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Abstract Recently, sparse subspace clustering, as a subspace learning technique, has been
successfully applied to several computer vision applications, e.g. face clustering and motion
segmentation. The main idea of sparse subspace clustering is to learn an effective sparse rep-
resentation that are used to construct an affinity matrix for spectral clustering. While most of
existing sparse subspace clustering algorithms and its extensions seek the forms of convex
relaxation, the use of non-convex and non-smooth /,(0 < g < 1) norm has demonstrated
better recovery performance. In this paper we propose an /; norm based Sparse Subspace
Clustering method (IgSSC), which is motivated by the recent work that /; norm can enhance
the sparsity and make better approximation to /o than /1. However, the optimization of /,
norm with multiple constraints is much difficult. To solve this non-convex problem, we
make use of the Alternating Direction Method of Multipliers (ADMM) for solving the /,
norm optimization, updating the variables in an alternating minimization way. ADMM splits
the unconstrained optimization into multiple terms, such that the /, norm term can be solved
via Smooth Iterative Reweighted Least Square (SIRLS), which converges with guarantee.
Different from traditional IRLS algorithms, the proposed algorithm is based on gradient
descent with adaptive weight, making it well suit for general sparse subspace clustering
problem. Experiments on computer vision tasks (synthetic data, face clustering and motion
segmentation) demonstrate that the proposed approach achieves considerable improvement
of clustering accuracy than the convex based subspace clustering methods.
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1 Introduction

The high dimensional data, such as images, video, medical data, are ubiquitous in many real
world applications. However, the high dimensional data not only increase the computational
cost and memory requirement, but also cause the curse of dimensionally. In practice, the
high dimensional data often lie in low dimensional subspace, namely, their intrinsic dimen-
sion is often much lower than the dimension of ambient space. For instance, in motion
segmentation problem, feature point trajectories extracted from a video sequence with mul-
tiple moving objects lie in an affine subspace with dimension at most 4 [29]. Face images
of different subjects under varying illumination lie in a linear subspace with dimension at
most 9 [1]. Background modelling from surveillance video lie in a low rank subspace [18].
Complex patient data, created by bio-medicine, often lie in a low dimensional subspace
of patient groups [19]. All of these applications motivate the technique for finding low-
dimensional representations of the high-dimensional data. Subspace clustering, which refers
to the problem of segment data into the corresponding subspaces, is proposed to address
those problems.

Inspired by the success of compressed sensing and sparse coding, many subspace learn-
ing methods based on sparsity [35, 37] are proposed. Among them, Sparse Subspace
Clustering (SSC) [10, 27] is the representative state-of-the-art subspace learning method,
and has received tremendous attentions due to its simplicity and elegant formulation. The
key for SSC is to design a good sparse representation model that reveals the real subspace
structure of high-dimensional data. SSC tends to separate the high dimensional data into
their underlying subspace, such that each data can be linear represented by a few atoms of
their corresponding subspace. It’s a basis problem abstracted from machine learning, sig-
nal processing and computer vision. Many recently interesting applications motivated the
development of SSC, e.g., Visual analytics for concept exploration in subspaces of patient
groups [19], robust visual tracking via sparsity-induced subspace learning [28], dimension-
ality reduction subapce clustering through random projection [17], to name just a few. As a
spectral based clustering method, it has been studied widely. In contrast with most classical
subspace learning approaches, SSC can deal with multiple subspaces, of varying dimen-
sions, data nuisances and robust to noise and outliers. SSC takes full advantage of the notion
of self-expressiveness property [9], that is, each data can be expressed as a linear combina-
tion of a few points from its own subspace. Under the sparse assumptions, SSC can discover
the low dimensional subspace structure.

In general, SSC leverge the sparest representation under convex /| regularizer to learn the
affinity matrix, then subspace segmentation is performed by spectral clustering algorithm.
There are many state-of-the-art methods being proposed recently, compared to SSC, the dif-
ference mainly come from the regularization. Least Squares Regression(LSR) [24] methods
encourages a grouping effect which tends to group highly correlated data together. The Sub-
space Segmentation via Quadratic Programming(SSQP) [31] models subspace clustering
with a convex quadratic optimization, Low Rank Representation (LRR) [22, 30] seeks the
lowest rank representation among all data, and surrogate the rank function via nuclear norm
minimization. Among the most existing algorithms for subspace clustering, they all implic-
itly seek the block diagonal structure of affinity matrix to ensure the performance. There are

@ Springer



Multimed Tools Appl (2017) 76:23163-23185 23165

many extensions to improve the performance by adapting this idea, such as [23] enhances
subspace clustering by manifold regularization. Feng et al. [11] adapts block-diagonal prior
to subspace segmentation. However, Most of existing subspace clustering are all based on
the relax convex minimization, e.g. [; [34] or quadratic programmin [26] g. However, con-
vex relaxation with /1 norm, though is known to be the best convex surrogate of [y, is equal
or closely approximated to [y only under some strict condition, such as RIP conditions
[6]. In reality many applications violate this, and that the performance will degrade unless
RIP satisfies. On the other hand, quadratic regularizations does not lead to sparse solution.
Hence, to overcome this issue making by /; or quadratic programming, Thresholding Sub-
space Clustering (TSC) [16], SSC with Orthogonal Matching Pursuit (SSC-OMP) [8] are
two heuristic approaches trying to find the sparse representation, but such greedy based
methods are often sensitive to the noise and outliers.

