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Abstract This paper describes a novel biometric architecture to implement unsupervised
face recognition across varying demographics. The present proposal deals with ethnicity,
gender and age, but the same strategy can be crafted for any mix of soft/hard biometrics,
sensors, and/or methods. Our aim is not to explicitly distinguish demographic features of
a subject (e.g., male vs. female). We rather aim at implicitly exploiting such information
to improve the accuracy of subject identification. The role demographics plays in authen-
tication has been reported by many recent studies. Exploiting demographic information
can entail two possible strategies. Both require pre-determination of relevant demographic
classes, that drive the choice of the best suited recognizer in a set of ad-hoc trained ones. In
the first strategy, a human operator visually classifies demographic features of the subject
to recognize, and runs the appropriate “strong” recognizer. In the second one, the identifi-
cation of the most appropriate “strong” recognizer follows the results obtained from a set of
upstream classifiers for soft biometrics. Both solutions are poorly suited to most real world
applications, e.g., video - surveillance. Our architecture mediates recognition across dif-
ferent demographics without any pre-determination of demographic features. We still have
different “strong” classifiers, each trained on a demographic class. The probe is submitted to
all of them at once. A supervisor module estimates reliability of the single responses, and the
most reliable result is returned. In this approach, classifier reliability is not a static feature,
but it is estimated for each probe. The proposed multiple-expert system provides simi-
lar performance to pre-determination of demographics. Experimental results show higher
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flexibility, efficacy and interoperability. We also focus on interoperability across face
datasets by adopting EGA (Ethnicity, Gender and Age) database as a benchmark, which is
obtained by combining images from several publicly available face datasets.

Keywords Biometric systems · Demographics · Face recognition · Interoperability · Soft
biometrics · A-posteriori demographics categorization

1 Introduction

Automatic face recognition has been often considered as one of the most successful appli-
cations of image analysis and understanding [56]. If one considers the performance claims
made over the years, an important fact emerges. Since the beginning, proposed methods
seemed to achieve a good accuracy. For instance, regarding the seminal work by Turk and
Pentland [53], the authors reported a correct classification rate of up to 96 %, depending
on the capture conditions. It is interesting to notice that, in their setting, size was the worst
problem, with correct classification of 64 % over size variations. However, as in other
fields, as soon as the research finds a satisfying solution to certain problem, attention moves
towards new ones to tackle. Good performance achieved in the experiments reported in lit-
erature is still hardly reproducible in real world applications, in general, and in uncontrolled
settings, in particular. For instance, the degradation of face recognition caused by pose, illu-
mination and expression (PIE) variations continues to spur a huge amount of research. At
present, the datasets used as benchmarks contain images that are closer to biometric sam-
ples actually captured in everyday applications. Uncontrolled settings are the standard in
real life scenarios, e.g., surveillance using smart camera networks, tagging of huge amount
of images (e.g., in social networks), and mass security screening. A robust biometric sys-
tem should show resilience to biometric variability, e.g., incomplete data (e.g., occlusion),
corrupt data (low quality or deliberate disguise), as well A-PIE (age-PIE) variability.
Beyond uncontrolled settings, further factors relevant for recognition have recently captured
researchers’ attention. Among these, the focus of this paper is on the influence of demo-
graphics on recognition. Our aim here is not to deal with recognition of such features, but
to find a strategy to exploit them implicitly for face recognition, without pre-determining
them, neither through human intervention nor through an automatic system. For this reason
we omit reviewing the various kinds of approaches addressing demographics recognition;
the interested reader can refer to the rich literature about gender recognition (e.g., [34]),
age estimation (e.g., [15]), ethnicity recognition (e.g., [18]), and mixed demographics (e.g.,
[14, 46, 52]). From the point of view of person recognition, demographic features are
considered as soft biometrics. In fact, they are not able to identify a subject by themselves.
However, they can support different kinds of specific “smart” applications in ambient
intelligence, e.g., age-related services. Moreover, they can be exploited in connection with
“strong” biometrics as a pre-classification step. Regarding this last point, it is interesting to
consider how a preliminary determination of these features can affect recognition. Among
the first findings along this line, FRVT 2002 estimated the performance variability for
different groups of people, and in particular investigated the effect of demographics on
performance [38]. Similarly, gender and aging can hinder recognition, if system training
is performed on a dataset where the demographics are not balanced [39, 40]. Therefore,
biometric systems trained and tested in a certain country may be less effective on images of
a different ethnicity. It is worth noticing that many datasets used for research on face recog-
nition were collected in research centers or universities. As a consequence, they present
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not only a prevalence of subjects of the local ethnicity, but also of the age range between
20 and 30. Even the most challenging datasets, e.g., FERET [37], are not always well
balanced with respect to different demographic features. When demographic differences
are involved, one can further consider the link between biometrics and forensics [20]. The
work by Klare et al. [23] is the most recent attempt to systematically investigate the role
of cross-demographics in automatic face recognition. The results testify to the fact that a
preliminary demographic classification (“binning or stratification”) of an image, and its
subsequent submission to a specialized classifier (i.e., one trained with face images of that
specific demographic group), would improve recognition performance. The implementa-
tion of this strategy suggests two possible alternatives. One way to leverage demographics
entails the presence of a human operator. The operator visually evaluates the characteristics
of the subject to recognize, and submits the probe to the appropriate classifier in a set. In
this set, each item is trained on different demographic classes (e.g., a single ethnicity). A
possible alternative is to have a set of upstream classifiers, each trained on a specific soft
biometrics (in this case demographics, e.g., gender). These would be used in cascade to
select a “strong” recognizer, e.g., a face recognizer specialized for young men. In general,
the human-in-the-loop approach, i.e, a kind of mixed strategy entailing human feedback
during the automatic process, achieves a performance improvement in classification tasks
[2]. The continuous presence of a human operator would have additional benefits. These
include the possibility to reduce ”wild” aspects, by controlling capture conditions such
as pose, illumination and expression (PIE). However, this approach is not always feasible
or even desirable. On the other hand, the presence of a cascade of biometric systems that
gates the image to the corresponding demographic classifier would slow down recognition.
Furthermore, it would also be error-prone, therefore introducing an (additional) early error
in the chain which would compromise the whole following process. As a consequence,
both solutions are poorly suited to unattended settings, and to real world applications
requiring a quick response. Our proposal avoids any kind of explicit pre-selection. We still
exploit a multi-expert architecture composed of a number of different “strong” classifiers,
i.e., face classifiers. Each of them is trained on face images belonging to a certain (combi-
nation of) demographic group, and relies on its own gallery of enrolled subjects. Galleries
possibly overlap, according to the sets of demographic features, or combinations, that are
relevant for the application at hand. The response from each classifier (recognized identity)
is augmented with an estimate of its reliability. The latter is not a static feature of each
system, but is dynamically computed for each probe. Each probe is submitted to all the
classifiers at the same time, and the most reliable response (identity) is returned as the final
one. In this way, the proposed approach exploits implicit demographic information coming
from a specific training, without determining it a-priori for each single probe. Actually, if
also needed, demographic information can be deduced a-posteriori from the source of the
selected response: the subject is deemed to belong to the demographic group on which the
winning classifier had been trained.

