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Abstract The meanings of passing information from one side to other side by a conventional
way is been changed because of internet and communication technology. The issues of the
security and the uprightness of information increase due to fast developments in digital world.
Presently digital communication has become an important part of transmission of information
securely. There are various internet applications which are utilized to convey covertly. As an
outcome, the security of data against unapproved access has turned into a prime target. This
leads to parts of advancement of different systems for information hiding. Cryptography and
watermarking are famous techniques for hiding information accessible to conceal information
safely. Our main goal here is to develop an innovative algebraic structures for the construction
of nonlinear components of block cipher namely substitution boxes (S-boxes); and also use
these components in image encryption and watermarking applications. Different types of S-
boxes were introduced in literature based on Galois field and chaos theory in order to add
confusion in any cryptosystems. The present construction is entirely based on Galois ring
which enrich the existing algebraic structures of S-box theory.

Keywords Image encryption .Watermarking . S-boxes . Galois ring . Algebraic structures

1 Introduction

Information is exceptionally significant to any organization or for any individual. None of us
prefers our discussion being caught as it contains the capability of being abused. Same is the
situation with the information of any association or of any individual. The trading of informa-
tion among two potential gatherings must be done in secured system to maintain a strategic
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distance from any altering. Two sorts of dangers exist amid any data trade. The unintended
client who may attempt to catch this discussion can either alter with this information to change
its unique importance or it can attempt to listen to the message with proposition to decipher it.
Both these attacks disregarded the secrecy and trustworthiness of the communication passed.

Giving planned get to and dodging unintended access is an exceptionally testing undertak-
ing. Information hiding has been since long time. In past, individuals utilized concealed
images or undetectable ink to pass on confidential data. But nowadays, we are living in the
era of digital world where information security systems depends extensively on binary
Boolean functions. Keeping in view the growing demands of digital security mechanism,
we have devised a novel technique of image encryption and watermarking based on classes of
finite chain ring to enrich existing information hiding scheme that rely on Galois field.

For valuable application and a new role, maximal cyclic subgroup of the group of units of a
Galois extension ring attains a keen interest in algebraic cryptography and coding theory. In this
respect, initially Shankar [30] presented a construction technique of BCH (Bose Chaudhuri
Hocquenghem) codes over local commutative rings with the help of maximal cyclic subgroup
of the group of units of aGalois extension of a local commutative ringℤpk : The construction of this

maximal cyclic subgroup is based on a mod − p reduction map from commutative ring ℤpk to ℤp

(see Shankar [30]). However, the exponential sums over Galois rings and an upper bound for the
hybrid sum over the Galois rings by usingmaximal cyclic subgroups of the groups of units of these
Galois rings in a series of papers Cohen [12] and Shanbhag et al. [29]. Further, Andrade and
Palazzo gave the construction of BCH codes over the Galois rings by means of maximal cyclic
subgroup. In this sequel, Shah et al. [28] used maximal cyclic subgroups of the chain of groups of
units in the chain of finite Galois rings to produce new class of S-boxes. In this correspondence, the
proposed work presents a construction technique of a substitution box (S-box) using this maximal
cyclic subgroup of the group of units in Galois rings and chain ring [3–8, 11, 12, 18–21, 28, 30].
The complexity of the problem is to construct bijective Boolean functions over this maximal cyclic
subgroup adjoining zero, with the extension 0→ 0 and then apply permutation in order to increase
the number of S-boxes in a databased to add confusion in the selection of appropriate S-boxes.
These S-boxes are not so simple as compared to S-boxes which are based on Galois field. These
proposed S-boxes are small in nature but havingmuch enrich statistical and algebraic properties [9,
10, 13–15, 25, 31, 32]. The second part of this article is to utilize these structures in image
encryption and data hiding techniques namely watermarking [16, 17, 22–24, 26, 27].

The paper is organized as follows: In Section 2, the algebraic structure of the maximal
cyclic subgroup is presented. Section 3 consists of the algebraic expression of the proposed
S-boxes over maximal cyclic subgroups of groups of units of Galois ring extensions GR(4, 2),
GR(4, 4), GR(8, 4), GR(16, 4) and GR(32, 4) of ℤ4. In Section 4, we have added construction
of S-boxes with Galois ring extensions. In Section 5, we discussed another class of chain ring
and S-box construction. In Section 6, we examine the security of the projected S-box with first
order texture analysis, second order texture analysis, image quality measures and image
similarity metrics and section 7 is about conclusions and future directions.

2 Galois rings and their groups of unit elements

In this section, we discuss some elementary concepts, for instance; Local commutative ring
with identity, Galois extension ring, unit elements, and maximal cyclic subgroup of group of
invertible elements of a Galois ring.
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2.1 Galois rings

We begin with some basic definitions of unitary (local) commutative rings.
Let R be a commutative ring with unity. An element u is unit in R if there exists an element

v in R such that u. v = 1, where 1 is the identity of R.
A commutative ring R with unity is said to be local if and only if its all non-unit elements

form an additive Abelian group. For instance ℤpk , p is a prime integer and k is any positive

integer, is a local ring.
Let R be a commutative ring with unity. A non-zero element a is a zero divisor in R if there

exists a non-zero element b in R such that a. b = 0.
Let (R,M) be a local commutative ring with unity. An irreducible polynomial f(x) ∈ R[x]

over R is said to be a basic irreducible polynomial if it is irreducible over the corresponding
residue field K, where (K = R/M).

Consider the finite local ringℤpk , where p is prime and k is a positive integer with corresponding
residue fieldℤp. Nowℤpk x½ � ¼ a0 þ a1xþ a2x2 þ…þ anxn : ai∈ℤpk ; n∈ℤþ� �

is the poly-

nomial extension of ℤpk in the variable x and ℤp[x] = {a0 + a1x +…+ anx
n : ai ∈ℤp, n ∈ℤ+} is the

polynomial extension of ℤpk in the variable x. Let f xð Þ∈ℤpk x½ � be a basic irreducible polynomial
with degree h. Ideal generated by f(x) is denoted as 〈f(x)〉 and defined as f xð Þh i ¼
a xð Þ: f xð Þ : a xð Þ∈ℤpk x½ �

� �
: Let R ¼ ℤpk x½ �

f xð Þh i ¼ a0 þ a1xþ a2x2 þ…þ ah−1xh−1 : ai∈ℤpk
� �

de-

note the set of residue classes of polynomial in x overℤpk , modulo the polynomial f(x). This ring,

denoted by GR(pk, h), is a commutative ring with identity and is called the Galois extension of

ℤpk . AlsoGR(p
k, 1) is isomorphic toℤpk andGR p; hð Þ ¼ ℤpk x½ �

f xð Þh i ¼ K is isomorphic toGF(ph), a

Galois field extension of ℤpk having ph elements, where f ¼ rp fð Þ polynomial f which has

coefficient modulo p.

2.2 Maximal cyclic subgroup of group of units of Galois rings

Let K∗ and R∗ be the multiplicative group of units of field and the ring K and R, respectively.
Then R∗ is an abelian group and can be written in the direct product of cyclic subgroups. By
the following Theorem from [1, Theorem 2], between these cyclic subgroups, there is only one
cyclic subgroup of order ph − 1.

R∗ has one and only one cyclic subgroup of order relatively prime to p. This cyclic
subgroup has order ph − 1. The cyclic subgroup of order ph − 1 can be generated by the
generator of the corresponding finite field. This cyclic subgroup is denoted by Gn, where
n = ph − 1. Since the order of K∗ and Gn is the same, i.e., ph − 1 and both will be cyclic.
Therefore Gn is isomorphic to K∗.

3 Construction of S-boxes based on maximal cyclic subgroups

In order to create confusion in a data many techniques can be used to do so. One of these
techniques is using an S-box. The strongest S-boxes are constructed through mathematical
formulas and systematic calculations. In order to improve the quality many have worked in the
Galois fields GF(2n), 1 ≤ n ≤ 8 and created numerous S-boxes. In [1], a 4 × 4 S-box over
maximal cyclic subgroup of group of units of Galois ring GR(4, 4) is constructed with its
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application in watermarking. However, as an extension to [1], in this section, a novel
construction technique of 4 × 4 S-boxes with the utility of maximal cyclic subgroups of groups
of units of the Galois rings GR(4, 4), GR(8, 4) and GR(32, 4) is given. While, in each three
cases the maximal cyclic subgroups G15 of orders 15 are, respectively, isomorphic to the cyclic
Galois group GF(2, 4)∗. The association of maximal cyclic subgroups with admiring cyclic
Galois group GF(2, 4)∗, which are caused by the mod- 2 reduction maps from local commu-
tative rings ℤ4, ℤ8 and ℤ32 to their common residue field ℤ2, supports in construction of the
4 × 4 S-boxes over maximal cyclic subgroups. Of course these newly designed S-boxes are
increasing complexity during encryption and decryption.