Most of the methods mentioned above adapt regularization techniques to encourage
sparsity, in that sparsity is a nature property of most signals(e.g. image data), it’s key for
the success of sparse subspace clustering. Many recently research [4, 6, 7, 21] indicated
that enhancing sparsity will better uncover the structure of data and better recovery the
subspace structure. The recent literature [5, 14] shown that in many situations, adapting
l4(0 < g < 1) norm approximate to [y will outperform /; minimization, in the sense that it
often leads to more sparsity results. However, due to its non-convexity and non-smoothness,
it’s often difficult to solve. /; norm instead of /; norm minimization make many problems
more challenge. Many effective methods [12, 20] have been proposed for [,(1 < g < 1)
problem recently, yet most of the methods are based on iterative reweighted least square
that transforms the origin problem to weighted /1 [33] or [ [12] minimization. It has been
proved that the algorithm has a linear rate of convergence for /; norm and super-linear for
[4(0 < g < 1) norm, under the RIP [32] condition. Although the /, minimization problem
is more difficult to solve than /; minimization problem, there are some novel methods being
proposed recently for /; norm problem, see, e.g., [4, 6, 21].

In many situations /; minimization does not always yield sufficiently sparse solution,
minimization is adopted as an alternative to /p minimization, the solution is often sparser
than /; [20]. More specifically, recent work [14] shows that /, norm minimization improves
the performance on face recognition problem. [5] proposed locality constrained-/; sparse
subspace clustering, where /; norm is employed to enhance sparsity and, for each data point,
choosing k nearest neighbours instead of entire data points to lower the computational cost.
Those works received state-of-the-art results by employing /;, norm minimization instead
of /; minimization. Motivated by the recent advances of /;(0 < ¢ < 1) minimization,
we investigate [, norm regularization for SSC problem, demonstrating that it can further
improve the clustering accuracy. However, existing /, norm minimization for SSC only
address the noise(e.g. Gaussian noise) case, in many real world applications the data are
often corrupted by outliers and noise simultaneously [15]. Such that in [5] finding k neigh-
bours for each data may fail. Moreover, traditional IRLS algorithms can only handle with the
linear constraints, but does not take the measurement noise and outlier into consideration.
It’s difficult to address the /; norm regularization via IRLS for SSC under noise and outliers.
Moreover, some particular SSC applications often require extra constraints, such as affine
constraint for motion segmentation problem, which is computational intractability. Hence,
traditional iterative reweighted algorithm does not suitable for solving SSC problem. In this
paper, we propose 1gSSC that unify ADMM and IRLS to solve /; norm based minimiza-
tion efficiently, making it suitable for general sparse subspace clustering problem. Different
from traditional IRLS algorithm that decomposes [, norm with adapted reweighted /; or [,
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norm, our smooth IRLS algorithm is based on gradient descent with adaptive weight [25].
The advantage of gradient descent for /;, norm minimization is two fold. Firstly, easy to
implementation and general for different kinds of problems. Secondly, though we discuss /,
norm here, the technique is suitable and will benefit other non-convex regularization prob-
lems. For instance, Logarithm penalty, SCAD, LSP, and capped norm, all of which share
many similar properties with /, norm, Zhang [36] unified this work.

1.1 Contribution

1. We make use of /,(0 < g < 1) norm for the sparse representation problem. Although
it’s non-convexity and non-smoothness, we introduce a smooth regularization and
develop an Smooth Iterative Reweighted Least Square(SIRLS) algorithm, which is fast,
easy to parallel and guarantee to converge.

2. We propose an I/; norm based model for sparse subspace clustering under ADMM
framework, such that /;, norm terms can be solved via smooth IRLS. Experimental
results show that the proposed approach achieves considerable improvements in com-
parison to convex models. Though our model focuses on /;, norm minimization, it can
easily generalizes to other kinds of non-convex non-smooth regularizations(e.g. Log
penalty, SCAD, LSP, Capped norm).

Notation and abbreviation

1. SSC: Sparse Subspace Clustering
2. IRLS: Iterative Reweighted Least Square
3. ADMM: Alternating Direction Method of Multipliers

for a vector x € R?, and a matrix C € R?*"_ we discuss the case 0 < P, q < 1 by default,
and define (p is defined similarly)

lx]lg = (iﬁ)q

i=1
1

d q
l1xllg.e = (Z(x? +ez)3)

i=1

d n
el =Y >ct,

i=1 j=1

d n
4
ICllge =Y D (CF;+€D)?

i=1 j=1

2 Sparse subspace clustering model

We first formulate the basis sparse subspace clustering problem as follow: Given a data
matrix ¥ = [y1, y2, .., ya] € R*", each data point is represented as a column vector
and {y;}7_, is drawn from a union of k linear subspaces {Si}i.‘:1 and the corresponding
dimension of each subspaces is {di}i.‘zl. The main task is to segment the data points to
their underlying subspace and recovery the low dimensional subspace. It’s known to be
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NP-hard unless additional assumptions. A key technique for the SSC problem is sparse
representation, which can be formulated as

min ||c;|lo s.t. yi =Y_ic (D

where Y_; = [y1, .., Yi—1, Yi+1, --,» ¥n] 1S @ matrix excluding the i-th column of matrix Y.
[lcillo is the lp norm of vector ¢, that is, the number of non-zero elements. The problem
(1) is known to be non-convex and NP-hard, but recent research in the emerging theory of
sparse coding and compressed sensing [32] reveal that, if the solution ¢; sought is sparse
enough, the solution of the (1) is equal to (2)

min ||c||; s.t. yi=Y_ic 2

It has been shown that under some suitable conditions, ¢; can be stably or exactly recov-
ered. One of the commonly used framework for sparse representation is restricted isometry
property (RIP) [32]. A vector x is k-sparse if for any m x n matrix A and any integer k,
1 <k < n, the k-restricted isometry constant §x is defined as the smallest constant such that