Before going further, it is worth underlining the difference between the problem dealt
with by this paper, and the nowadays popular topic of automatic feature selection. In most
works along this line, “features” are intended as specific low level ones, e.g., geometrical,
texture, or topological characteristics, either local or global, or transformation coefficients,
that can improve classification performance. For instance, the work in [24] and [25] inves-
tigates the problem of selecting proper Discrete Cosine Transform (DCT) coefficients, to
obtain the best discrimination effect in face and palmprint recognition. In many cases the
identified features may even lack a precise human “semantic” interpretation. For instance,
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this often happens in deep learning [49, 50]. Starting from this low level, our work rather
deals with meta-characteristics, high level features that have a precise meaning for human
operators too. As such, they can improve the performance of any recognition method,
including those based on low feature selection. Of course, it is almost trivial to state that a
specialized classifier can do better than a general-purpose one. However, two issues raise
regarding automatic face recognition. The first one concerns the automatic choice of the
right classifier, that is not always easy or even possible to achieve, unless we know in
advance the specialization the sample belongs to. The second and even more interesting
one is that, regarding biometrics, it is not completely clear which is the most beneficial
information to exploit to improve classification. The research line this paper follows regards
confirming the hypothesis that demographics is an effective group of features to increase
face recognition performance.

An additional problem that has recently caught research attention is interoperability
across different datasets [10]. Many experiments presented in literature use quite similar
capture conditions and/or devices for both gallery and probe images. On the other hand,
interoperability is the ability of diverse equipment, software applications as well as human
stakeholders to work together (inter-operate). It impacts overall system performance and
affects the concrete ability to exchange information. Possible factors that affect interop-
erability include the accuracy of sensors, e.g., image resolution or sensor technology (see
for example [45] for sensor interoperability in the case of fingerprints), the effects of lossy
image compression, and the acquisition environment [30] (e.g., indoor vs. outdoor). Inter-
operability requires well defined software/hardware protocol interfaces. These should allow
connecting different products and systems (as well as organizations, as it is the case with
forensics), without any restrictions about access and implementation. As mentioned above,
demographics of exploited benchmarks can also affect interoperability of biometric recog-
nition systems, in the sense that a system trained on some demographics may result less
effective with a different population. Interoperability issues are addressed here in terms of
database sets, taking into account image quality, and the diversity of the population enrolled.
Our contribution with respect to the work by Klare et al. [23] is twofold. First, we confirm
the results achieved therein in a different experimental setting, and with interoperable data.
Second, we go further by avoiding both the human-in-the-loop limitations of their solution,
and the increased computational weight of an automatic explicit soft class pre-selection.
Our approach makes the use of demographic information automatic as well as implicit.
The outline for the paper is as follows. Section 2 shortly surveys the role of demographic
features on human and automatic face recognition. Regarding interoperability, Section 3 dis-
cusses the role of interoperability across different datasets used for training and testing, and
Section 4 deals with interoperability across demographics and presents experimental results.
Section 5 describes the multi-expert architecture we propose to implicitly exploit demo-
graphic features. Section 6 presents the comparative results of experiments using different
architectural configurations, that show the feasibility and utility of our novel methodology.
Finally, Section 7 draws some conclusions and anticipates future work.

2 The role of demographics in recognition

The face is deemed as the most important biometric trait enabling people to recognize their
peers. A huge amount of both past and recent research is devoted to investigate how the
human recognition abilities can be reproduced by an automatic system (see the recent [31]).
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A person observing a face can also easily make subtle yet correct judgments regarding
gender, identity, age, and expression/mood. Nevertheless, a number of studies in literature
note that this ability decreases, when such categorization regards individuals from a differ-
ent demographic group. During life, human recognition skills are nurtured by both cultural
and cognitive processes. These include the evolution (phylogeny) within a specific ethnic
group, but also the growth of a person (ontogeny) within a mixed population, including
different ages and genders. The same combination of such processes may also explain neg-
ative human performance in face recognition. For instance, the other-race effect causes a
poor ability to recognize a subject from a different race. The notable studies by Goldstein
[12] give two possible reasons for this: psychosocial, due either to prejudice, unfamiliar-
ity, or other interpersonal reasons; and psychophysical, due to either different amounts of
reflectance from different skin colors, causing different amount of perceived details, or to
race-related differences in the variability of facial features. A number of researches aimed
at assessing the relative importance of these two groups of factors. Related investigations
continue catching experts interest. In particular, the study of the coefficients of variation
for different facial features in different ethnic groups, seems to indicate that poor cross-
race identification is more likely a psychosocial problem. More recent studies ascribe the
other-race effect to the so-called “contact hypothesis” [7], which refers to the single indi-
vidual experience. Even if it cannot completely explain the phenomenon [33], the concept
of “familiarity” is often the best explanation for excellent human recognition performance.
Ethnicity is not the only demographic feature that may affect recognition. Further studies
by Goldstein quantify the role of gender in face recognition [13]. For instance, it appears
that in a Japanese population, most women’ facial features are more heterogeneous than the
men’ ones. A similar but less significant difference seems to hold for white women’ faces.
Last but not least, age heavily affects recognition across time. The example study in [27]
investigates this problem through a real passport photo verification task. Two interesting
works deal with a meta-analysis, whose aim is to contrast and combine results from different
studies about possible sources of bias in face recognition. One of these works discusses own-
gender bias [17]. The authors conclude that, whereas the own-race bias is typical of most
ethnic groups, the own-gender bias is asymmetrical, as only females seem to suffer from
the effect. The second work regards own-age bias (OAB) [42]. In this case the authors con-
clude that children, younger adults, and elder adults exhibit superior discrimination ability
for same-age compared with other-age age faces.