3.1 S-box construction algorithm on Galois ring GR ℤ2m ; 4ð Þ

Given below is the procedure, defining the S-box in 4 steps:

Step.1: Inversion function I : Gn ∪ {0}→Gn ∪ {0},
Step.2: Linear scalar multiple function f : Gn ∪ {0}→Gn ∪ {0},
Step.3: Take composition of I ∘ f to get (n + 1) × (n + 1) S-box,
Step.4: Apply permutations Sn to each element of S-box obtained in step 3, which gives us

n ! S-boxes.

The map described above is nothing more than a substitution within the set Gn ∪ {0}. An
element of the set is substituted with the element next to its respective inverse. (In this case we
define this direction with increasing power of the generator) or in other words the scalar
multiplied with the inverse. In the examples below we discuss and analyze this construction
method for S-boxes of size 4 × 4.

Let us consider the local rings ℤ4 = {0, 1, 2, 3}, ℤ8 = {0, 1, 2,…, 7}, ℤ16 = {0, 1, 2,…, 15}
and ℤ32 = {0, 1, 2,…, 31}, whereas ℤ2 = {0, 1}, is their common residue field. The monic
polynomial f(x) = x4 + x + 1 is basic irreducible over the local rings ℤ4, ℤ8, ℤ16 and ℤ32 such
that f(x) = f(x) mod 2 = x4 + x + 1 is irreducible polynomial over ℤ2.

3.2 S-box on GF(24)

Take the polynomial ring ℤ2[x] = {a0 + a1x + a2x
2 +⋯ + anx

n : ai ∈ℤ2, n ∈ℤ+} in one indeter-
minate x over binary field ℤ2. Let < f(x) > = {a(x). f(x) : a(x) ∈ℤ2[x]} be the principal ideal in
ℤ2[x], generated by f(x). Then elements of Galois extension field K =ℤ2[x])/(< f(x) >), of order
16 are given in Table 1.

Now, let us construct the S-box on the Galois field extension GF(24) (Table 1). It can be
seen in Table 2 that it is the most basic S-box and it satisfies all the fundamental properties
being an S-box.

3.3 S-box on GR(4, 4)

Let ℤ4[x] = {a0 + a1x + a2x
2 +⋯ + anx

n : ai ∈ℤ4, n ∈ℤ+} is the polynomial ring with one
indeterminate x and < f(x) > = {a(x). f(x) : a(x) ∈ℤ4[x]} is a principal ideal generated by f(x).
Thus R = (ℤ4[x])/(< f(x) >) = {a0 + a1x + a2x

2 +⋯ a(4 − 1)x
(4 − 1) : ai ∈ℤ4} is the Galois ring

extension of order 256 with corresponding Galois field extension K = (ℤ2[x])/(< f(x) >) of
order 16, whose elements are given in Table 1.
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K∗ =K\{0} becomes the multiplicative group of units of the field K. Now, let R∗ be the
multiplicative group of units of the Galois ring R. Then the maximal cyclic subgroup of R∗,
isomorphic to the cyclic Galois group K∗, of order 15 is denoted by G15 and it is given in
Table 3.

Followed by the construction algorithm 3.1 and using maximal cyclic subgroup of Table 3.
We obtain S-box given in the Table 4.

3.4 S-box on GR(ℤ8, 4)

ℤ8[x] = {a0 + a1x + a2x
2 +⋯ + anx

n : ai ∈ℤ8, n ∈ℤ+} is the polynomial ring with one indeter-
minate x and < f(x) > = {a(x). f(x) : a(x) ∈ℤ8[x]} is principal ideal generated by f(x). Thus
R = (ℤ8[x])/(< f(x) >) = {a0 + a1x + a2x

2 +⋯ a(4 − 1)x
(4− 1) : ai ∈ℤ8} is the Galois ring extension

of order 4096 with corresponding Galois field extension K = (ℤ2[x])/(< f(x) >) of order 16,
whose elements are given in Table 1.

K∗ =K\{0} becomes the multiplicative group of the field K. Now, let R∗ be the multipli-
cative group of units of R. Then the cyclic subgroup of R∗, isomorphic to K∗ , of order 15 is
denoted by c and is given in Table 5.

Followed by the construction algorithm 3.1 and using maximal cyclic subgroup of Table 5,
we obtain S-box given in the Table 6.

Table 1 Elements of Galois field
GF(24) Exp Polynomial Binaries representation

–∞ 1 0000

0 1 1000

1 1 + x 1100

2 1 + x2 1010

3 1 + x + x2 + x3 1111

4 x 0100

5 x + x2 0110

6 x + x3 0101

7 1+ x2 + x3 1011

8 x2 0010

9 x2 + x3 0011

10 1+ x + x2 1110

11 1+ x3 1001

12 x3 0001

13 1+ x + x3 1101

14 x + x2 + x3 0111

Table 2 S-box on GF(24)
0 11 12 6

3 8 4 2

1 9 13 15

14 7 10 5
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3.5 Nonexistence of S-box on GR(ℤ16, 4)

ℤ16[x] = {a0 + a1x + a2x
2 +⋯ + anx

n : ai ∈ℤ16, n ∈ℤ+}is the polynomial ring with one inde-
terminate x and < f(x) > = {a(x). f(x) : a(x) ∈ℤ16[x]} is principal ideal generated by f(x). Thus
R = (ℤ16[x])/(< f(x) >) = {a0 + a1x + a2x

2 +⋯ a(4 − 1)x
(4− 1) : ai ∈ℤ16} is the Galois ring exten-

sion of order 65535 with corresponding Galois field extension K = (ℤ2[x])/(< f(x) >) of order
16, whose elements are given in Table 1.

K∗ =K\{0} becomes the multiplicative group of the field K. Now, let R∗ be the multipli-
cative group of units of R. Then the cyclic subgroup of R∗, isomorphic to K∗, of order 15 is
denoted by G15 and is given in Table 5.

Followed by the construction algorithm 3.1 and using maximal cyclic subgroup of Table 7,
we obtain S-box given in the Table 8.

The structure in Table 8 is not an S-Box as repetition of 1 on two positions. So, this gives us
a counter example that, not every maximal cyclic subgroup of the group of units of Galois ring
extension generates an S-box.

3.6 S-box on GR(ℤ32, 4)

ℤ32[x] = {a0 + a1x + a2x
2 +⋯ + anx

n : ai ∈ℤ32, n ∈ℤ+} is the polynomial ring with one inde-
terminate x and < f(x) > = {a(x). f(x) : a(x) ∈ℤ32[x]} is principal ideal generated by f(x). Thus
R = (ℤ32[x])/(< f(x) >) = {a0 + a1x + a2x

2 +⋯ a(h − 1)x
(h − 1) : ai ∈ ℤ32} is the Galois ring

Table 3 Elements of G15 ∪ {0} in
GR(4, 4) Exp Polynomial

–∞ 0 0000

0 1 1000

2 1 + 2x + x2 1210

4 3x + 2x2 0320

6 2 + x + 3x3 2103

8 x2 0010

10 3+ 3x + x2 + 2x3 3312

12 2+ 2x + 3x3 2203

14 x + 3x2 + x3 0131

16 3 + 3x 3300

18 3 + x + x2 + 3x3 3113

20 x + 3x2 + 2x3 0132

22 1+ 3x2 + x3 1031

24 3x2 + 3x3 0033

26 3+ x3 3001

28 1+ 3x + 2x2 + x3 1321

Table 4 S-box on GR(4, 4)
0 67 215 159

25 240 15 16

1 113 116 198

109 45 202 44
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extension of order 1048576 with corresponding Galois field extension K = (ℤ2[x])/(< f(x) >) of
order 16, whose elements are given in Table 1.

K∗ =K\{0} becomes the multiplicative group the field K. Now, let R∗ be the multiplicative
group of units of R. Then the cyclic subgroup of R∗, isomorphic to K∗ of order 15 is denoted by
G15 and is given in Table 9.

Followed by the construction algorithm 3.1 and using maximal cyclic subgroup of Table 9,
we obtain S-box given in the Table 10.