(1= 80l1x113 < 11Ax]13 = (1 +80)lIxI13 A3)

for all k-sparse vector x, the sufficient conditions include §>; < V2=1,800 <2 /2 and so
on. However, it is shown in [32] that exactly recover x is not always possible if §2; > V2 /2.
Therefore, /1 norm may degrade the performance in such case. To illustrate this situation
clearly, we now consider the following toy example, let

y_[101/418
101 1/41/8

It’s obvious to see that when the objective function is employed with /; norm, the solution
is ¢;; = [1/8,1/8,0, 0], but the Iy norm solution is ¢;, = [0, 0, 1/2, 07, ||c;, || = 1/4 <
[lciy1l = 1. However, the sparsity of /{ is 2 and [ is 1, such that /1 may result in inferior
solution. This implies that /; is not a good approximation to /o. In order to obtain a solution
more approximate to /o, we study /,(0 < g < 1) minimization, which can be represented
as follows

},min llc]| s.t. ya =Y_ac

min ||¢;||d 5.t yi=Y_ic 4)
In a general situation, we consider the data that are contaminated with sparse outlying entries
and noise, let
yi=Y_icitei+tzi (5)
be the data that is obtained by corrupting and error free Y_;c;, which perfectly lies in a sub-
space. ¢; is the vector of sparse outlier that has only a small number of non-zero elements,
which means that e; is an sparse vector. z; is the noise that is bounded as ||z;||2 < s for
some s > 0, which means that s; is an vector with small perturbation. We can formulate the
objective function as
min [les 11§ + llei 1) + 12113 ©)
with 0 < p, g < 1. In order to deal with affine subspaces, we also add affine constraints on
the coefficient ¢;, that is 17 ¢ = 1. We reformulate and unify it with noise and outliers in a
matrix form
minc, £,z |Cllg + Ael|Ellp + Al ZI[7 o
st.  Y=YC+E+Z,diag(C)=0,CT1=1
when p = ¢ = 1, the model be the general SSC model that equivalents to [10]. Now
we consider the case with 0 < p,g < 1, which will form the /; norm sparse subspace
clustering(1qSSC for short) problem this paper focuses on. Both of the coefficient matrix
C and outlier E are modelled with non-convex norm. Clearly, this problem is in general
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intractable, for the reason that [, [; norm are all non-convexity and non-smoothness. In
order to address this problem, we propose a new approach by unifying ADMM and IRLS
algorithm, which details in the following section.

3 Proposed method

In this section, we make use of ADMM for solving [, norm minimization problem. We begin
by introducing a general framework of ADMM, then deduce the smooth IRLS algorithm.

Alternating Direction Augmented Lagrangian(ADMM for short) [3], a method for solv-
ing the constrained optimization problems, has recently attracted much attention as it is well
suited for some important classes of problems with special structure. In ADMM framework,
l4 norm problem can be split by introducing an auxiliary variable that decouples the vari-
ables, such that the /;, norm term can be addressed by iterative reweighted algorithm. We
consider the general /, norm problem

L(x) = f(x)+ gx) ®)

where f(x) = ||x]| IZ is non-smooth and non-convex, g(x) is a smooth and convex function.
Generally, all the constrained optimization can be relaxed to unconstrained optimization via
Lagrangian multiplier. Hence it can always be abstracted and converted the unconstrained
optimization with only two terms, one is the /; norm regularizer term which we denote by
f(x), and the other term be the remain part with g(x). Thus the complications resulting
from the coupling of the origin problems of the augmented Lagrangian are eliminated. We
introduce its augmented Lagrangian function

min L(x, z, w)=f(x)+g(z)+wT(x—z)+gnx—zll% 9)

where w is the Lagrange multiplier dual variable, p is a positive parameter associated with
the augmentation which improves the numerical stability of the algorithm. The augmented
Lagrangian (9) can be equivalently formed as

1
min L(x, z. w)=f(X)+g(z)+§||x—Z+;w||§ (10)

Different from the traditional augmented Lagrangian methods that attempt to alternatively
minimize x and z, ADMM algorithm minimizes the augmented Lagrangian by iteratively
updating the primal and dual variables. Given the current iterates (x/), 70, w()), it gen-
erates a new iterate (xU+D zU+D U+ with respect to x, then respect to z, and finally
performing a multiplier update. The (j + 1)-th iteration can be represented as follows

| b1

KUFD = argmin J(x) = f(x) + g”x -9+ ;w(])H% (1D
. e

Z(l-‘rl) — argrnzln g(2) + gHZ —x _ ;w(J)“% (12)

wltD = ) 4 o U+D _ L(+D)y 13)

Even 0 < g < 1, the above iterate equations has the same iteration procedure as ADMM
algorithm for the /; based models. However, in x-step it is no longer restricted to convex
function. Since when 0 < g < 1, a possible local minimizer may be trapped in after a few
iterations. As the problem is non-convex, solving this non-convex problem directly may be
converged to one of local minimizers. To overcome this problem, we introduce a sequential
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minimization strategy, which improves the global convergence performance by employing
smooth IRLS.

As 2+ js smooth and convex, it can be updated by any standard methods, such as New-
ton’s method or conjugate gradient method. We focus on x**! and solve it with an iterative
reweighted algorithm. Due to the singularity of the gradient of the associated functional
above because of the sparsity of solution x, we introduce the smooth regularized version of
x**1. To make to problem easy to tackle, it can be converted with a smooth parameter ¢

d
2 242
Ixllfe =D (7 +€5)?
i=1

€ > 0 is a smooth parameter which will decrease to zero in order to make || x| |Z differential.
We now consider the optimization

j . : 1 .
ﬂ”“ZM@gnHL@ZHMﬂy+%M—H”+;w”M (14)

It’s well known that when ¢ = 1, € = 0, (14) can be solved with /; shrinkage operator, that
is, fori=1to d,

