
which is simple yet effective.

4) Fw
β−measure

Fw
β−measure is proposed by [39] for quantitative evaluation of saliency detection perfor-

mance. It is an intuitive generalization of F-measure and offers a unified solution for
evaluation of binary and non-binary maps. Here we compute Fw

β−measure for every image

and then obtain the average Fw
β−measure on a given dataset for performance comparison.

5) Receiver Operating Characteristics (ROC) Curve

ROC curve presents a robust evaluation of saliency detection performance. It plots the true
positive rate (TPR) against the false positive rate (FPR) by varying the threshold from 0 to
255. Specifically, TPR and FPR are defined as follows:

TPR ¼

X
p

B pð Þ⋅G pð Þ
X
P

G pð Þ
;FPR ¼

X
p

B pð Þ⋅G pð Þ
X
P

G pð Þ
ð18Þ

where G denotes the complement of the ground truth G.

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 4 Comparison of precision-recall curves among TOP8 saliency models, five fusion methods and our
method on three public benchmark datasets
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6) Area Under ROC Curve (AUC) Score

AUC is the area under the ROC curve, which distills the ROC information into a single
scalar. Here we compute AUC for each image and then obtain the average AUC on a
given dataset for performance comparison.

3.3 Performance comparison

According to the benchmark [4], we selected the six state-of-the-art saliency models
with the highest performance, i.e., DRFI [22], QCUT [2], RBD [57], ST [35], DSR
[27] and MC [21], and also the recently proposed two saliency models, i.e., BSCA
[42] and HDCT [23], to generate saliency maps, which are used for saliency fusion.
For the eight saliency models, we used either the codes or the results provided by the
authors. Based on the metrics including average F-measure, average Fw

β−measure,

average MAE and average AUC, we evaluated the saliency maps generated using
all the eight saliency models on the test set, and then obtain the overall ranking
performance of all saliency models (in descending order): DRFI > ST > RBD > BSCA >
QCUT > DSR > HDCT >MC. According to the ranking result of saliency models, we
performed three groups of experiments by using different number of models: BTOP8^ includes
all the eight saliency models; BTOP4^ includes DRFI, ST, RBD and BSCA; BTOP2^ includes
DRFI and ST.

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 5 Comparison of F-measure curves among TOP8 saliency models, five fusion methods and our method on
three public benchmark datasets

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 6 Comparison of ROC curves among TOP8 saliency models, five fusion methods and our method on three
public benchmark datasets
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Our saliency fusion method is denoted as BOUR^, and is compared to the three fusion
methods proposed in [3] with the following definition:

P xjS1 xð Þ; S2 xð Þ;…; SM xð Þð Þ∞ 1

Z

XM
i¼1

ζ Si xð Þð Þ ð19Þ

where Z is a constant, ζ(⋅) denotes one of the three combination functions: 1) ζ(y) = y; 2)
ζ(y) = exp (y); 3) ζ(y) = − 1/ log (y). The three functions are denoted as BAVG^, BEXP^ and
BLOG^, respectively. Besides, our method is also compared to the other three fusion methods
including SA [38], CS [37] and IS [56]. Note that IS [56] is only applicable to the group
BTOP2^.

In the following, both quantitative and qualitative comparisons on saliency detection
performance are reported based on the extensive experiments on the test sets from three
datasets.

3.3.1 Quantitative comparison

Using the evaluationmetrics in Section 3.2, Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12 show the PR curves,
F-measure curves and ROC curves, and Tables 2, 3 and 4 show the average values of F-measure,

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 7 Comparison of precision-recall curves among TOP4 saliency models, five fusion methods and our
method on three public benchmark datasets

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 8 Comparison of F-measure curves among TOP4 saliency models, five fusion methods and our method on
three public benchmark datasets
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Fw
β−measure, MAE and AUC. Specifically, Figs. 4, 5 and 6 with Table 2, Figs. 7, 8 and 9 with

Table 3, and Figs. 10, 11 and 12 with Table 4 present the performance comparison of fusion results
using BTOP8^, BTOP4^ and BTOP2^, respectively.