So, we are not certain if Gs of every Galois ring will generate an S-box for us. This implies
that with a certain polynomial and Galois ring structure we are not sure if we will get an S-box
over it or not. It shows that, the method discussed in [1] is not an efficient technique to get
S-boxes for use in different applications. Even though these newly designed S-boxes are
increasing encryption and decryption difficulty as compare to the S-boxes constructed over
Galois field GF(2, 4).

4 Basic primilanaries of finite chain ring of the type
F2 u½ �
<uk> ¼ F2 þ uF2 þ u2F2 þ⋯þ uk−1F2

Let R be a ring. An element v is unit in R if there exists an element w in R such that vw = 1,
where 1 is the identity of R. Unit elements of a ring form a multiplicative group. A non-zero
element a is a zero divisor in R if there exists a non-zero element b in R such that ab = 0. A

Table 5 Elements of G15 ∪ {0} in
GR(8, 4) Exp Polynomial

–∞ 0 0000

0 1 1000

2 1 + 2x + x2 1210

4 3x + 6x2 + 4x3 0364

6 2 + x + 3x3 2103

8 4+ 4x + x2 + 4x3 4414

10 3+ 7x + x2 + 2x3 3712

12 6+ 6x + 3x3 6603

14 x + 7x2 + x3 0171

16 7 + 7x 7700

18 7 + 5x + 5x2 + 7x3 7557

20 4x + 3x2 + 3x3 4176

22 1+ 7x2 + 5x3 1075

24 4x2 + 3x3 + 3x3 0433

26 7+ 5x3 7005

28 5+ 7x + 2x2 + 5x3 5725

Table 6 S-box on GR(8, 4)
0 3 111 123

81 224 63 100

1 193 200 10

189 195 60 152

Multimed Tools Appl (2017) 76:24027–24062 24033



nonzero element a is said to be nilpotent element in R if there exists a positive integer k such
that ak = 0. The least positive integer k with this property is known as the nilpotency index a.

A ring R is local if and only if its all non-unit elements form an additive Abelian group.
More unambiguously a local ring R has a unique maximal ideal M and the factor ring R

M is its

residue field.
A local finite ring R is a chain ring if and only if the radical M of R is a principal ideal

(consists of all multiples of a fixed element of R, and this fixed element is called the generator
of the ideal), and therefore the factor ring R

M is a field. Thus ideals of a chain ring form a chain.

The famous examples of such rings are ℤpn x½ � the ring of integers modulo pn where p is prime,
and the Galois field GF pnð Þ ¼ Fq with q = pn elements. Another large class of finite chain

rings is the Galois rings GR pn; rð Þ ¼ Zpn x½ �
< f xð Þ>, where f(x) ∈ ℤpn x½ � is monic irreducible poly-

nomial of degree r generates the principal ideal < f(x) >, however f(x) is also irreducible
modulo the prime p, i.e. f(x) is the basic irreducible polynomial. Whereas the Galois ring
R =GR(pn, r) has pnr number of elements and an element ā(x) in GR(pn, r) has the represen-
tation ā0 + ā1x +… + ār − 1xr − 1, ā0, ā1,…, ār − 1 ∈ ℤpn . The radical M is the set of nilpotent

elements of R and the residue field R
M of R is the Galois extension field GF(pr). One of the

typical class of chain rings is the factor ring GF prð Þ x½ �
< xk> of Euclidean domain GF(pr)[x]. The finite

chain ring GF prð Þ x½ �
< xk> ¼ Fpr x½ �

< xk>

� �
has the representation Fpr þ xFpr þ⋯þ xk−1Fpr :

Table 7 Elements of G15 ∪ {0} in
GR(16,4) Exp Polynomial

–∞ 0 0000

0 1 1000

2 1 + 2x + x2 1210

4 3x + 6x2 + 4x3 0364

6 2 + x + 8x2 + 3x3 2183

8 4+ 4x + 9x2 + 4x3 4494

10 3+ 7x + x2 + 10x3 371A

12 14+ 14x + 8x2 + 3x3 EE83

14 9x + 15x2 + x3 09F1

16 15 + 7x + 8x3 F708

18 15 + 13x + 5x2 + 15x3 FD5D

20 12x + 9x2 + 15x2 + 6x3 C9F6

22 1+ 7x2 + 13x3 107D

24 4x2 + 11x2 + 11x3 04BB

26 15+ 8x + 8x2 + 5x3 F885

28 13+ 15x + 2x2 + 13x3 DF2D

Table 8 S-box on GR(16, 4)
0 143 223 115

33 64 127 68

1 1 144 18

253 156 238 48

24034 Multimed Tools Appl (2017) 76:24027–24062



Let Rk be the representation of finite chain ring F2 u½ �
<uk> ¼ F2 þ uF2 þ u2F2 þ⋯þ uk−1F2:

The ring Rk has 2
k number of elements. The element u is the nilpotent element with nilpotency

index k (i.e., uk = 0 ). Thus it follows that < 0 > = ukRk ⊂ uk − 1Rk ⊂⋯⊂ u2Rk ⊂ uRk ⊂ Rk is the
ascending chain of ideals in Rk and therefore Rk is a local ring with only maximal ideal uRk.
Whereas, Rk

uRk
≃F2 is the residue field of the chain ring Rk. The ideals u

iRk and u
i + 1Rk, where i =

0, 1, 2,⋯, k − 1, respectively have the cardinality 2k − i and 2k − i + 1. Thus the cardinality of uiRk
is 2 times the cardinality of ui + 1Rk.

Amongst the rings of four elements, earlier the Galois field F4 , and later the integers
modulo 4 ring ℤ4, are frequently used in algebraic coding theory. Recently, Abualrub and Siap
[2] studied cyclic codes of an arbitrary length n over the rings F2 þ uF2

¼ 0; 1; u; u ¼ 1þ uf g, with u2 = 0, and F2 þ uF2 þ u2F2 ¼ 0; 1; u; u2; 1þ u; 1þ u2;
�

uþ u2; 1þ uþ u2g, with u3 = 0. However, Al-Ashker and Hamoudeh [7] extend these results

to more general rings of the form Rk ¼ F2 þ uF2 þ⋯þ uk−12 F2 , with uk = 0. The ring F2

þuF2 share some good properties of both ℤ 4 and F4: The alphabet in the ring F2 þ uF2 is
given to all binary polynomials in indeterminate u of degree at most 1, and is closed under
binary polynomial addition and multiplication modulo u2. The multiplication and addition
tables for the ring F2 þ uF2 are given in Table 11. The multiplication table of the ring F2

þuF2 coincides with that of ℤ4, when u and ū are replaced by 2 and 3 respectively. In this
sense F2 þ uF2 is analogous to ℤ4 and here u plays the role of 2. Whereas the addition table is

Table 9 Elements of G15 ∪ {0} in
GR(32, 4) Exp Polynomial

–∞ 0 0000

0 1 1000

4 3x + 6x2 + 4x3 0364

8 4 + 20x + 9x2 + 20x2 4K9K

12 30 + 14x + 8x2 + 19x3 UE8J

16 31 + 7x + 24x3 V700

20 28+ 9x + 31x2 + 6x3 S9V6

24 16+ 4x + 11x2 + 11x3 G4BB

28 13+ 15x + 18x2 + 13x3 DFID

32 17 + 2x + 17x2 + 16x3 H2HG

36 2 + 17x + 8x2 + 3x3 2H83

40 3 + 23x + x2 + 26x3 2N1Q

44 16+ 25x + 15x2 + 17x3 GPFH

48 15 + 29x + 5x2 + 31x3 FT5V

52 17+ 16x + 7x2 + 29x3 HG7T

56 31+ 8x + 24x2 + 5x3 V8O5

Table 10 S-box on GR(32, 4)
0 17 34 60

96 175 81 255

1 48 237 222

31 227 144 132
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different and is similar to that of the Galois field F4 ¼ 0; 1; β; β2 ¼ 1þ β
� �

, where ū and
u are replaced by β and β2, respectively (Table 12).

5 Construction of S-box through finite chain rings F2 þ uF2 þ⋯þ uk−1F2

The chain ring Rk ¼ F2 u½ �
<uk> ¼ F2 þ uF2 þ…þ uk−1F2 has cardinality 2k. As u is a nilpotent

element with nilpotency index k, it follows that < 0 > = ukRk ⊂ uk − 1Rk ⊂… ⊂ uRk ⊂ Rk. Accord-
ingly the residue field of Rk is

Rk
uRk

≃F2. The ring Rk shares some properties of the local ring ℤ2k

and the Galois field F2k . More explicitly the multiplication binary operation of Rk coincides
with of ℤ2k , whereas the addition binary operation is similar to that of F2k .