20— %wu) _ % x.(j) > %

=10 ) <4 (15)
D1y 1O 1
< oW + p Xi =7

but when 0 < ¢ < 1, it can’t be solved directly as there not exist closed form solutions.
Now we develop an efficient iterative reweighted algorithm to approximate this problem,
because the function J (x, €) in (14) are differential, derivative J(x, €) with x and let it to
0, we get

d w
Y ————+pofx -+ — =0 (16)
=, ez—i—xz)l" p

Inspired by the IRLS algorithm, firstly, let
W =diagx"), 2 = (&} + (")) a7

the (16) can be reformulated as follows
. (@2)
CIW(k)x-I—p(x—z(’)—i—wp ) =0 (18)

x-update minimization of (18) can be carried out by solving linear equations or conju-
gate gradient method. Note that z/) and w'/) are fixed in (18) of the Algorithm 1 and
it updates only on the ADMM iterations. In order to achieve a more sparser solution, the
terminate condition needs to be carefully designed. Our algorithm utilizes an alternating
method for choosing weights and minimizers based on the (18). For x € R?, define the
non-increasing rearrangement r(x) of the absolute values of the entries of x. Thus r(x),,
is the m’h-largest of the set {|x;[, j = 1,..,d}, and a vector x is m-sparse if and only if

F(X)ms1 = 0. We decrease € with e *tD = min{e® r(x*+D),  (/d}, it can serve as a
posteriori check on whether or not it have converged to a sparse solution. If e*+D > ¢
and e**D = r(x("+1))m+1 = ¢, then if we let x[,,) to be a m sparse vector, we have

[|x**+D — xp,11| < €/n. In particular if e**+D = 0, then x*+1 is m-sparse solution.
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Algorithm 1 Smooth Iterative Reweighted Least Square (SIRLS) Algorithm For (14)

Input:
initializes xg, €9,y > 0,€ > 0,k = 0;
set W) = diag(xo), sparsity m.
Output:
m-sparse approximated solution PGS
1: repeat
2: Solve z(F+1) py
w(@)

(k) 1 (k+1) k+1) _ @ wry —
qW R g + p(af 20 4 5 ) =0;

3:  Update et 1 = min{eg, r(z*+tD),, 11/n};
4:  Update W(k+1) — diag(x§k+l>);

5: k=k+1;

6: until ||z(%) — z(5=D||5 < yore, < €

3.1 Convergence analysis

The convergence analysis of ADMM has been studied thoroughly in many literature like
[3] and we omit it here. We mainly focus on the convergence of smooth IRLS illustrating in
Algorithm 1, which is the main contribution of this paper. As (14) is not convex, the station-
ary points can’t be ensure to converge to global minimization, like the EM-type algorithm.
It depends on a good initial value W. Therefore, the algorithm may be in local optimization
if the initiation is not properly designed. To overcome the limitation of local minimization,
the algorithm can be repeated a few times in a sequence. For example, we first choose an
random initiation for the algorithm with 0 < ¢g; < 1, then run it again with the initiation of
the previous result but choose 0 < g2 < ¢;. Conducting Algorithm 1 for a few times the
global optimization can often be achieved. This may not take much time in that it allows
warm start by the previous results as an initialization. If the smooth IRLS of (14) find a
good approximation, the ADMM procedure may converge to the global solution with high
probability.

We now give the convergence analysis of the smooth IRLS algorithm. Firstly, J(x, €) >
J(x) with a given € > 0, where the equality holds if and only if € = 0. Secondly, it’s easy
to find that J (x) is majorized by J (x, €). Decreasing J (x, €) tends to decrease J (x). Given
any y > 0, there exist € > 0, such that J(x, €) — J(x) < y. Suppose x}, x* is the optimal
solution to (14) and (11), then we have

0<JEH—-JM) <J@le)—Jx e)+y <y
Based on the above results, we have the following convergence theorem of the smooth
IRLS algorithm.
Theorem 1 The sequence {x®)} generated in Algorithm 1 satisfies the following properties:

(1) J(x, €) in non-increasing, that is,J(x(k"'l), €rt1) < J(x(k), €k).
(2) The sequence {x®} is bounded.
(3)  the sequence converges to a critical point, that is, there exist a point x* satisfies, (let
u=z0" w(f)/p)
gWex 4+ p(x* —u) =0 (19)
we give the proof in Appendix.
Finally, if (11) converge, the stationary points can be achieved via alternating minimiza-
tion of (12), (11), (13).
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4 1; norm based sparse subspace clustering

In this section, we will unify smooth IRLS and ADMM to solve the /; norm based sparse
subspace clustering. SSC problem is equality constrained minimization problem as (7)
shown. We fist reformulate the problem (7) into unconstrained optimization, and then
decompose the optimization with separately iteration. Note that using the equality constraint
in (7), we can eliminate Z from the optimization program and equivalently solve

. Az
minc g |[Cllg + 2|l Ellp + F|Y —YC — Ell%

20
st.  CT1=1,diag(C)=0 (20)

To solve optimization problem (20), we first introduce an auxiliary variable matrix A to
augment the constraints into the objective function, and iteratively minimize the Lagrangian
with respect to the primal variables and maximize the dual variables. Convert the problem
(20) to the following equivalent formulation

minc. £ |Cllg + Al |Ellp + 51IY —YC — E||% @1
st AT1=1,A=C —diag(C)

The solution of 21 and (20) is equivalent. The purpose of auxiliary variable is to split the
optimization into multiple terms like the discussion in previous section. Next, by introducing
the parameter p, the objective function of (21) has two extra penalty terms corresponding
to the constraints, and consider the following optimization program

A
L(C, A E, A, p) = |ICllg + AellEIl, + EZIIY - YC - E|l}
+<8,AT1—1>4 <A, A—C+diag(C)
>+§||AT1—1||%+§||A—c+dmg(C)||§, 22)
where < A, B >= trace(AT B). The optimization of (22) can be solved iteratively by

updating C, A, E, A, p while keeping other variables fixed, The update procedure can be
computed as follows