In terms of PR curves, we can see from Figs. 4, 7 and 10 that our fusion method
consistently outperforms all the eight saliency models and other fusion methods on all
the three datasets. In the view of the enlarged PR curves in the zone of high precision
and high recall, which is critical for salient object detection and segmentation, it can
be seen that our method achieves the higher performance than other fusion methods
on all the three datasets. In terms of F-measure curves, we can see from Figs. 5, 8
and 11 that our fusion method consistently outperforms all the eight saliency models
and five fusion methods including IS, CS, AVG, EXP and LOG on all the three
datasets with large margins; as for the fusion method SA, it achieves the competitive
performance compared with our method on MSRA10K dataset, but on the other two
datasets, our method consistently outperforms SA. In terms of ROC curves, as shown
in Figs. 6, 9 and 12, it can be found that our fusion method also consistently
outperforms all the eight saliency models on all the three datasets; meanwhile, in
the view of the enlarged ROC curves in the zone of high TPR and low FPR, it can
be seen that our method performs better than other fusion methods on all the three
datasets. Based on Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12, PR curves, F-measure curves

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 9 Comparison of ROC curves among TOP4 saliency models, five fusion methods and our method on three
public benchmark datasets

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 10 Comparison of precision-recall curves among TOP2 saliency models, six fusion methods and our
method on three public benchmark datasets
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and ROC curves show that our method achieves the highest performance, which
demonstrates the effective improvement on saliency detection performance using our
method.

Tables 2–4 show the quantitative performance comparison in terms of F-measure ,
Fw
β−measure , MAE and AUC. In each row of the three tables, the best performance

is marked with red color, the second best performance is marked with green color,
and the third one is marked with blue color. Table 2 presents the performance of the
group BTOP8^. In terms of all the four metrics, it can be seen from Table 2 that our
method consistently outperforms all the eight saliency models and other fusion
methods on all the three datasets, except for MAE on ECSSD dataset, our method
achieves the second performance. For the group BTOP4^, it can be seen from Table 3
that our method consistently achieves the best performance on all the three datasets in
terms of all the four metrics. For the group BTOP2^, it can be seen from Table 4 that
our method achieves the highest performance on all the three datasets in terms of
Fw
β−measure, MAE and AUC, except for F-measure on MSRA10K and ECSSD

datasets, where our method ranks the third, slightly lower than the best one. Overall,
our method is more robust and achieves the better performance than other fusion
methods with different combination of saliency models. This objectively shows the
overall better quality of final saliency maps fused using our method, and also
demonstrates the effectiveness of our method for improving saliency detection
performance.

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 11 Comparison of F-measure curves among TOP2 saliency models, six fusion methods and our method on
three public benchmark datasets

(a) MSRA10K (b) ECSSD (c) PASCAL-S

Fig. 12 Comparison of ROC curves among TOP2 saliency models, six fusion methods and our method on three
public benchmark datasets
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3.3.2 Qualitative comparison

For a qualitative comparison, some saliency maps generated using BTOP8^ saliency models,
five fusion methods including AVG, EXP, LOG, SA and CS, and our method on the three
datasets are shown in Figs. 13, 14 and 15 for a subjective comparison. In Figs. 13, 14 and 15,
the example images contain heterogeneous objects (row 2 and 4 in Fig. 13, row 4 in Fig. 14,
and row 2 and 4 in Fig. 15), low contrast between objects and background (row 1 in Fig. 13,
row 1 in Fig. 14, and row 1 and 3 in Fig. 15), clutter background (row 2 in Fig. 13, all
rows in Fig. 14, and row 2 and 4 in Fig. 15), large-scale salient object (row 3 in
Fig. 14, and row 1 and 3 in Fig. 15) and multiple objects (row 1 and 4 in Fig. 13).

Table 2 Comparison of F-measure (F),Fw
β– measure Fw

β

� 	
, MAE and AUC among TOP8 saliency models,

five fusion methods and our method on three public benchmark datasets

For Table 2, in the first column, D denotes Dataset, M, E and P denote MSRA10K, ECSSD and PASCAL-S
dataset, respectively; in the second column, F and Fw

β denote F-measure and Fw
β– measure, respectively

For Table 2, in each row, the best performance is marked with red color, the second best performance is marked
with green color, and the third one is marked with blue color

Table 3 Comparison of F-measure (F),Fw
β– measure Fw

β

� 	
, MAE and AUC among TOP4 saliency models,

five fusion methods and our method on three public benchmark datasets

For Table 3, in the first column, D denotes Dataset, M, E and P denote MSRA10K, ECSSD and PASCAL-S
dataset, respectively; in the second column, F and Fw