A significant S-box with wide-ranging cryptographic features is of ultimate worth for the
development of resilient cryptographic system. Constructing cryptographically strong S-boxes
is a basic challenge. In this study we propose a method to amalgam an efficient 4 × 4 S-box

based on unit elements of the chain rings F2 þ uF2 þ⋯þ uk−1F2. For the purpose we fix k
to 2, 3, 4, 5, 6, 7 and 8.

The 4 × 4 S-box construction steps are given bellow:

1) Table MGk ; the multiplicative group of unit elements of the ring Rk.
2) If the cardinality of MGk is a perfect square and less than or equal to 16, define an

inversion map f : MGk→MGk and a linear scalar multiple function g :MGk→MGk .
Otherwise choose a subgroup HGk of MGk of desired size 16 and then define these two
bijective maps f and g from HGk to HGk . The selection of subgroups and defined maps for
each ring are explicitly explained in subsections.

3) Take the composition of the maps f and g.
4) Generate 4 × 4 S-box by arranging them row wise.
5) Apply permutations Sn to each elements of S-box obtained in step 4 which result in n !

S-boxes.

Table 11 × and + Tables for F2 +
uF2 × 0 1 u ū + 0 1 ū u

0 0 0 0 0 0 0 1 ū u

1 0 1 u ū 1 1 0 u ū
u 0 ū 1 u ū ū u 0 1

ū 0 u u 0 u u ū 1 0

Table 12 Elements in chain ring R3

S. No. Polynomial Binary string S. No. Polynomial Binary string

1 0 000 5 1 + u 110

2 1 100 6 1 + u2 101

3 u 010 7 u + u2 011

4 u2 001 8 1 + u + u2 111
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5.1 Construction of S-box through multiplicative group of R3

The chain ring R3 ¼ F2 u½ �
<u3> ¼ F2 þ uF2 þ u2F2 has 8 number of elements. The chain of ideals

of this ring is < 0 > = u3R3 ⊂ u2R3 ⊂ uR3 ⊂ R3 and R3
uR3

≃F2 is its residue field. The multiplication

binary operation of R3 coincides with of ℤ8 , whereas the addition binary operation is similar to
that of F8.

The multiplicative group of unit elements of the ring R3 is

MG3 ¼ 1; 1þ u; 1þ u2; 1þ uþ u2:

Define f : MG3→MG3 by f(a) = a
− 1 and g : MG3→MG3 by g að Þ ¼ a

0
a; where a

0 ¼ 1þ u:

Thus f ∘g að Þ ¼ a
0
a

� �−1
:

5.2 Construction of S-box through multiplicative group of R4

The chain ring R4 ¼ F2 u½ �
<u4> ¼ F2 þ uF2 þ u2F2 þ u3F2 has 16 elements. Its chain of ideals is

< 0 > = u4R4 ⊂ u3R4 ⊂ u2R4 ⊂ uR4 ⊂ R4, whereas the residue field of this ring is R4
uR4

≃F2: The ring

R4 shares some properties of the local ring ℤ16 and the Galois field F16. The multiplication and
addition binary operations of R4 coincides with ℤ16 and F16 respectively.

Multiplicative group of unit elements of the ring R4 is

MG4 ¼ 1; 1þ u; 1þ u2; 1þ u3; 1þ uþ u2; 1þ uþ u3; 1þ u2 þ u3; 1þ uþ u2 þ u3:

Take a subgroup HG4 ¼ 1; 1þ u; 1þ u2; 1þ uþ u2 þ u3
� �

of index 2 of the groupMG4

and apply given procedure on subgroup rather than group MG4 . Define f : HG4→HG4 by

f(a) = a− 1 and g : HG4→HG4 by g að Þ ¼ a
0
a; where a

0 ¼ 1þ u; f ∘g að Þ ¼ a
0
a

� �−1
: The

following Table 16 is of f ∘g HG4ð Þ in binary and decimal form, which is in fact the S-box
constructed over the chain ring R4 ¼ F2 þ uF2 þ u2F2 þ u3F2.

5.3 Construction of S-box through multiplicative group of R5

The chain ring R5 ¼ F2 u½ �
<u5> ¼ F2 þ uF2 þþu2F2 þ u3F2 þ u4F2 has 32 number of elements.

The chain of ideals is, < 0 > = u5R5 ⊂ u4R5 ⊂ u3R5 ⊂ u2R5 ⊂ uR5 ⊂R5 and its residue field is R5
uR5

≃

Table 13 Elements in f ∘g Mg3

� �
S. No. Polynomial

f ∘ g(2) 111

f ∘ g(5) 101

f ∘ g(6) 110

f ∘ g(8) 100

Table 14 S - box over R3 = F2 + uF2 + u
2F2

7 5 6 4
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F2: The multiplication binary operation of R5 coincides with of ℤ25 , whereas the addition binary
operation is similar to that of F25 .

Multiplicative group of unit elements of the ring R5 is

MG5 ¼
1; 1þ u; 1þ u2; 1þ u3; 1þ u4; 1þ uþ u2; 1þ uþ u3; 1þ uþ u4; 1þ u2 þ u3;
1þ u2 þ u4; 1þ u3 þ u4; 1þ uþ u2 þ u3; 1þ uþ u2 þ u4; 1þ uþ u3 þ u4;

1þ u2 þ u3 þ u4; 1þ uþ u2 þ u3 þ u4

8<
:

9=
;:

Define f : MG5→MG5 by f(a) = a− 1 and g : MG5→MG5 by g(a) = a′a , where a′ = 1 + u.
Thus (f ∘ g)(a) = (a′a)− 1.

The following Table 17 is of f ∘g HG5ð Þ in binary and decimal form, which is in fact the
S-box constructed over the chain ring R5 ¼ F2 þ uF2 þþu2F2 þ u3F2 þ u4F2.

5.4 Construction of S-box through multiplicative group of R6

The chain ring R6 ¼ F2 u½ �= < u6 >¼ F2 þ uF2 þ þu2F2 þ u3F2 þ u4F2 þ u5F2 has
cardinality 64. As u is a nilpotent element with nilpotency index 6 , it follows that
< 0 > = u6R6 ⊂ u5R6 ⊂ u4R6 ⊂ u3R6 ⊂ u2R6 ⊂ uR6 ⊂ R6 and the residue field of R6 is
R6
uR6

≃F2. The addition and multiplication binary operation of R6 coincides with F26

and ℤ26 respectively.
Multiplicative group of the ring R6 is

MG6 ¼

1; 1þ u; 1þ u2; 1þ u3; 1þ u4; 1þ u5; 1þ uþ u2; 1þ uþ u3; 1þ uþ u4; 1þ uþ u5;
1þ u2 þ u3; 1þ u2 þ u4; 1þ u2 þ u5; 1þ u3 þ u4; 1þ u3 þ u5; 1þ u4 þ u5; 1þ uþ u2 þ u3;

1þ uþ u2 þ u4; 1þ uþ u2 þ u5; 1þ uþ u3 þ u4; 1þ uþ u3 þ u5; 1þ uþ u4 þ u5;
1þ u2 þ u3 þ u4; 1þ u2 þ u3 þ u5; 1þ uþ u2 þ u3 þ u4; 1þ uþ u2 þ u3 þ u5; 1þ uþ u2þ

u4 þ u5; 1þ uþ u3 þ u4 þ u5; 1þ u2 þ u3 þ u4 þ u5; 1þ uþ u2 þ u3 þ u4 þ u5

8>>>><
>>>>:

9>>>>=
>>>>;

The multiplicative subgroup MG6 contains 32 elements, sixteen elements of order 8, 8
elements of order 4, 7 elements of order 2, and one element of order 1. Since our interest is in
the subgroups of cardinality 16, so we combine these cyclic subgroups in such a way that they
generate subgroups of order 16. We take subgroups HG6 ¼ 1þ u2; 1þ u3 þ u4; 1þ u3 þ u5

� 	
of cardinality 16 of the multiplicative groupMG6 . Define the maps f : HG6→HG6 by f(a) = a

− 1

Table 15 Elements in chain ring R4

S. No. Polynomial Binary string S. No. Polynomial Binary string

1 0 0000 9 u + u2 0110

2 1 1000 10 u + u3 0101

3 u 0100 11 u2 + u3 0011

4 u2 0010 12 1+ u + u2 1110

5 u3 0001 13 1+ u + u3 1101

6 1 + u 1100 14 1+ u2 + u3 1011

7 1 + u2 1010 15 u + u2 + u3 0111

8 1 + u3 1001 16 1+ u + u2 + u3 1111

Table 16 S - box over R4
15 10 12 8
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and g : HG6→HG6 by g(a) = a′a, where a′ = 1 + u
4. Thus, g∘ fð Þ að Þ ¼ a

0
a

� �−1
. The following

Table 18 is of f ∘g HG6ð Þ in binary and decimal form, which is in fact the S-box designed over
the chain ring R6.