—  Update C*+D by minimizing (22) with respect to C, while A® | E® s A® are
fixed. Note that,
(k+1) P , w ., AY
C =||C||q+5||C—dzag(C)—A +7”F (23)

the optimization of (23) is the matrix form of (11). To solve this problem, we first
smooth the objective function with €, and consider the following function

. (k)
min; F(J,€) = [[Jllg.e + 5117 — A® + 2|3

o A® (24)
= 0 Willg.e + 5110; — AP + =113
We can minimize F(J;,€)(i = 1,2,..n) via smooth IRLS independently using
(Algorithm 1), then we have C**+D = J&+1) _ gjqg(JKk+D),
—  Update E®*D by
A
E®D = min||E|ly + = ||Y — YC*TD — B3 25)
E 2Ae

The solution has the same form as (14), and we use the smooth IRLS depicted in
Algorithm 1 to obtain the solution.
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— Update Alk+D by minimizing L(C, A, E, §, p) with respect to A, while Cck+D)

E® sk p(k) are fixed. Let the derivative of L with A to zero, we get
A YTY 4+ oI + p11T)AK+D = ) YT (y — E*+])
+p17 4 ck+Dy — 150" _ AW

We solve the above equation directly since the coefficient of the left-hand side is posi-
tive definite matrix. We obtain A+ via the linear equations, or solve it with conjugate
gradient method.

—  Update the Lagrangian multipliers with C*+1 E&+D  A®+D) fixed perform a gradi-
ent ascent update with the step size of p.

sk — gtk p(A(k+1)T1 -1
AR = AR 4 AGk+D) _ clhtDy -

(26)

27)

Iteratively updated the procedure above until convergence is achieved to the setting of
maximum iteration, or convergence is achieved when ||[A® — A®=D || < 5, ]A®"1 —
1l < 0, |A® — C* || < 7, and [|[E®D — E®=D|| < n, where n denotes the
error tolerance for the primal and dual residuals. In this paper we choose n = 10~° for all
experiments. The detail process is illustrated in Algorithm 2.

Algorithm 2 [, norm based Sparse Subspace Clustering (IgSSC) with IRLS and
ADMM

Input:
Input data matrix Y;
Set maxlter, k = 0, n
Initialization C'(0); A(O) E©) .
Output:
Optimal sparse affinity matrix C'(%)
1: repeat
2:  Update C(*+1) with (24) by Algorithm 1;
3 Update AGR+1) with (26) by linear equations solution or conjugate gradient methods;
4:  Update E(:+1) with (25) by Algorithm 1;
5:  Update §(k+1) = 5(k) p(A(k+1) 1-—
6:  Update A+ = A(R) 4 pA(k+1) C(k+1));
7. k=k+1;
8: until ||[A(R) — AG=1)||, <y ||JADT1 1|0 < 0, [[AR — C®)||oo < n, and ||ER) —
E(k_l)Hoo <n

After getting the affinity matrix C, spectral clustering or Ncut methods is performed
on the affinity matrix, and then the segmentation of the data in the low-dimensional space
and the recovered sparse subspace are obtained. The clustering process is summarized in
Algorithm 3.

Algorithm 3 Spectral Clustering for IgSSC

Input:
Input data matrix Y.
Output:
Subspace {S; }le and each data correspond to one of the subspaces.
1: Solve C with Algorithm 2;
2: Construct the affinity matrix with W = C + C’, where C = [C}, Ca, ..., Ch];
3: Construct Laplacian matrix L = D~Y/2W D~1/2 where D = diag(d;) with d; = > Wigs
4: Solve the eigenvector problems: Lz = Az to obtain the k eigenvectors V = [V, V3, .., Vi ], which
correspond to the k smallest eigenvalues;
5: Use k-means to to the row of V and get the clustering results.
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5 Experiments

In this section, we evaluate our proposed method IgSSC on both synthetic and real datasets
to demonstrate the efficacy. We first investigate the performance of 1gSSC with random gen-
erate synthetic data of independent subspace, then carry out face clustering application on
ORL database, Extend Yale B datasets! and motion segmentation on Hopkins 155 dataset.?
All the experiments are done on an Kylin Ubuntu 15.04 system with 2.6 GHz Intel Core
i5 processor and 8 GB memory using Matlab. Subspace clustering error( or accuracy), as a
measure of performance of different algorithms, is defined as

#of misclassified points

subspace clustering error = -
total # of points

We empirically evaluate our method in comparison to four recently proposed methods
which both have theoretical guarantees and satisfactory results: Sparse Subspace Clustering
(SSC),3 Low-Rank Representation method (LRR),* Subspace Segmentation via Quadratic
Programming (SSQP),> Least Square Regression(LSR).® All of those comparison methods
are based on spectral clustering, and can be downloaded at the author’s website.

To have a fair comparison, firstly, the affinity matrix of different algorithms are learned
by manually tuning the parameters to achieve the best results, then all the methods are
performed the same spectral clustering method. We use the spectral clustering code provided
by SSC for the benchmark. We also assume that the number of subspace of all data are
provided in advance for all algorithms. In the following experiments, our algorithm utilizes
q = 0.6 and g = 0.3 for the experimental comparison.

5.1 Parameter setting

For the proposed method, we follow the same experimental setting in [10] for all of the
following experiments. In Algorithm 1, we initialize W = diag(c;) with any one of the
solution y; = Y_jci, €0 = 1,e = p = 107*, the sparsity m in Algorithm 1 is chosen
with cross validation schema. In Algorithm 2, we set A, = 2/min; max;; ||yjl|l1, A; =
2/ mini max;-£; |yl{yj|.