Returning to automatic face recognition, some recent studies aim at quantitatively com-
paring the performance of both academic and commercial algorithms against human ability.
An example is the research presented by O’Toole et al. [35] regarding the ability to rec-
ognize faces under illumination variations. The authors report that, on the less distorted
image pairs, all the automated algorithms exhibited better performance than humans; for the
“difficult” pairs, this result was not generalized and sometime reversed. However, results
of similar comparisons are seldom univocal. In a following work focusing on challenging
tasks, O’Toole et al. [36] compare face identification by humans and by machines using
images taken under a variety of uncontrolled illumination conditions, in both indoor and
outdoor settings. Further variations are represented by hair style, facial expression, hats,
glasses, even if pairs of compared face images are all taken in frontal view. Notice that this
single condition can make matching less difficult. In fact, even human recognition of unfa-
miliar faces is affected by changes in viewpoint [16], though it seems that this does not hold
for familiar faces [4]. In [36] the authors conclude: “More generally, differences between the
performance of humans (at their best) and state-of-the-art face recognition algorithms are
analogous to differences between humans recognizing familiar versus unfamiliar people”.
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The aim of the recent “The Good, the Bad, & the Ugly” (GBU) challenge [41] was just
to spur investigation about factors affecting automatic recognition across changes in still
frontal faces.

Given the above considerations, it is well reasonable to expect that even automatic face
recognition can be affected by specific problems, when cross-demographic features are
involved. Indeed this has been reported since the first surveys on the subject (see [6]).
However, especially for ethnicity, this phenomenon was seldom noticed or systematically
observed. The main reason is that biometric systems implemented in a specific country, e.g.,
Asian, would usually rely on a dataset of voluntary subjects of the same ethnicity, and often
of the same age range (about 20- 30 years old). The present work focuses on how demo-
graphic information, when appropriately exploited, can positively affect face recognition
performance. On the other hand, lack of demographic-based training can produce negative
effects. Among demographics, age of the subject repeatedly shows up as one of the most
important personal covariates, in terms of face recognition performance. It mostly, but not
only, affects intra-subject recognition across time. Quoting the conclusions in [27]: “In the
experiments we observed that the difficulty of face recognition algorithms saturated after
the age gap is larger than four years (up to ten years)”. In [43] similar results are reported,
but, on the other hand, “older” people (but the maximum considered age is only 49) are
more easily recognized by PCA (yet when the time elapsed between enrollment and testing
is short). Gender and ethnicity can rather significantly influence inter-subject recognition.
While training on the same class of ages does not make it easier to recognize a person
after twenty years, one can show that training on specific gender or ethnicity can improve
human identification [23]. Of course, such factors still mutually influence each other. As an
example, age marks may change according to race (white elder people tend to have more
wrinkles).

As a last note, it is worth noticing that it is still a matter of debate if other biometric traits
suffer from the same sensitivity to demographics. Recent studies confirm a difference in
fingerprint image quality across age groups, most pronounced with the over-62 age group
[32]. In 1892 Galton published a study about the frequency of arches, loops, and whorls
pattern types (which will be the basic elements for the precursors of present fingerprint sys-
tems) in fingerprints from various races [11]. One of the aims of the study was to confirm
the assumption, which seemed obvious in late nineteenth century, that fingerprint patterns
were probably inherited, and should therefore correlate with, say, race, ethnicity, and var-
ious behavioral characteristics. However, the author had to admit that he found almost
no significant variations, except for slightly fewer arches among Jews. This was what the
anthropologist Paul Rabinow has called “Galton’s regret” [8].

3 Interoperability across databases

Biometric authentication typically involves four distinct operational stages: feature space
learning (“training”), gallery enrollment, testing to evaluate the achieved accuracy, and stan-
dard operation (“querying”). In typical laboratory settings, training and testing images are
disjoint subsets of a set acquired under relatively well-controlled and quite similar condi-
tions. This often implies the same device and/or backgrounds, and the same type of subjects.
In general, no standard operation phase is planned, and used datasets make up a kind of
closed world. On the other hand, commercial systems intended for use in real “wild” life
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applications, are usually trained (and tested) on sets of images, which may have very lit-
tle in common with data encountered in future standard operation. Hard real life scenarios
include mass screening, surveillance using smart camera networks, tagging fostered by
social networks, and biometric management of crowds. In most cases they entail unattended
operation. In practice, performance for uncontrolled settings is significantly lower than the
performance advertised for large scale, but tightly controlled biometrics evaluations. More-
over, during normal operation, ground truth is usually not available, with false positives not
disclosed and false negatives not available. The mismatch between controlled and uncon-
trolled settings falls under interoperability issues, together with the mismatch between the
exploited datasets. Interoperability can be further considered as a thread that links biomet-
rics and forensics. It involves distributed data collections and federated identity management
systems, and can provide key performance indexes that ultimately affect large scale deploy-
ment. A preliminary study [10] evaluated different operational biometric settings for the
purpose of interoperability. The evaluation across face space derivation, enrollment, and
testing was pursued by varying both the composition (different datasets exploited for train-
ing and testing) and the quality of biometric data. In order to test cross-dataset performance,
different datasets were used: 1) FEI dataset [51], including 2,800 images of 200 subjects; 2)
PUT dataset [22], including almost 10000 high-resolution images of 100 people; 3) Essex
[47], including 7900 images of 395 individuals, divided into the two subsets Essex94 and
Essex 95 with 24bit color JPEG image format. Images present slight variations in pose and
illumination within and across datasets. Table 1 reports the compositions of the datasets
used. Different face spaces were considered according to the (PCA and/or LDA) compo-
nents used. Performance of PCA is enhanced by dropping the top ranked eigenvectors. They
encode mainly illumination changes, and therefore are not relevant to the identification task.
The basic findings reported vis-à-vis interoperability in identification mode (Tables 2 and 3)
indicate that, even for these basic methods, the quality of images during training/learning
the face space is much less important than the quality of images during enrollment and test-
ing. Additional insights suggest that it does not make much difference if the face space is
derived from biometric data coming from the same dataset source as that used for enrollment
and testing. On the contrary, the size of the gallery and query sets does affect performance.
In fact, the relatively poor performance with the FEI dataset comes from having only 4
images per subject, while PUT and Essex have 22 and 20 images per subject, respectively.
The results reported seem to validate the use of a separate dataset for training; on the other
hand, the training data set must be representative enough of the demographics expected dur-
ing deployment and use. For more details see [10]. Furthermore, a system to be used in
real-world settings should support interoperability across demographics.