5.5 Construction of S-box through multiplicative group of R7

The size of chain ring R7 ¼ F2 u½ �=
<u7> ¼ F2 þ uF2 þþu2F2 þ u3F2 þ u4F2 þ u5F2 þ u6F2 is

128. The chain of ideals is < 0 > = u7R7 ⊂ u6R7 ⊂ u5R7 ⊂ u4R7 ⊂ u3R7 ⊂ u2R7 ⊂ uR7 ⊂ R7. Ac-

cordingly the residue field of R7 is
R7
uR7

≃F2. The ring R7 shares some properties of the local

ring ℤ27 and the Galois field F27 . The multiplicative subgroupMG7 contains 64 elements, with
32 elements of order 8, 24 elements of order 4, 7 elements of order 2 and 1 element of order 1.
Since we require the subgroups of size 16 , it follows that we can fulfill our requirement by

above explained availability for MG7. For this purpose we choose a subgroup HG7 ¼
1þ u3; 1þ u2 þ u3
� 	

of cardinality 16 of the multiplicative group MG7 .

Define the maps f : HG7→HG7 by f(a) = a− 1 and g : HG7→HG7 by g(a) = a′a , where a
′ = 1 + u3. Thus, (g ∘ f)(a) = (a′a)− 1. The following Table 19 is of f ∘g HG7ð Þ in decimal form,
which is in fact the S-box constructed over the chain ring R7 ¼ F2 þ uF2 þþu2F2 þ u3F2

þu4F2 þ u5F2 þ u6F2:

5.6 Construction of S-box through multiplicative group of R8

The ringR8 ¼ F2 u½ �
<u8> ¼ F2 þ uF2 þþu2F2 þ u3F2 þ u4F2 þ u5F2 þ u6F2 þ u7F2 is a com-

mutative chain ring of 28 elements. Since u is nilpotent with nilpotency index 8, it follows that <
0 > = u8R8 ⊂ u7R8 ⊂ u6R8 ⊂ u5R8 ⊂ u4R8 ⊂ u3R8 ⊂ u2R8 ⊂ uR8 ⊂R8 and R8

uR8
≃F2 is the residue field

of R8. The ring R8 shares some properties of the local ring ℤ28 and the Galois field F28 . The
multiplication binary operation of R8 coincides with ofℤ28 , whereas the addition binary operation

is similar to that of F28 . We choose a subgroup HG8 ¼ 1þ u3 þ u6; 1þ u2 þ u4 þ u5 þ u7
� 	

of the group MG8 having cardinality 16. Define the maps f : HG8→HG8 by f(a) = a− 1 and g
: HG8→HG8 by g(a) = a′a , where we take a′ = 1 + u4 + u6. Thus, (g ∘ f)(a) = (a′a)− 1. The
following Table 20 is of f ∘g HG8ð Þ in decimal form, which is in fact the S-box designed

over the chain ring R8 ¼ F2 þ uF2 þþu2F2 þ u3F2 þ u4F2 þ u5F2 þ u6F2 þ u7F2.

Table 17 S-box over R5
31 30 26 19

21 18 24 23

25 22 29 27

28 20 17 16

Table 18 S-box over R6
34 40 42 36

39 33 47 44

43 38 37 35

45 46 41 32

Multimed Tools Appl (2017) 76:24027–24062 24039



6 Applications of proposed substitution box in image encryption
and watermarking

As digital image plays an important role in multimedia technology, it becomes more important for
the user’s to maintain privacy. And to provide such security and privacy to the user, encryption and
watermarking is very important to protect from any unauthorized user access. The encryption and
watermarking have applications in various fields, including internet communication, multimedia
systems, medical imaging, Telemedicine and military communication. Nowadays, the prominent
share of the multimedia fabrication and dissemination is carried out digitally. The rapid growth of
digital media like Internet and Compact Discs has ushered in a wonderful era where the flow,
duplication and modification of digital images have become all the more easier and simpler. Mega
distribution of flawless replicas ofmultimedia data at an accelerated degree has become the order of
the day. And this phenomenon has unfortunately resulted in tremendous threats to multimedia
safety and copyright security. This has the effect of ringing an alarm bell for authors, when the stark
reality dawned upon them, convincing that conservative safety systems, like encryption were
incapable of affording the much-needed shelter. This has motivated many investigators to devise
alternate methods, one of which is known by the term ’digital watermarking’which is nothing but
the art of concealing data in a healthy way and without being noticed by pirates or others of the sort
[29]. The classifications of information hiding techniques are cryptography, watermarking and
steganography. Here we will only focus on encryption that belongs to cryptography and
watermarking. Encryption protects content during the transmission of the data from the sender to
receiver. However, after receipt and subsequent decoding, the data is no longer protected and is in
the clear. Watermarking compliments encryption by embedding a signal directly into the data.
Thus, the goal of a watermarking is to always remain present in the data. The algorithms for image
encryption and watermarking schemes are presented in Figs. 1 and 2.

The results after applying the proposed image encryption and watermarking schemes are
given in Figs. 3, 4, 5 and 6 respectively.

The statistical analysis plays an important role in estimating good quality information
hiding. We have applies first order texture image analysis that deals with the histograms of
an image which includes mean, standard deviation (Std.), skewness and kurtosis [27]. The
GLCM (Gray-Level Co-Occurrence Matrix) analysis of an image consists of entropy, contrast,
homogeneity, energy and correlation [15]. The correlation based statistical analyses consists of
structure content, normalized cross correlation. The human visual system (HVS) fundamen-
tally deals with the human perceptions. These analyses include universal image quality index,
structure content and structure similarity index metric.

Table 19 S-box over R7
73 65 64 72

86 77 82 69

93 89 87 76

83 92 76 88

Table 20 S-box over R8
138 153 130 136

155 175 165 186

146 177 128 173

167 184 143 179
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First-order statistics are quite straightforward. They are computed from a function that
measures the probability of a certain pixel occurring in an image. The interpretations of first
order texture analysis of an image are quite straightforward. They are computed from the

Fig. 1 Proposed image encryption algorithmbased on Galois ring
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Fig. 2 Algorithm for image watermarking based on Galois ring

Fig. 3 (a) Plain Lena image, (b) Encrypted image using GR(4,4), (c) Encrypted image using GR(8,4), (d)
Encrypted image using GR(32,4)
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mechanism which measures the pixel probabilities in an image. The analysis of first order
textures like mean, standard deviation, skewness and kurtosis reflects that there are significant
changes in these features for plain and encrypted images in case of Galois rings and finite
chain rings (see Tables 21, 22, 23, 24, 25, 26 and 27) whereas in the case of watermarking
these parameter values will remain constant with some minute changes for original and
watermarked images (see Tables 56, 57, 58, 59, 60, 61 and 62).

The second order texture analysis generally deals with contrast, homogeneity, entropy,
correlation and energy. The contrast measures the amount of local variations present in the
image. Contrast is zero when the neighboring pixels have constant values. The values second
order characteristics for plain and encrypted images are different from each other and for
watermarking through Galois rings and finite chain rings are remain same or tend to cover
image second order texture features (see Tables 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72 and 73).

The image error measurements and image similarity analysis in case of image encryption
and watermarking are quite different. The values of the means square error and mean absolute
error increases, whereas peak signal to noise ratio decreases for image encryption. As far as

Fig. 4 (a) Plain Lena image, (b) Encrypted image using R5, (c) Encrypted image using R6, (d) Encrypted image
using R7, (e) Encrypted image using R8

Fig. 5 (a) Cover Lena image, (b) Watermarked image using GR(4,4), (c) Watermarked image using GR(8,4), (d)
Watermarked image using GR(32,4)

Fig. 6 (a) Cover Lena image, (b) Watermarked image using R5, (c) Watermarked image using R6, (d)
Watermarked image using R7, (e) Watermarked image using R8
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watermarking is concerned, these analyses are entirely changed (Table 41). The value of mean
square error and mean absolute error decreases, and peak signal to noise ratio decreases (see
Tables 42, 43, 44, 45, 46, 47, 48, 70, 71, 72, 73, 74, 75 and 76).