5.2 Synthetic data

In this section, we generate a synthetic data to study the performance of the proposed
method as well as the compared methods. We consider k& independent subspace and the
angel between each subspace is small. We randomly sample n = 200 data vectors from
each subspace. The dimension of each subspace is d = 5, the first subspace is generated
with Matlab command D = rand(n, n), (U, S, V] = svd(D), U; = U(:, 1 : d). The bases
of other subspaces can be computed by U¢tD =T x U® 2 < <k, where T € R"*" is
a random rotational matrix and U € R"* is a random matrix with orthogonal columns.

Thttp://people.cs.uchicago.edu/~xiaofei/
Zhttp://vision.jhu.edu/data
3http://www.eecs.berkeley.edu/~ehsan.elhamifar/code.htm
“https://sites.google.com/site/guangcanliu/
Shttp://wangshusen.github.io/publications.html
Shttps://sites.google.com/site/canyilu/
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Table 1 Clustering error (%) of ]
synthetic data, the subspace is Algorithms  K=3 K=5 K=10
setted to 3, 5, 10

median average median average median average

SsC 1.04  0.19 2.53 1.32 1734 248
LRR 3.2 022 1731 385 4241 951
LSR 6.21 0.28 1124 275 3145 66

Each of the algorithms are run 10 SSQP 1.01 0.13 3.19 1.22 1628  4.34

times. We set q = 0.3 for our 1gSSC 082 0.8 2.11 1.12 1329 233

proposed method

Then we generate the subspace with S; = U; x rand(d, n), such that the data matrix can
be represented by Y = [Si, S2, .., Sx]. We randomly add the Gaussian noise to some of
elements of the data. In our experiments we add 10 % of elements with noise, which fol-
lows standard Gaussian distribution e ~ N (0, 1). We run each algorithm with the number
of subspaces k = 3, 5, 10 independently and record the mean and median error or accuracy.
The segmentation errors are shown in Table 1. Observe that when the number of subspace
is small, all algorithms show satisfactory results, but when the subspace increase to 10, the
clustering error increase quickly. The clustering performance of LRR and LSR deteriorate
quickly, yet our proposed algorithm( 1gSSC) show stable results, reducing clustering error
compared to SSC.

Synthetic data clustering accuracy with different noise (number of subspace = 3)
T

0.95 T T T T T
—A— SSC
—¥— LRR
0. —E—LSR 4

SSQP
1gSSC(q=0.3)

Segmentation Accuracy

055 L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Gaussian Noise Ratio

Fig. 1 Clustering error on synthetic data added with different noise ratio. The number of subspace is setted
to 3, and the results are averaged from 10 runs
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Fig. 2 Some examples of the images of 4 class in ORL face datasets

We then add noise to the data with different ratio that the level is from 10 to 80 %. The
clustering results are shown in Fig. 1. We can see that 1gSSC achieve lower clustering error
compared to other methods. Moreover, our algorithm is robust to small noise ratio. When
the noise ratio increase, the clustering error is comparative with SSC.

5.3 Human face clustering

Face clustering aims to group the face image data under different illumination, occlusion or
noise ratio according to their subjects. The reason for studying subspace clustering to this
problem origin from the point of view that the vectorized images of a given face image taken
under varying illumination conditions lie approximately in a 9-dimensional linear subspace
[2]. Hence the subject of face images, with varying illumination and occlusion can be well
approximated by a union of low-dimensional linear subspace, each subspace contain the
images corresponding to a given person. We apply the subspace clustering methods to the
following two widely study datasets:

— Extended Yale Face Database B (Fig. 2), which contains 192 x 168 pixel images of 38
subjects of persons, each taken under 64 different illumination conditions. The dataset
consist of 192 x 168 pixel cropped face images. In order to reduce the computational
requirement, we resize the images to 48 x 42 pixels. The datasets has 38 individuals
and around 64 near frontal images under different illuminations per individual. In our
experiments we use the subjects L =3, 5, 10 for clustering comparison, and the subject
L is randomly chosen from the 38 subjects. We first vectorize the images and normalize
it to unit vector to form the data matrix Y, each algorithm runs 10 times and record the
average and median errors. We report the results in Table 2.

— The ORL face data sets (Fig. 3) contain ten different images of each of 40 distinct
subjects. For some subjects, the images were taken at different time, with varying light-
ing, facial expressions (open / closed eyes, smiling / not smiling) and facial details

MUY

Fig. 3 Some examples of the images of 4 class in Extended Yale Database B
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Table 2 The median and

average error (%) of different Data K=5 K=10 K=20
algorithms on ORL face datasets,
which apply PCA separately to median average median average median average
the images from each subject
LSR 2393  19.81 32.8 26.21 6733 5638
LRR 13.17 1421 2738 1632 4233 38.19
SSQP 1523  6.82 3627 1532 76.19  56.33
SSC 11.14 42 2132 1145 51.66  36.85
Boldface indicates the best quSC(O.()) 10.92 3.68 21.11 11.92 45.51 29.23
performing algorithm in each 19SSC(0.3) 10.88  4.32 1011 1332 411 2812

experiment

(glasses / no glasses). All the images were taken in a relative dark background with the
faces in an upright, frontal position (with tolerance for a little small movement). In our
experiments we use L = 5, 10, 20 subjects for clustering comparisons. This datasets
contains a small number of samples in each subjects and some of those are occluded by
the glass, which makes it suitable for our experiments. We test whether the algorithms
are robust to the case when the dimensions are far larger than the number of samples.
We run the algorithm the same as the above setting. We report the clustering results in
Table 3.