Table 1 The composition of the dataset exploited to investigate their interoperability

Dataset Number of Subjects Number of images per subject Total number of images

Essex 223 20 4460

Essex94 152 20 3040

Essex95 71 20 1420

FEI 200 4 800

PUT 100 22 2200
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4 Interoperability across demographics

As already pointed out, the work by Klare et al. [23] is among the most recent and com-
prehensive attempts to investigate the role of cross-demographics in face recognition. The
experiments and results reported show a significant influence of demographics discrepancy
between training and testing sets on final recognition performance. The proposed solu-
tion is to perform a manual pre-determination of relevant demographic features, which
would restrict the search space before engaging the automatic recognition process, and
allow to exploit the most suited recognizer. However, in some significant scenarios, such
as video-surveillance or access control, it might be not possible to rely on continuous
human interaction for the above purpose (human-in-the-loop). To address this interoperabil-
ity aspect we introduce here a novel multi-expert architectural strategy. It avoids any human
intervention in pre-selection of subsets of the search space, related to specific demograph-
ics. It is worth underlining that this is not affected by the recognition method used. In other
words, the approach is independent from the number and kind of classifiers used, that can be
chosen without any restriction. Each classifier is trained on a specific (set of) demographic
feature(s). We also avoid using a “soft” classifier upstream, playing the role of first deter-
mining demographics of each probe, before submitting it to the right expert. This would
slow down the recognition process, and provide more information than really needed. Our
final goal does not necessarily imply to determine such demographics. In fact, we will dis-
tinguish between explicit and implicit use of demographic information. Furthermore, the
preliminary demographics recognition, if wrong, introduces an unrecoverable error in the
following steps, which will negatively influence the final result. As an alternative to both
the human-in-the-loop strategy and the use of soft biometrics, we want to achieve the best
recognition results in the most direct way.

In order to test our approach, we needed an experimental setting quite balanced with
respect to the distribution of the different demographics. This allowed avoiding the bias
deriving from having more training on some features than on others (or on some classes than
on others). No present available dataset offers such characteristic together with an appro-
priate ground truth. Even MORPH [43], which is one of the largest available ones, is not
well-suited to our aims, besides requiring a fee even for its non-commercial release. The
most populated MORPH-II subset, includes 55608 color images of 13673 subjects between
16 and 99 years old: 47057 images belong to male persons and 8551 to female ones; 42897
images depict black faces, 10736 white, 1753 Hispanic, 160 Asian, 57 Indian and 5 faces
are of other ethnicity. The images have either 200× 240 or 400× 480 pixels resolution. As
it can be deduced, the dataset is highly imbalanced towards black male persons, and lacks
images of persons below the age of 16. On the other hand, it was specifically collected to
investigate cross-age face recognition. Since each of our classifiers is trained on a differ-
ent demographic set of features, we would have super-trained and under-trained classifiers.
While this is normal in real situations, we wanted to start from a “balanced” setting, and to
stress the interoperability aspect. Towards that aim, we used EGA (Ethnicity, Gender and
Age) v1.0 database [44], which is composed of images selected from six existing, publicly
available datasets in order to guarantee a fair balance in the demographic features (ethnicity,
gender, age): 1) CASIA-Face V5 [5], includes 2,500 images of 500 subjects, from a sin-
gle session captured by an USB camera; image resolution is 640 × 480, 16bit color; faces
are captured at different distances and display illumination and pose variations, and eye-
glasses; subjects are mostly young and of Eastern ethnicity; 2) FEI dataset [51], includes
2,800 images of 200 subjects, 100 male and 100 female, each with 14 images; color images
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resolution is 640 × 480; faces have been acquired on a white background, and belong to
subjects whose age ranges from 19 to 40 years old, mostly of Latin ethnicity; 3) the very
popular FERET dataset [37], includes 14,126 images of 1,199 subjects acquired in 15 ses-
sions between August 1993 and July 1996; image resolution is 256× 384 for 8 bit greyscale;
faces are categorized in sets (fa, fb, dup I, dup II) according to pose and acquisition period,
and present slight variations in illumination and expression; the dataset is heterogeneous
with respect to ethnicity, gender and age; 4) FRGC [39], includes 50,000 images captured in
4,003 subject sessions and divided in training and validation partitions; each subject session
includes images captured in controlled (four) and non-controlled (two) conditions, and a 3D
model; image resolution is 1704× for 24 bit color; most subjects are of Caucasian ethnic-
ity, and the number of subjects of different ethnicity is quite marginal; subjects are mainly
concentrated in a same age range (young/adult), while an adequate number of subjects is
present for each gender; 5) JAFFE [29], includes 2130 images of 10 subjects, mainly gath-
ered for facial expression analysis; image resolution 256 × 256 for 8bit greyscale; subjects
are all female and Japanese; age too seems to be uniform; 6) Indian Face Database [21],
includes 40 distinct subjects in frontal pose with eleven different gaze directions for each
individual, plus some additional image when available; the dataset is divided into male and
female subjects; image size is 640 × 480 pixels, with 256 grey levels per pixel; images are
captured on a uniform background, and present four expression variations; all subjects are
of Indian ethnicity, with an adequate distribution with respect to gender, but not with respect
to age. The overall composition of EGA with respect to demographic features is summa-
rized in Table 4 (y= young, a=adult, m=middle-aged). In summary EGA dataset contains
469 subjects (about 11 % Afro-American, about 24 % Asian, about 34 % Caucasian, about
16 % Indian, and 14 % Latin). We extracted five images for each subject. The dataset is quite
well balanced with respect to gender with 52,4 % male and 47,6 % female, and slightly less
balanced with respect to age with 32,6 % young, 48,5 % adult and 18,9 % middle-aged. The
latter is due to the fact that most available datasets are acquired in academic settings, and this
impacts on the composition of the resulting collection. We note here for completeness that,
at present, the most suitable dataset to reproduce real world conditions would be Labeled
Faces in the Wild (LWF) [19]. However, it is only annotated with subjects’ identity, not with
demographics. This makes it hard to exploit for our experiments. It is worth noticing that
our multi-expert architecture will not require pre-determination of probe demographics, but
in the experimental phase this information is used to measure performance and compare
different approaches.