The structural similarity image quality standard is grounded on the notion that the human
visual system is extremely modified for extracting structural information from the scene, and
therefore a measure of structural similarity can provide a good approximation to perceived
image quality. The standard similarity measurement tests which include structure content,
universal image quality index and structure similarity index metric (SSIM). The similarity
coefficients values for image encryption and watermarking are computed (see Tables 49, 50,
51, 52, 53, 54, 55, 77, 78, 79, 80, 81, 82 and 83). The readings of similarity measures discloses
the quality of encryption using proposed algorithms for image encryption, which is based on
chain rings. The structure content values in case of image encryption are higher than unity
which reveals that two images are completely different. Similarly, structure similarity index
and universal image quality index measure far away from unity backwardly which guarantee
the authentication of the proposed image encryption algorithm. In case of watermarking

Table 22 First order texture analysis of proposed encryption scheme based on S-box of GR(8,4)

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.261719 0.210938 0.183594

Std. 0.496541 0.459496 0.38138 0.440431 0.408773 0.387911

Skewness −0.267999 0.868817 1.703557 1.084160 1.417060 1.634530

Kurtosis 1.07182 1.75484 3.90216 2.173900 3.008070 3.671690

Table 23 First order texture analysis of proposed encryption scheme based on S-box of GR(32,4)

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.101563 0.136719 0.078125

Std. 0.496541 0.459496 0.38138 0.302664 0.344223 0.268894

Skewness −0.267999 0.868817 1.703557 2.638030 2.114870 3.144000

Kurtosis 1.07182 1.75484 3.90216 7.959200 5.472660 10.884700

Table 21 First order texture analysis of proposed encryption scheme based on S-box of GR(4,4)

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.300781 0.355469 0.292969

Std. 0.496541 0.459496 0.38138 0.459496 0.479593 0.456016

Skewness −0.267999 0.868817 1.703557 0.868817 0.603906 0.909779

Kurtosis 1.07182 1.75484 3.90216 1.754840 1.364700 1.827700
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Table 24 First order texture analysis of proposed encryption scheme based on S-box of R5

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.578125 0.5156250 0.382813

Std. 0.496541 0.459496 0.38138 0.494826 0.5007350 0.487025

Skewness −0.267999 0.868817 1.70357 −0.316386 −0.0625305 0.482181

Kurtosis 1.071820 1.754840 3.90216 1.100100 1.0039100 1.232500

Table 25 First order texture analysis of proposed encryption scheme based on S-box of R6

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.628906 0.636719 0.597656

Std. 0.496541 0.459496 0.381380 0.484044 0.481887 0.491331

Skewness −0.267999 0.868817 1.70357 −0.533666 −0.568542 −0.398296
Kurtosis 1.071820 1.754840 3.90216 1.284800 1.323240 1.15864

Table 26 First order texture analysis of proposed encryption scheme based on S-box of R7

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.421875 0.613281 0.558594

Std. 0.496541 0.459496 0.38138 0.496541 0.487952 0.497528

Skewness −0.267999 0.868817 1.703557 0.316386 −0.465222 −0.236001
Kurtosis 1.07182 1.75484 3.90216 1.100100 1.216430 1.055700

Table 27 First order texture analysis of proposed encryption scheme based on S-box of R8

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.5090600 0.4648440 0.4960940

Std. 0.496541 0.459496 0.38138 0.5009640 0.4997400 0.5009640

Skewness −0.267999 0.868817 1.703557 −0.0156255 0.1400974 0.0156255

Kurtosis 1.07182 1.75484 3.90216 1.0002400 1.0198700 1.0002400
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Table 28 Second order texture analysis of proposed encryption scheme based on S-box of GR(4,4)

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 5.7166 5.9307 5.6531 5.7668

Homogeneity 0.8724 0.8712 0.8749 0.4631 0.4600 0.4637 0.4623

Entropy 7.2911 7.581 7.0794 7.7240 7.7433 7.6947 7.7207

Correlation 0.9234 0.9294 0.8538 0.07963 0.08541 0.0696 0.0782

Energy 0.1386 0.0999 0.1698 0.02470 0.02421 0.0250 0.0246

Table 29 Comparison of second order texture analysis of proposed encryption scheme based on S-box of
GR(4,4) with some existing algorithm

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 5.7166 5.9307 5.6531 5.7668 7.2240

Homogeneity 0.4631 0.4600 0.4637 0.4623 0.4701

Entropy 7.7240 7.7433 7.6947 7.7207 7.9325

Correlation 0.07963 0.08541 0.0696 0.0782 0.0815

Energy 0.02470 0.02421 0.0250 0.0246 0.0211

Table 30 Second order texture analysis of proposed encryption scheme based on S-box of GR(8,4)

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 7.3449 7.5510 7.2945 7.3968

Homogeneity 0.8724 0.8712 0.8749 0.5238 0.5245 0.5214 0.5232

Entropy 7.2911 7.581 7.0794 7.5132 7.7389 7.0996 7.4505

Correlation 0.9234 0.9294 0.8538 0.0394 0.0450 0.0250 0.0365

Energy 0.1386 0.0999 0.1698 0.0536 0.0600 0.0509 0.0548

Table 31 Comparison of second order texture analysis of proposed encryption scheme based on S-box of
GR(8,4) with some existing algorithm

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 7.3449 7.5510 7.2945 7.3968 7.2240

Homogeneity 0.5238 0.5245 0.5214 0.5232 0.4701

Entropy 7.5132 7.7389 7.0996 7.4505 7.9325

Correlation 0.0394 0.0450 0.0250 0.0365 0.0815

Energy 0.0536 0.0600 0.0509 0.0548 0.0211
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Table 32 Second order texture analysis of proposed encryption scheme based on S-box of GR(32,4)

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 7.0918 7.1035 7.0795 7.0916

Homogeneity 0.8724 0.8712 0.8749 0.7429 0.7548 0.7410 0.7432

Entropy 7.29110 7.5813 7.0794 7.4161 7.5139 7.1015 7.343

Correlation 0.9234 0.9294 0.8538 0.0266 0.0259 0.0161 0.0228

Energy 0.1386 0.0999 0.1698 0.2835 0.3203 0.2781 0.2940

Table 33 Comparison of second order texture analysis of proposed encryption scheme based on S-box of
GR(32,4) with some existing algorithm

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 7.0918 7.1035 7.0795 7.0916 7.2240

Homogeneity 0.7429 0.7548 0.7410 0.7432 0.4701

Entropy 7.4161 7.5139 7.1015 7.343 7.9325

Correlation 0.0266 0.0259 0.0161 0.0228 0.0815

Energy 0.2835 0.3203 0.2781 0.2940 0.0211

Table 34 Second order texture analysis of proposed encryption scheme based on S-box of R5

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 7.0020 7.0009 7.0024 7.0018

Homogeneity 0.8724 0.8712 0.8749 0.4689 0.4695 0.4687 0.4690

Entropy 7.29110 7.5813 7.0794 7.3541 7.7091 7.0996 7.3866

Correlation 0.9234 0.9294 0.8538 0.1918 0.0323 0.2743 0.1661

Energy 0.1386 0.0999 0.1698 0.0254 0.0281 0.0240 0.0258

Table 35 Second order texture analysis of proposed encryption scheme based on S-box of R1 with some well
known algorithm

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 7.0020 7.0009 7.0024 7.0018 7.2240

Homogeneity 0.4689 0.4695 0.4687 0.4690 0.4701

Entropy 7.3541 7.7091 7.0996 7.3866 7.9325

Correlation 0.1918 0.0323 0.2743 0.1661 0.0815

Energy 0.0254 0.0281 0.0240 0.0258 0.0211
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Table 36 Second order texture analysis of proposed encryption scheme based on S-box of R6

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 7.0006 7.0005 7.000781 7.0006

Homogeneity 0.8724 0.8712 0.8749 0.4696 0.4797 0.459609 0.4696

Entropy 7.29110 7.5813 7.0794 7.4561 7.7813 7.351237 7.5295

Correlation 0.9234 0.9294 0.8538 −0.0003 0.0510 0.037352 0.0293

Energy 0.1386 0.0999 0.1698 0.01987 0.0188 0.021408 0.0200

Table 37 Comparison of second order texture analysis of proposed encryption scheme based on S-box of R6

with some well known algorithm

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 7.0006 7.0005 7.000781 7.0006 7.2240

Homogeneity 0.4696 0.4797 0.459609 0.4696 0.4701

Entropy 7.4561 7.7813 7.351237 7.5295 7.9325

Correlation −0.0003 0.0510 0.037352 0.0293 0.0815

Energy 0.01987 0.0188 0.021408 0.0200 0.0211

Table 38 Second order texture analysis of proposed encryption scheme based on S-box of R7