For computational efficiency, firstly, we pre-process the face datasets by performing
Principal Component Analysis (PCA) separately on each subject. PCA reduces the dimen-
sionality of the data by reserving about 98 % energy. Tables 2 and 3 report the clustering
results on both datasets. The table shows the average and median clustering errors of dif-
ferent methods. Note that when the subjects is small, all the algorithms work well. As the
subjects increase to 20, LSR and SSQP fail, they show inferior results. Note that SSC per-
forms better than LSR, LRR and SSQP, implying that ADMM for the /; norm minimization
is well suited for the subspace clustering. Our methods with ¢ = 0.3 case, by replacing the
I; with [; norm minimization, improve the clustering results further. The clustering results
of our method validate and coincide with recent work of /, norm minimization. This indicate
that enhancing the sparsity by /, norm indeed improve the subspace clustering results.

Table 3 The median and average

error (%) of different algorithms Data K=3 K=5 K=10
on Extend Yale B face data,
which apply PCA separately to median average median average median average
the images from each subject
LRR 7.78 4.34 1992 52 3287  25.66
LSR 28.87  18.21 3255 11.88 5256 30.88
SSQP 1996 553 28.65 933 45.56  43.12
SsC 3.63 1.2 4.63 2.45 1191 985
Boldface indicates the best 1gSSC(0.6) 3.52 1.28 4.29 1.88 1021 842
performing algorithm in each 1gSSC(0.3) 277 112 322 281 991 82

experiment
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Clustering accuracy on extend yale face datasets with different noise

=X/ SsapP
—E—LSR

—3¥— LRR
—A—ssC
=} 19SSC(q=0.6)
—©—19SSC(g=0.3)

0.8 i
>
[S]
g
>
8 0.75
<
()]
£
o 07f
@
3
o
0.65
0.6}
0.551
0.5 : :
0.1 0.2 0.3 0.4 0.5 0.6 07
Gaussian Noise Ratio
Clustering accuracy with Extend Yale face datasets with different occlusion
1 T T T T T T
SsQP
LSR
0. LRR

Clustering Accuracy

I

SSC
== 1gSSC(q=0.6)
—©— 19S5C(q=0.3)

0.1 0.2 0.3

0.4
Occlution Ratio

0.5

Fig. 4 Face clustering accuracy with different ratio of noise and occlusion on Extend Yale B face data,
respectively. The Gaussian noise ratio levels from 10 to 80 %. The occlusion ratio is defined as the occlusion

part of pixels divided by the total pixels of image
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We also test the clustering accuracy with different noise and occlusions. We run all of
the algorithms 10 times independently, but just record the best clustering accuracy, which
is shown in Fig. 4. Our algorithm is robust to data corruption, such as noise and occlusions.
We can see that our method outperforms the benchmark methods.

We then test the performance of face recovery, namely, recovery the clean face from
the noise face. This experiment tests whether the algorithms can successfully recovery the
low-dimensional subspace when data contaminated by noise or occlusion. We now perform
our proposed method to recovery the subspace of the face in the Extend Yale B data. The
result is shown in Fig. 5. We can see that although the image contaminated by different
ratio of illumination, Gaussian noise and occlusion, our algorithm is able to recovery the
low-dimensional face subspace with quite promising results.

5.4 Motion segmentation
Motion segmentation refers to the problem of grouping the motion trajectories of multiple
rigidly moving objects into spatial temporal part, such that each part corresponds to a single

moving object [29]. Given a video sequence of multiple moving objects, let {x s, € R> p=
1,.., P, f = 1,.., F}, denotes the x-coordinate and y-coordinate in the P points and F

Image = Recovery + Outlier + Error

" 3

k

Fig. 5 Face recovery under different degree of corruption and noise. The four column corresponds to origin
images, recovery images, outliers and sparse error. Each row corresponds to origin face and recovered results
of the corresponding face
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Fig. 6 Example frames videos in the Hopkins 155 datasets

frames of the sequences. Each data point y;, called feature trajectory, corresponds to a 2 F -
dimensional vector that consists of stacking the feature points x y; in the video as

Vi = [xlTi szl- xgi]T e R*f (28)

Under the affine projection model, all feature trajectories, formed by y; (i = 1,2, ..., N),
lie in a union of low-dimensional subspace of dimension at most 4. As a result, the motion
segmentation problem can be modelled as a subspace clustering problem on the trajectory
spatial coordinates.

We use the Hopkins155 motion segmentation datasets [29] to evaluate the proposed
method as well as that of state-of-the-art subspace clustering methods. Figure 6 shows
some examples taken from the datasets. The datasets contain sequences with two and three
motions, which can be roughly divided into three categories: Checker board sequences,
which consists of 104 sequences of indoor scenes taken with a hand held camera under
controlled conditions. The checker board pattern on the objects is used to assure a large
number of tracked points. Traffic sequences, which consists of 38 sequences of outdoor
traffic scenes taken by a moving hand held camera. Articulated/no-rigid sequences, which
consists of 13 sequences displaying motions constrained by joints head and face motions,
etc. The datasets consists of totally 155 video sequences, 120 of which contain two moving
objects and 35 of which contain three moving objects, corresponding to 2 or 3 low dimen-
sional subspaces of the ambient space. The point trajectories are provided in their respective
datasets. Some examples of the sequence from the video are shown in Fig. 6.