β denote F-measure and Fw
β– measure, respectively

For Table 3, in each row, the best performance is marked with red color, the second best performance is marked
with green color, and the third one is marked with blue color

Multimed Tools Appl (2017) 76:23187–23211 23205



Furthermore, some of these example images are coupled with two or more issues mentioned
above, such as row 2 in Fig. 13, row 3 in Fig. 14, and row 4 in Fig. 15, etc. All these examples
are challenging images for saliency detection. Compared with all the eight saliency models and
other fusion methods, we can see that our adaptive fusion method is able to suppress back-
ground regions and highlight salient object regions more completely and uniformly with well-
defined boundaries. This demonstrates that our method can further elevate saliency detection
performance by fusing saliency maps generated using state-of-the-art saliency models, espe-
cially for the complicated images with heterogeneous objects, low contrast, clutter background,
large-scale objects and multiple objects.

3.3.3 Computational complexity

Our method is implemented using Matlab on a PC with an Intel Core i7 4.0 GHz CPU and
16 GB RAM. Excluding the time of generating saliency maps using different saliency models
and considering all the eight saliency models to be used for fusion, the training time for quality
assessment model is around 54 h, and the average testing time for an image with a resolution of

Table 4 Comparison of F-measure (F),Fw
β– measure Fw

β

� 	
, MAE and AUC among TOP2 saliency models, six

fusion methods and our method on three public benchmark datasets

For Table 4, in the first column, D denotes Dataset, M, E and P denote MSRA10K, ECSSD and PASCAL-S
dataset, respectively; in the second column, F and Fw

β denote F-measure and Fw
β– measure, respectively

For Table 4, in each row, the best performance is marked with red color, the second best performance is marked
with green color, and the third one is marked with blue color

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Fig. 13 Comparison of our method with eight state-of-the-art saliency models and five fusion methods
on MSRA10K dataset. a Images; saliency maps generated using b DRFI [22], c ST [35], d RBD [57],
e BSCA [42], f QCUT [2], g DSR [27], h HDCT [23], i MC [21], j AVG, k EXP, l LOG, m CS
[37], n SA [38] and o OUR; p ground truths
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400 × 300 is 101.727 s including the extraction of quality features (Section 2.1 takes
101.454 s), estimation of quality scores (Section 2.2 takes 0.025 s), summation (Section 2.3
takes 0.037 s) and refinement (Section 2.4 takes 0.211 s). Although the current implementation
of our method is time-consuming, we believe that the computational efficiency of our method
can be substantially accelerated by using a C++ implementation and even a parallel GPU
implementation.

4 Conclusion

In this paper, we have presented a general framework to adaptively fuse saliency maps
generated using various saliency models via quality assessment and to generate a high-
quality saliency map. First, in order to take full advantage of different kinds of quality features,
we exploit multiple kernel boosting to formulate an effective quality assessment model.
Second, for the purpose of utilizing quality scores reasonably and performing an adaptive
fusion of saliency maps, quality scores are used as the weights with the power-law transfor-
mation for linear summation of different saliency maps. Third, a graph cut based refinement
method is exploited to improve the spatial coherence of final saliency map. Experimental
results show the performance improvement of the proposed saliency fusion method compared
to the state-of-the-art saliency models and other fusion methods. The saliency maps obtained
by our method can well suppress background regions and uniformly highlight salient objects,
especially for complicated images. In our future work, based on the research results of this

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Fig. 14 Comparison of our method with eight state-of-the-art saliency models and five fusion methods on
ECSSD dataset. a Images; saliency maps generated using b DRFI [22], c ST [35], d RBD [57], e BSCA [42], f
QCUT [2], g DSR [27], h HDCT [23], i MC [21], j AVG, k EXP, l LOG, m CS [37], n SA [38] and o OUR; p
ground truths

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Fig. 15 Comparison of our method with eight state-of-the-art saliency models and five fusion methods
on PASCAL-S dataset. a Images; saliency maps generated using b DRFI [22], c ST [35], d RBD
[57], e BSCA [42], f QCUT [2], g DSR [27], h HDCT [23], i MC [21], j AVG, k EXP, l LOG, m
CS [37], n SA [38] and o OUR; p ground truths
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work, we will investigate the fusion of spatial saliency map and temporal saliency map for
effective saliency detection in videos.
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