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 7.0102 7.0087 7.0108 7.0099

Homogeneity 0.8724 0.8712 0.8749 0.4849 0.4856 0.4846 0.4850

Entropy 7.29110 7.5813 7.0794 7.5132 7.7389 7.0996 7.4505

Correlation 0.9234 0.9294 0.8538 0.0220 0.0091 0.0337 0.0216

Energy 0.1386 0.0999 0.1698 0.0255 0.0232 0.0208 0.0240

Table 39 Comparison of second order texture analysis of proposed encryption scheme based on S-box of R7

with some well known algorithm

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 7.0102 7.0087 7.0108 7.0099 7.2240

Homogeneity 0.4849 0.4856 0.4846 0.4850 0.4701

Entropy 7.5132 7.7389 7.0996 7.4505 7.9325

Correlation 0.0220 0.0091 0.0337 0.0216 0.0815

Energy 0.0255 0.0232 0.0208 0.0240 0.0211
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Table 40 Second order texture analysis of proposed encryption scheme based on S-box of R8

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average

Contrast 0.3726 0.3928 0.3652 7.6206 7.6027 7.6198 7.6143

Homogeneity 0.8724 0.8712 0.8749 0.4393 0.4526 0.4789 0.4569

Entropy 7.29110 7.5813 7.0794 7.0468 7.0203 7.0441 7.0371

Correlation 0.9234 0.9294 0.8538 0.0572 0.0437 0.0580 0.0530

Energy 0.1386 0.0999 0.1698 0.0202 0.0256 0.0200 0.0219

Table 41 Comparison of second order texture analysis of proposed encryption scheme based on S-box of R8

Encrypted image color components

Red Green Blue Average AES [9]

Contrast 7.6206 7.6027 7.6198 7.6143 7.2240

Homogeneity 0.4393 0.4526 0.4789 0.4569 0.4701

Entropy 7.0468 7.0203 7.0441 7.0371 7.9325

Correlation 0.0572 0.0437 0.0580 0.0530 0.0815

Energy 0.0202 0.0256 0.0200 0.0219 0.0211

Table 42 Image error measurements of proposed encryption scheme based on S-box of GR(4,4)

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 12134.3 6068.13 4437.92

Peak signal to noise ratio 7.29067 10.3003 11.6590 9.74999 8.1421 9.0014 9.2541

Mean absolute error 93.3373 63.2998 54.0589

Table 43 Image error measurements of proposed encryption scheme based on S-box of GR(8,4)

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 19007.1 6839.19 5523.35 –

Peak signal to noise ratio 5.37564 9.81475 10.7428 8.64439 8.1421 9.0014 9.2541

Mean absolute error 122.514 67.7453 61.6997
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Table 44 Image error measurements of proposed encryption scheme based on S-box of GR(32,4)

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 26869.2 8949.01 8245.61 –

Peak signal to noise ratio 8.83825 8.61305 8.96858 7.13996 8.1421 9.0014 9.2541

Mean absolute error 154.441 79.2899 80.9500

Table 45 Image error measurements of proposed encryption scheme based on S-box of R5

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 26938.7 8395.85 7914.18 –

Peak signal to noise ratio 8.62704 8.89119 9.14675 8.80662 8.1421 9.0014 9.2541

Mean absolute error 156.614 76.4777 81.7981

Table 46 Image error measurements of proposed encryption scheme based on S-box of R6

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 22211.3 6234.6 5573.56 –

Peak signal to noise ratio 4.66506 10.1827 10.6695 8.50575 8.1421 9.0014 9.2541

Mean absolute error 140.6860 64.5333 66.0316

Table 47 Image error measurments of proposed encryption scheme based on S-box of R7

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 12225.6 3037.64 1838.02 –

Peak signal to noise ratio 7.2581 13.3054 15.4873 12.0169 8.1421 9.0014 9.2541

Mean absolute error 99.2633 45.0841 32.8454
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Table 48 Image error measurments of proposed encryption scheme based on S-box of R8

Image color components

Red Green Blue Average Gray [9] APA [9] Lui [9]

Mean square error 3269.08 6173.97 4007.07 –

Peak signal to noise ratio 12.9866 10.2252 12.1025 11.7814 8.1421 9.0014 9.2541

Mean absolute error 50.4345 66.0888 55.0974

Table 49 Image similarity measurements of proposed encryption scheme based on S-box of GR(4,4)

Image color components

Red Green Blue

Structure content 2.67522000 0.959737000 0.9467440

Universal image quality index −0.00329472 0.000386892 −0.0000435
Structure similarity index metric 0.013055400 0.016328500 0.0184890

Table 50 Image similarity measurements of proposed encryption scheme based on S-box of GR(8,4)

Image color components

Red Green Blue

Structure content 5.5605800 2.01720000 1.96540000

Universal image quality index −0.0016198 −0.00399473 −0.00170602
Structure similarity index metric 0.0130455 0.01506070 0.019223800

Table 51 Image similarity measurements of proposed encryption scheme based on S-box of GR(32,4)

Image color components

Red Green Blue

Structure content 25.7971000 9.660140000 9.28556

Universal image quality index 0.000360266 0.000617253 −0.000210373
Structure similarity index metric 0.021377500 0.037992700 0.036532900
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Table 52 Image similaritymeasurments of proposed encryption scheme based on S-box of R5

Image color components

Red Green Blue

Structure content 62.221 22.4185 21.9321

Universal image quality index −0.00113042 −0.0000975 −0.00306773
Structure similarity index metric 0.119023 0.219966 0.212875

Table 53 Image similarity measurments of proposed encryption scheme based on S-box of R6

Image color components

Red Green Blue

Structure content 5.5605800 2.01720000 1.96540000

Universal image quality index −0.0016198 −0.00399473 −0.00170602
Structure similarity index metric 0.0130455 0.01506070 0.019223800

Table 54 Image similaritymeasurments of proposed encryption scheme based on S-box of R7

Image color components

Red Green Blue

Structure content 22.3112000 7.980790000 7.90325000

Universal image quality index 0.00290522 0.000516327 0.00219534

Structure similarity index metric 0.19237900 0.301132000 0.3223110

Table 55 Image similaritymeasurments of proposed encryption scheme based on S-box of R8

Image color components

Red Green Blue

Structure content 5.2635300 1.8889400 1.86378000

Universal image quality index 0.0023029 −0.0020651 −0.0029209
Structure similarity index metric 0.2721280 0.3122190 0.36223600
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Table 56 First order texture analysis of proposed watermarking scheme based on S-box of GR(4,4)

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.574219 0.296875 0.195313

Std. 0.496541 0.459496 0.38138 0.495429 0.457776 0.397218

Skewness −0.267999 0.868817 1.70357 −0.300201 0.889181 1.53711

Kurtosis 1.07182 1.75484 3.90216 1.09012 1.79064 3.36272

Table 57 First order texture analysis of proposed watermarking scheme based on S-box of GR(8,4)

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.589844 0.31250 0.160156

Std. 0.496541 0.459496 0.38138 0.492825 0.46442 0.367469

Skewness −0.267999 0.868817 1.70357 −0.365321 0.80904 1.853270

Kurtosis 1.07182 1.75484 3.90216 1.13346 1.65455 4.434600

Table 58 First order texture analysis of proposed watermarking scheme based on S-box of GR(32,4)

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.589844 0.3125 0.160156

Std. 0.496541 0.459496 0.38138 0.492825 0.46442 0.367469

Skewness −0.267999 0.868817 1.70357 −0.365321 0.80904 1.85327

Kurtosis 1.07182 1.75484 3.90216 1.13346 1.65455 4.4346

Table 59 First order texture analysis of proposed watermarking scheme based on S-box of R5

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.574219 0.28125 0.175781

Std. 0.496541 0.459496 0.38138 0.495429 0.45049 0.38138

Skewness −0.267999 0.868817 1.70357 −0.300201 0.973067 1.70357

Kurtosis 1.07182 1.75484 3.90216 1.09012 1.94686 3.90216
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Table 60 First order texture analysis of proposed watermarking scheme based on S-box of R6

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.574219 0.28125 0.175781

Std. 0.496541 0.459496 0.38138 0.495429 0.45049 0.38138

Skewness −0.267999 0.868817 1.70357 −0.300201 0.973067 1.70357

Kurtosis 1.07182 1.75484 3.90216 1.09012 1.94686 3.90216

Table 61 First order texture analysis of proposed watermarking scheme based on S-box of R7