In our experiment, the sequences of 2 motions have N = 266 feature trajectories and
F = 30 frames, while the sequences of 3 motions have N = 398 feature trajectories and

Table 4 Clustering errors(%) of

different algorithms on the Algorithms SSQP LRR LSR SSC 1gSSC(0.6) 1gSSC(0.3)
Hopkins 155 datasets with
2F-dimensional data points 2 motions
Mean 4.33 261 3.7 1.5 1.01 1.25
Median 0.5 0.00 035 0.00 0.00 0.00
3 motions
The results contain 2 motions Mean 5.37 382 49 231 132 1.01
(120 sequences) and 3 motions Median ~ 0.65 0.00 0.16 0.00 0.00 0.00

(35 sequences)
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Table 5 Average running times
(seconds) for 2 motions and 3 SSQP LRR LSR SSC 1g9SSC(0.6) 1gSSC(0.3)

motions sequences

2 motions
Check 0.31 0.93 0.15 0.28 0.26 0.29
Traffic 0.21 0.81 1.08 0.65 0.72 0.88
Articulated 0.01 0.09 0.01 0.07 0.05 0.09
The time is combined with two 3 motions
terms, one is the average Check 228 273 L1l 123 136 1.18
computation time of affinity ]
matrix, the other is the average Traffic 1.23 3.09 198 2.06 242 2.88
computation time of spectral Articulated 021 034 0.9 0.17 025 0.19

clustering

F = 29 frames. We report the segmentation results in Table 4. All the methods show promis-
ing low segmentation clustering error. The reason behind this is that the feature trajectories
is ideally lie in a low dimension subspace, such that the low dimensional subspace can be
easily recovered. It is important to state that though all the methods achieve low error rate,
our method outperform other methods and show a little improvement. SSC is state-of-the-art
method for motion segmentation, by employing the /, norm for the SSC, the segmentation
is further improved. Powered by the /, norm, it’s not surprising that it achieves a lower
segmentation error.

Finally, we test the running time of our proposed and several benchmark methods. The
results are shown in Table 5. LSR achieves the lowest computational time, as it only involv-
ing the matrix computation. LRR involves more computational time due to the performing
SVD at each iteration. Our algorithm iteratively solve the /, norm minimization, it may need
a little extra computational cost relative to /1 norm based SSC, which has closed form solu-
tion. The extra running time in comparison to /; norm minimization is worth as it improves
motion segmentation accuracy, yet the additional computational cost is inexpensive and tol-
erable. Though smooth IRLS iteratively find the sparse solution, it can easily parallel to
accelerate the computational process. Note that the compared results of running time of our
method does not employ any accelerate technique. The implementation of our method is
merely written with pure Matlab code for fair of comparisons.

6 Conclusion

In this work, we study the /; norm based sparse subspace clustering method, building upon
the recent work that /, norm can enhance sparsity compared to traditional convex regu-
larizations. For better solving this problem, the ADMM based framework is employed to
split the problem into multiple terms, such that the non-convex and non-smooth /; norm
term can be solved by the smooth IRLS algorithm. We analysis the mechanism of smooth
IRLS algorithm for /;, minimization and its convergence property, then unify ADMM and
smooth IRLS for solving /[, norm based SSC problem. Compared to traditional convex
optimization, the proposed method achieves higher clustering accuracy. The benefits of
our model is that, it can easily extend to many non-convex and non-smooth regularization
problems, such as SCAD, LSP, Logarithm and Capped norm regularizations(see [36] and
reference therein), which all provide natural procedures for sparse recovery, but have not
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been well developed for subspace clustering problem. We believe that the study of unify-
ing ADMM and smooth IRLS for /; SSC will also suit for those non-convex non-smooth
regularizations. As future work, we plan to study those regularizations for the SSC prob-
lem under the ADMM and IRLS framework. We believe that the proposed method will
shed light on the further research of other non-convex regularizations. Though our algo-
rithm achieves higher clustering accuracy, it results in additional computational time. We
aim at designing and investigating more efficient algorithm to overcome this problem in
future.

Appendix: Proof of the Theory 1

To prove Theorem 1, let u = 7D — %w(j ), and u is a constant here. Firstly, for j =1, .., d

k)2 k+1)2
Vi = () +et z,—x§ 2t
Then
J(x(k) e) — JxED e
2 2
—Z(W 2+ /2010 — w3 — %D — ) (29)

Note that f(x) = x12(0 < g < 1) is a concave function, for any y, z € R!

fO) =@ =330 -2 (30)
Using (30), we have

J(x“" e) — Jx*D gy

2 2 1Y
= Z(y‘” =) 4+ S =y = 1D — i 3) @1

By using the rule of (30), the left part of (31) can be transformed as

d
q/2 _ q/2 _ 4 (k)2 k12
zy = 3w -

d
q (k) kD2 k), (k) (k+1)\ (k+1)
24 W (x ;Y W g =)

d
q 2 : + + +
k k+1
() ; ))2 q(x(k) X(k l))/“r(k)x(k 1) (32)

We now consider the (18), multiplying (x® — x®+Dy on both sides

q(x(k) _ x(k+1))T W ® G+ ,O(x(k) _ x(k+1))/(x(k+l) —u)=0 (33)
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Simplify (32) and get (33), then convert it as follows
2 g2
W]
4 d
E Z (x(k) ;k+1))2 _ p(x(k) _ x(k-‘rl))T(x(k-‘rl) _ u) (34)

Note that f(x) = x2 is a concave function, then for all y,Z € R4
FO) = f@) =22y —2)

By employing this inequality, we have

e — w3 — D —ulf 2 26 — DY D — (35)
Summarized (31), (34), (35)

J®,e) =T Y ey1) = 0
This prove that J (x, €) is an decreasing sequence. Note that
0 < Ix®NF < 1 ®lfe, = 760 ) = T, €0) (36)

Thus the sequence {x®} is bounded. Furthermore, if ¢ > 0, the boundedness of {x®)}
implies that there exists a subsequence {x%/)} converging to some point x*, Note that
[lx®+D — x®||, — 0, thus the subsequence x/) also converges to x*. Consider the
subsequence in the (18)
qW(kf)x(kf) + ,O(x(kf) —u)=0

Letkj — oo, we get

gWsxs 4+ p(x* —u) =0 37)
Therefore, x* is a critical point of (18).
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