Before presenting our proposed method, it is worth establishing a common ground with
the work by Klare et al. In a similar way, we also rely on multiple classifiers, each trained
on a specific demographic feature. Our preliminary experiments focused on the influence
of different training strategies on the final recognition results. In particular, we chose eth-
nicity as the first test-bed. Compared with gender and age, this feature usually presents the
highest number of different significant classes, and therefore is prone to the highest degree
of confusion. In fact, gender only entails a binary classification. Regarding age, it is not
usually processed neither at single year level, nor in narrow bands, that are very difficult to
partition even for a human operator, but rather in quite wide intervals (typically, child, adult,
and elder). Being possibly subject to higher error rates, yet allowing a reliable verification,
ethnicity is a better testbed to assess the advantages of the proposed approach. We decided
to use quite popular and widely available recognition procedures. The aim was to obtain
baseline and repeatable results, and to better assess the influence of demographic informa-
tion. LBP [1] was used to extract a feature vector from an image. In practice this kind of
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vector is a chain of histograms of LBP codes, computed for each cell of a grid defined
over the image. The finer the grid, the larger the vector size. Afterward, OLPP dimension-
ality reduction method [54] was used to obtain a more compact vector. Of course, other
dimensionality reduction methods might have been used, e.g. the approach in [26]. By our
experiments, it comes out that the results relevant for this work are not dramatically affected
by this choice. In the following we will refer to the obtained classifier as LBP-OLPP. We
remind that in EGA each subject has five images. Three images per each subject were used
for training, to model the transformation matrix to map the original vectors onto the new
space. The remaining two images per subject were used one for the gallery and the other as
probe. The first part of the experiments aimed at ensuring that the behavior of the classifier
was qualitatively consistent with the outcomes reported in [23], in order to be able later to
compare the contribution of our proposal.

The first experiment assessed how and to what extent the ethnic composition of the image
set used to train a given classifier could affect its performance, in case the system operated
in a different context. For each experimental session, the classifier was trained on one out
of five different ethnicities: Afro-Americans (AA), Asians (AS), Caucasians (CC), Indians
(IN) and Latinos (LT). Each time, the probe and gallery images included only members of
the ethnic group under consideration, while the classifier was trained either on the same or
a different ethnic group. The experiment was repeated separately for each of the five ethnic
groups. Experiments were carried out according to the following. Recognition was carried
out in identification mode, i.e., the identity was searched through the whole gallery, and
therefore the probe was matched against each stored template. During testing, the classifier
ordered the gallery templates according to the similarity score (Euclidean distance between
the feature vectors) obtained by matching each of them with the probe. The first template
in this ordered list was assumed to provide the probe identity. We adopted a mixed identifi-
cation strategy. As for the composition of the probe set, we exploited a closed-set modality
(each probe belongs to a subject which is present in the gallery). However, in order to accept
the result, the corresponding score was compared with an acceptance threshold th, i.e., like
in open-set modality, the first retrieved identity was returned as accepted only if score was
higher than th. This seemed more realistic than classical closed-set modality, when the first
identity is accepted in any case. Denoting the probe identity as id(p), and the identity of the
first returned subject as id(g), (id(p) =id(g)) holds when the identity of the first returned
template is the same as the identity of the probe. We have the following four possible cases:

1. Correct Identification : Correct User (id(p) = id(g)) and Accepted (score(g) > th)
(CI);

2. False Reject: Correct User (id(p) = id(g)) and Not Accepted (score < th) (FR);
3. Correct Reject: Incorrect User (id(p) �= id(g)) and Not Accepted (score < th) (CR);
4. False Identification: Incorrect User (id(p) �= id(g)) and Accepted (score > th) (FI)

Cases CI e CR represent safe system behaviors, FR can be disturbing for the user, while
the case to avoid is FI. System performance can be measured according to the corresponding
rates, i.e. Correct Identification Rate (CIR - correct identifications vs. the cardinality of the
set of probes), False Reject Rate (FRR - false rejects vs. the cardinality of the set of probes),
Correct Reject Rate (CRR - correct rejects vs. the cardinality of the set of probes), and False
Identification Rate (FIR - false identifications vs. the cardinality of the set of probes). Notice
that CIR+FRR+CRR+FIR=1. It is possible to study the system performance at different
operation thresholds. Since it is the most critical value, we fixed FIR and determined th
accordingly. In our experiments, we set th such that FIR=10−1 = 0.1, and computed the
other values using this threshold.
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Table 5 shows performance of the LBP- OLPP classifier with different, single-ethnicity
training sets, when applied to probe / gallery sets belonging to a single ethnicity as well.
We remind that AA stands for Afro-Americans, AS for Asians, CC for Caucasians, IN for
Indians, and LT for Latinos.

The results in Table 5 confirm the intuitive hypothesis that a classifier trained on images
of a specific ethnic group gives the best results when the probe / gallery images belong to the
same ethnic group. The only exception is observed when the classifier is trained with Asian
ethnicity. In that case the results are comparably good. Additional tests reveal that some
differences in performance can be attributed to the different number of subjects available
for each ethnic group. It is worth reminding that the images in the EGA database come from
different datasets, therefore they are captured under different illuminations and different
resolutions. LBP-OLPP is quite robust to these factors. The behavior emerging from Table 5
is consistent with results reported by Klare et al.

We also tested the classifier when it was trained on a single ethnicity but tested on probe
/ gallery sets with images from all ethnic groups (all five in this case). Table 6 shows the
results.