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.578125 0.289063 0.183594

Std. 0.496541 0.459496 0.38138 0.494826 0.454215 0.387911

Skewness −0.267999 0.868817 1.70357 −0.316386 0.930620 1.634530

Kurtosis 1.07182 1.75484 3.90216 1.100100 1.866050 3.671690

Table 62 First order texture analysis of proposed watermarking scheme based on S-box of R8

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.570313 0.296875 0.171875

Std. 0.496541 0.459496 0.38138 0.496001 0.457776 0.378011

Skewness −0.267999 0.868817 1.70357 −0.284073 0.889181 1.739460

Kurtosis 1.07182 1.75484 3.90216 1.080700 1.790640 4.025730

Table 63 Second order texture analysis of proposed watermarking scheme based on S-box of GR(4,4)

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.39375 0.406985 0.389338

Homogenity 0.872453 0.871262 0.874949 0.864794 0.866005 0.865558

Entropy 7.29110 7.581330 7.079450 7.32279 7.56524 7.09129

Correlation 0.923453 0.929416 0.853838 0.920109 0.926875 0.847282

Energy 0.138624 0.0999494 0.169877 0.135096 0.0973498 0.159161
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Table 64 Second order texture analysis of proposed watermarking scheme based on S-box of GR(8,4)

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.391866 0.406127 00387469

Homogenity 0.872453 0.871262 0.874949 0.865176 0.866715 0.868536

Entropy 7.29110 7.581330 7.079450 7.3227 7.5607 7.08971

Correlation 0.923453 0.929416 0.853838 0.920656 0.927186 0.846354

Energy 0.138624 0.0999494 0.169877 0.134363 0.0978212 0.161773

Table 65 Second order texture analysis of proposed watermarking scheme based on S-box of GR(32,4)

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.391866 0.406127 00387469

Homogenity 0.872453 0.871262 0.874949 0.865176 0.866715 0.868536

Entropy 7.29110 7.581330 7.079450 7.3227 7.5607 7.08971

Correlation 0.923453 0.929416 0.853838 0.920656 0.927186 0.846354

Energy 0.138624 0.0999494 0.169877 0.134363 0.0978212 0.161773

Table 66 Second order texture analysis of proposed watermarking scheme based on S-box of R5

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.397702 0.403278 0.376716

Homogenity 0.872453 0.871262 0.874949 0.863205 0.863345 0.870555

Entropy 7.29110 7.581330 7.079450 7.30967 7.48019 7.0773

Correlation 0.923453 0.929416 0.853838 0.92072 0.926736 0.854595

Energy 0.138624 0.0999494 0.169877 0.133659 0.0969861 0.155589

Table 67 Second order texture analysis of proposed watermarking scheme based on S-box of R6

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.394225 0.395787 0.374494

Homogenity 0.872453 0.871262 0.874949 0.864685 0.867443 0.870939

Entropy 7.29110 7.581330 7.079450 7.30751 7.48453 7.07733

Correlation 0.923453 0.929416 0.853838 0.921642 0.928676 0.854764

Energy 0.138624 0.0999494 0.169877 0.135017 0.098445 0.157312
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Table 68 Second order texture analysis of proposed watermarking scheme based on S-box of R7

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.382154 0.383824 0.373851

Homogenity 0.872453 0.871262 0.874949 0.869645 0.874147 0.872720

Entropy 7.29110 7.581330 7.079450 7.29890 7.499040 7.077940

Correlation 0.923453 0.929416 0.853838 0.923301 0.931268 0.853531

Energy 0.138624 0.0999494 0.169877 0.137470 0.100933 0.161723

Table 69 Second order texture analysis of proposed watermarking scheme based on S-box of R8

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.376532 0.399203 0.374295

Homogenity 0.872453 0.871262 0.874949 0.871378 0.868688 0.871490

Entropy 7.29110 7.581330 7.079450 7.282660 7.512610 7.076750

Correlation 0.923453 0.929416 0.853838 0.921681 0.928119 0.850357

Energy 0.138624 0.0999494 0.169877 0.140061 0.098777 0.168454

Table 70 Image error measurements of proposed watermarking scheme based on S-box of GR(4,4)

Image color components

Red Green Blue

Mean square error 35.072 30.841 37.9247

Peak signal to noise ratio 32.6812 33.2395 32.3416

Mean absolute error 4.62018 4.33269 4.80144

Table 71 Image error measurements of proposed watermarking scheme based on S-box of GR(8,4)

Image color components

Red Green Blue

Mean square error 29.9243 26.5959 32.3507

Peak signal to noise ratio 33.3706 33.8827 33.0320

Mean absolute error 4.22232 3.98900 4.40581
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Table 72 Image error measurements of proposed watermarking scheme based on S-box of GR(32,4)

Image color components

Red Green Blue

Mean square error 29.9243 26.5959 32.3507

Peak signal to noise ratio 33.3706 33.8827 33.0320

Mean absolute error 4.22232 3.98900 4.40581

Table 73 Image error measurments of proposed watermarking scheme based on S-box of R5

Image color components

Red Green Blue

Mean square error 67.7634 60.3825 67.1817

Peak signal to noise ratio 29.8206 30.3217 29.8583

Mean absolute error 7.09592 6.75697 6.99326

Table 74 Image error measurments of proposed watermarking scheme based on S-box of R6

Image color components

Red Green Blue

Mean square error 55.2887 48.5003 55.1235

Peak signal to noise ratio 30.7044 31.2734 30.7174

Mean absolute error 6.26427 5.9082 6.19368

Table 75 Image error measurments of proposed watermarking scheme based on S-box of R7

Image color components

Red Green Blue

Mean square error 31.9533 26.3285 32.6609

Peak signal to noise ratio 33.0856 33.9265 32.9905

Mean absolute error 5.65273 5.13113 5.71497
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Table 76 Image error measurments of proposed watermarking scheme based on S-box of R8

Image color components

Red Green Blue

Mean square error 22.435 20.2259 24.6088

Peak signal to noise ratio 34.6215 35.0717 34.2199

Mean absolute error 3.65494 3.48647 3.83476

Table 77 Image similarity measurements of proposed watermarking scheme based on S-box of GR(4,4)

Image color components

Red Green Blue

Structure content 1.02006 1.02876 1.03460

Universal image quality index 0.767415 0.80177 0.756734

Structure similarity index metric 0.895856 0.906332 0.885709

Table 78 Image similarity measurements of proposed watermarking scheme based on S-box of GR(8,4)

Image color components

Red Green Blue

Structure content 1.01492 1.02385 1.02670

Universal image quality index 0.78181 0.812344 0.767011

Structure similarity index metric 0.906944 0.917087 0.896842

Table 79 Image similarity measurements of proposed watermarking scheme based on S-box of GR(32,4)

Image color components

Red Green Blue

Structure content 1.01492 1.02385 1.02670

Universal image quality index 0.78181 0.812344 0.767011

Structure similarity index metric 0.906944 0.917087 0.896842
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Table 80 Image similaritymeasurments of proposed watermarking scheme based on S-box of R5

Image color components

Red Green Blue

Structure content 1.0733 1.11063 1.12045

Universal image quality index 0.80846 0.837688 0.792751

Structure similarity index metric 0.927252 0.932159 0.916876

Table 81 Image similaritymeasurments of proposed watermarking scheme based on S-box of R6

Image color components

Red Green Blue

Structure content 1.06197 1.09256 1.10057

Universal image quality index 0.808703 0.839345 0.79333

Structure similarity index metric 0.927525 0.934201 0.917581

Table 82 Image similaritymeasurments of proposed watermarking scheme based on S-box of R7

Image color components

Red Green Blue

Structure content 1.03484 1.04849 1.05593

Universal image quality index 0.81822 0.85175 0.80365

Structure similarity index metric 0.93213 0.94117 0.92368

Table 83 Image similaritymeasurments of proposed watermarking scheme based on S-box of R8

Image color components

Red Green Blue

Structure content 0.983519 0.969268 0.970146

Universal image quality index 0.825920 0.858906 0.812379

Structure similarity index metric 0.936415 0.945399 0.927879
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similarity coefficients are closed to one which elucidates the robustness of suggested
watermarking algorithm constructed on the classes of chain rings (Tables 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82 and 83).

7 Conclusion

In this article, we developed new schemes for image encryption and watermarking indepen-
dently that soundly depends on classes of finite chain rings. The readings of test images in case
of encryption and watermarking are closed to optimal values that reflect the endorsement of
our suggested data hiding technique. In future, we will combine encryption and watermarking
due to the fact that cryptography provides no protection once the content is decrypted, which is
required for human perception, whereas watermarking complements cryptography by embed-
ding a message within the content.
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