We can observe that CIR is always lower than that achieved when the classifier is trained
and tested on the same ethnicity. It is worth noticing that this is the case when a system is
trained within a specific ethnic setting (e.g., university laboratory, or software company) but
then used in a more general context. Again, these results are consistent with those by Klare
et al. The opposite situation is less interesting in practice, since in real world applications it
is more likely that the classifier is trained on a set of images that is less representative and
varied than that processed at operating time. However, for sake of completeness, we also
measured performance when the classifier was trained on images from all ethnic groups,
and then tested on a single one. Table 6 shows this result too.

Note that most existing biometric systems do not make a preliminary judgment about
the ethnicity of a probe image. For this reason, the most realistic situation is one in which
the classifier is trained on all ethnic groups and is then tested on all ethnicities. LBP-
OLPP achieved a CIR of 0.68 in this case, which is well below the performance achieved
by the same classifier when applied to single ethnic groups. The advice than, consistently
with [23], is to exploit information from single demographics to improve performance. Our
proposal develops along this line and is detailed next.

5 System architecture

5.1 Framework overview

The results discussed in the above section confirm that a classifier trained on a particular
value for a demographic feature, can provide optimal performance when tested on sam-
ples with the same value for that feature. Starting from this, the first step to carry out is to
divide the entire population according to ethnicity, gender and age. The different categories
are clearly not disjoint. For instance, a subject can be both young and Afro-American, and
thus belong to both categories. Five groups are considered for ethnicity ( Afro-Americans,
Asians, Caucasians, Indians, Latins), two groups for the gender (males, females) and three
groups for age (young, middle-aged, adults). After this, it is necessary to train a number of
different classifiers (experts) on different demographic super-classes. These super-classes
may represent mixtures of different features, e.g. Asian males. The last step is to devise
how to use such information during testing, i.e. during recognition of probes. As already
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discussed above, it is possible to use it explicitly or implicitly. In the former case, it is
required to set up a workflow wherein demographic features are determined in advance, in
order to select the most appropriate classifier (expert) accordingly. Only this classifier will
carry out recognition. In turn, the preliminary identification of the demographic class can
follow two modalities. In the first one, it is carried out manually by a human operator: we
will refer to this modality as Manual Explicit Managing of Demographic (MEMoD). A sec-
ond alternative for explicit use of demographics is the automatic selection of the classifier
by one or more upstream Demographics Modules (DMs). The probe is first submitted to
these modules, which determine its demographic class. In this way the corresponding clas-
sifier can be called for recognition. We will refer to this modality as Automatic Explicit
Managing of Demographic (AEMoD). Figure 1 shows a schema of MEMoD and AEMoD.

The third possibility, and the one whose implementation is proposed here, is to use demo-
graphic information implicitly, i.e., without having to determine it before recognition. This
approach exploits a multi-expert architecture (“gated network”): the probe is submitted to
all the pre-trained classifiers at the same time, and each of them returns a possible result. A
Supervisor Module (SM) implements an appropriate policy to determine the final response.
This modality will be referred as Implicit Managing of Demographics (IMoD). IMoD can
be configured either with overlapping, or with non/overlapping galleries (discussed in fur-
ther detail later on) (see Fig. 2). It is to point out that SM is a light module, which requires
a computational time not comparable with that required by a DM. The former has only to
analyze and combine the responses produced by the classifiers, while the latter has to per-
form a possibly complex processing to determine the demographic class of the probe. In
order to feed the SM, expert modules involved in IMoD return both a list of ordered simi-
larity scores, the first of which will correspond as usual to the identified identity, and also
a reliability measure for each response. It is worth underlining that we are not interested in
determining the value of each demographic feature for each probe, but rather in avoiding

Fig. 1 Explicit use of demographics: MEMoD and AEMoD modalities
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Fig. 2 Implicit use of demographics: IMoD modality (with partition or division strategy for gallery
templates)

that the lack of demographic information can possibly negatively affect the final recognition
result. In a different perspective, we aim at exploiting such information by adopting IMoD
without pre-determining it explicitly for each probe, and obtain the same results as it was
explicitly known before starting the recognition process (MEMoD or AMoD). At the same
time, our complementary goal is that, during normal system operations, an operator’s check
may be only required in particularly hard cases, appropriately signaled by an alert system.

5.2 Possible implementations

This section will briefly sketch the lines for the implementation of the different modalities
mentioned above, and then the following ones will describe the kinds of modules involved.
a) MEMoD (manual selection of the expert): the selection by a human operator is simply
simulated by parsing the file names in EGA. As a matter of fact such names are composed
by the ordered sequence of the values of each demographic feature for that image (see [44]).
b) AEDoG (automatic selection of the expert): a different AdaBoost classifier was trained
for each demographic group (see section below for details). Its response is a value w which
indicates the confidence of probe belonging to a specific group. Were we purely interested
in the demographic information, this value might be compared against a classifier-specific
threshold defined during training, so that a 0/1 response is returned. For our tests, we do
not use the threshold but rather maintain the returned w value. When a probe is submit-
ted for recognition, we pass it to the Demographic Module (DM), which runs in parallel N
demographic classifiers, one for each demographic class, each corresponding to one of the
trained face recognizers running downstream. The DM returns the vector of w values pro-
duced. The probe is assigned to the class for which the DM has returned the highest w, and
therefore submitted to the corresponding expert for recognition. c) IDoG (implicit use of
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demographic information): the probe is submitted to all experts at the same time, without
any starting hypothesis. Each classifier computes an ordered list of scores for the templates
of its own gallery, and passes such list to the Supervisor Module (SM). The critical aspect
in this modality is the fusion strategy adopted by the SM to integrate the responses from
the experts. It is worth underlining that, though the presented experiments entail the same
classifier/recognition algorithm for each class of demographics, this is not a constraint for
the system. As a matter of fact, since the experts are loosely coupled through the supervisor,
they can implement different classifiers/recognizers (possibly off-the-shelf), especially cho-
sen according to their possible higher effectiveness on a specific demographic feature. We
chose to use the same basic feature extraction, both for demographic feature classification
and face recognition, because our goal was to demonstrate that a system with the proposed
architecture can provide good performance even without demographics pre-detection. For
the same reason, the chosen algorithm run from the single classifiers/recognizers is not the
most advanced in literature.

5.3 The demographics module

Face demographic categorization can be considered as a preliminary step for recognition,
as it allows a reduction of the search space. For instance, it allows to compare the facial
template of a middle-aged Afro-American male only with those templates in the gallery
that belong to the same category. Humans are able to exceed the performance offered by
automated systems, just because they naturally rely on such auxiliary information. How-
ever, making this process automatic is in itself an active field of research [55]. Some critical
aspects that must be taken into account are, for example, the type of categorization (hard,
if the subject is associated with a single category, or soft, if the subject may belong to more
than one category with different confidence), the error introduced by the categorization sys-
tem (a template can be assigned to the wrong category, thus affecting the performance of
the recognition system downstream), the specialization of the classifiers with respect to the
characteristics of each category. Sun et al. [48] use a genetic algorithm to select the fea-
tures that were specific for the discrimination of the gender from the face. The features on
which the genetic algorithm works are those provided by the application of eigenfaces to
face images. The tested classifiers are a Bayesian one, a neural network, a Support Vector
Machine, and one based on LDA. The authors of [28] rather focus their attention on ethnic-
ity. They divide the population into two groups, Asians and non-Asians. Through LDA, the
faces are mapped onto a new feature space, and the distribution of each of the two groups is
approximated with a single Gaussian model (a Gaussian function, for which one estimates
the parameters). The category to which a new sample must be associated can be determined
by Maximum a Posteriori Probability (MAP). The work in [18] makes a finer partitioning
of the population into three categories: Asian, European and African. For each category,
the features are extracted by applying the Gabor Wavelet Transform with retina-sampling.
Classification is based on a Support Vector Machine. The determination of ethnicity in this
case is in cascade: given an input sample, it is decided whether it is African or not, and in
the negative case if it is Asian or not (and therefore European).

In our work, demographic classifiers were trained according to the demographic subsets
used for the experiments. They made up the Demographic Module (DM). Section 6 reports
details on the different subdivision strategies adopted. As mentioned above, LBP [1] was
used to first extract a feature vector from an image, independently from the demographics to
be coded. The space of the characteristics of each demographic category was then modeled
applying the OLPP dimensionality reduction method [54]. Training aimed at modeling the
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transformation matrix towards the lower dimensionality space. This correspond to what we
mention as LBP-OLPP classifier. Of course, training is carried out with different training
set according to the demographic class. An alternative choice would have been to select
a different appropriate feature set for each demographics, since a generic one might be
effective only for some of them. The choice of always using the same aimed at maintaining
the most basic conditions. For each category ci in its own new feature space, an ensemble Ti

of classifiers was trained, according to the AdaBoost scheme. For the purpose of training,
a single image for each identity was considered, in agreement with the statement made by
Bruyer et al. in [3]. The authors observe how it is difficult, if not impossible, to separate the
information related to the identity of a subject from the peculiarities by which she/he shows
the demographic traits of her/his category. However, a classifier Ti in our implementation
does not return a 0/1 answer, as it is commonly the case, but it is modified in such a way
that it will respond with a weight wi , which indicates the degree of membership of a face to
the category corresponding to Ti . It is therefore not necessary to organize the operation of
demographic detection in cascade, as was done in [18], and the face is submitted in parallel
to all the classifiers Ti : the category assigned to the face corresponds to that of the Ti which
yields the highest wi . This is also the category of the face recognizer launched downstream.

5.4 The expert modules

Each expert module implements a classifier (face recognizer) that is independently trained
on samples that share a common value for one or more demographic features. Each expert
is of course trained on a data set with no overlap with data sets used later for enrollment or
testing. This avoids the bias related to a lack of generalization ability. The number and type
of experts strongly depends on the identified relevant demographic features and on how they
are used to partition the whole dataset. However, thanks to mutual complete independence,
the architecture is flexible enough to allow the dynamic introduction and/or deletion of
experts. Here we consider three demographic features: ethnicity, gender and age. A number
of different strategies exist, according to which a population can be divided in subgroups
and then assigned to a specific expert. In particular, we examined two possibilities, which
seemed the most intuitive ones. In the first case, a subgroup is all-inclusive and membership
is specified by a value for each relevant feature. For instance, “Afro-American Male Young”
would include all the samples of young Afro-American boys. In this case a partitioning
would be produced, since this subdivision entails non-overlapping groups, whose union
makes up the whole population. In the second case, the subdivision is based on overlapping
(in terms of subjects) subgroups. In practice, a subgroup is specified here by the value for
a specific feature, and a subject membership holds if the subject presents that value for
that feature. For instance, a subject could be both Afro-American and Young, and therefore
would belong to both the Afro-American and Young overlapping subgroups. More precisely,
a subject would belong to one and only one subgroup for each demographic feature. In
the present case, this entails belonging to three subgroups (one out of five for ethnicity,
one out of two for gender, and one out of three for age). The way the whole population is
subdivided is important, since it determines different possible strategies for the Supervisor
Module. From an implementation point of view, each expert has its own gallery (enrolled
subjects). These are drawn from the class of faces it is trained to recognize, according to
the chosen demographic subdivision of the population. When a face (probe or test sample)
is submitted to the expert, the expert compares it with those in the gallery, and returns a
list of gallery subjects ordered by similarity measure. Each similarity measure indicates
how much the probe is similar to the corresponding face in the gallery. It is worth noticing
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that it is possible to use any off-the-shelf face recognizer, given that it returns a list of
identities ordered by similarity with the probe. As already mentioned above, the experiments
presented here exploited quite basic techniques, to better stress the influence of demographic
information. Even for the expert module, we used LBP to extract a feature vector from an
image, and OLPP dimensionality reduction to obtain a more compact vector; gallery images
were divided as in Section 4 (three for training, one for gallery and one as probe).

5.5 The supervisor module

For sake of readers, it is worth reminding that a Supervisor Module (SM) is involved only
in IDoG (implicit use of demographic information), where no pre-determination of demo-
graphic information is carried out (no DM is involved). SM receives a list of candidate
subjects as response from each face recognizer, ordered by similarity with the probe p. For
each such list, SM first computes a reliability index, which represents how much the poten-
tial response provided by the classifier (the first element in the list) can be trusted. A high
(low) similarity for the first subject, joined with a high reliability, indicates that the expert
is quite sure that the subject is (not) in its gallery. A high (low) similarity, yet with a low
reliability value, indicates that the expert believes to have (not) found the identity for the
probe within its gallery, but also alerts the system of a high probability of error. The simi-
larity index is a numeric value in the interval [0, 1], while the reliability index φ is defined
as in [9]:

φ(p) = 1 − |Nb|/|G| (1)

with
Nb = gik ∈ G|F(d(p, gik )) < 2 · F(d(p, gi1)) (2)

where |G| is the gallery size, p is a probe template, d is any distance measure used in the
system to evaluate template similarity, F is a normalization function (we used the Quasi-
Linear Sigmoidal (QLS) in [9]), and gik is a gallery element (template), with ik indicating its
position in the similarity ordered list, so that gi1 is the first element in the list corresponding
to identification matches for p.

The supervisor module collects the responses from the single experts and integrates them
according to the data fusion strategy adopted. The fusion policy implemented is strongly
influenced by two factors: a) the way the whole population is subdivided into subgroups;
and b) the fusion rule. When subgroups are a partition of the whole population, the galleries
of the single experts are disjoint. Therefore, the candidate identities returned by each expert
are all different from each other. In this scenario, the supervisor module does not (and could
not) integrate the responses, but only acts as a selector. In other terms, it must simply choose
the correct response from the set of responses by the different experts. Different rules are
possible. In the present experiments, SM uses a combination of similarity and reliability
indices, which accompany the response of each expert. For each response, the SM computes
their product cl, and selects the identity returned by the expert that yielded the maximum for
cl. An alternative strategy would set a reliability threshold thj for each expert, and would
select the response with higher similarity score, only among those whose reliability index
is above the corresponding threshold. It is interesting to note that, in this case, with respect
to the single (disjoint) demographic groups, the performance of the global system cannot be
more accurate than the performance of the relevant expert, since this is the only one to store
the correct identity in its gallery.

If the population is divided into non-disjoint groups, the supervisor can adopt a policy
to integrate responses based, say, on a majority rule. In fact, the same subject belongs to
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more groups (e.g., a young Asian male belongs to three groups: Asians, Young and Male
groups). In this scenario, the supervisor can select the identity that received more non-
contradicting votes (was returned by more non-contradicting experts), if one exists. Only if
this does not happen, the supervisor uses a fusion rule for selection, and returns the identity
with higher potential in terms of similarity with respect to the reference gallery (similarity
index, reliability index, or a combination). Figure 2 shows the two gallery settings. The
experiments presented here exploit the same choice rule described above.

6 Experimental results

Performance of the proposed IMoD strategy was evaluated within the same application
scenario described in Sections 3 and 4, and compared with systems exploiting different
approaches. The population examined is composed by the subjects included in EGA. The
demographic features relate to ethnicity (5 categories), gender (2 categories), and age (3
categories). We report performance measured in terms of CIR, CRR, FRR at an operational
threshold determined by setting again FIR=0.1. In particular, for each experiment, the per-
formance of three different systems was compared. The first one was MEMoD (see Fig. 1),
and exploited the naming convention used by EGA files in order to automatically select
the class of the probe and submit it to the right classifier(s). This pre-selection is similar to
Klare et al. approach, where this task is assigned to a human operator, and is potentially the
one achieving the best performance. The second system implemented AEMoD (see Fig. 1):
a Demographic Module performs pre-selection of the appropriate classifier, with more com-
putational demand and possible errors. Finally, the performance of the proposed IMoD (see
Fig. 2) was evaluated, based on the multi-expert strategy. Experts were trained on a set of
images consistent with the composition of their gallery (see below). All the experiments
used LBP-OLPP, for both demographic classification and face recognition.

To better evaluate the results, the performance of each single expert is presented first,
referring to the subset of the probes that actually correspond to identities in its reference
group. This aims at assessing the performance when recognizing samples that the classifier
is trained for. In particular, we consider separate experts for the five ethnicities, for the two
genders and for the three ranges of age. Results are in Table 7. As for ethnicity, it is possible
to observe that the Afro-American ethnicity gives lower results than the others. The exper-
iment is interesting. Ascribing this lower value to the quality of images (illumination or
resolution) would contrast with the fact that the images of other ethnicities, such as Asians,
present even worse variations, without the same decrease in performance. Since the classi-
fier was always the same, it is interesting asking if it is reasonable to conjecture a higher
recognition difficulty for this ethnicity. Performance for gender was well balanced, and this
may mean that no gender category is more difficult than the other. As for age, the LBP-
OLPP achieved significantly lower performance on category “Adult” that on the others.
However, this category is also the richer in samples (227), compared to 153 Middle-Aged
and 89 Young subjects.

In the first comparative experiment, the whole population was partitioned into disjoint
groups according to a single demographic feature. The first partition considered entails
five groups according to different ethnicities. Therefore, five face recognizers were trained,
one for each ethnicity. The Demographic Module involved in AEMoD included five demo-
graphic classifiers, and IMoD included its Supervisor Module. The same experiment was
repeated by partitioning according to the gender, and to the age , with suitable consistent
variations in the combinations of modules. Table 8 reports the compound results of the three
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Table 7 CIR/CRR/FRR at FIR 10−1 from the five experts trained on ethnicity, from two experts trained on
gender, and from three experts trained on age

CIR CRR FRR CIR CRR FRR

ETHNICITY Afro-American 0.717 0.126 0.056 GENDER Male 0.632 0.080 0.185

Asian 0.831 0.058 0.009 Female 0.744 0.046 0.097

Caucasian 0.802 0.060 0.035 AGE Young 0.799 0.061 0.027

Indian 0.837 0.063 0.000 Medium Aged 0.774 0.037 0.084

Latin 0.808 0.076 0.014 Adult 0.584 0.102 0.181

partitions (over either five ethnicities, two genders, or three age ranges) with the different
strategies. These results suggest, as in [23], that if it was possible to identify a-priori the
ethnicity of the subject and to submit the image to the classifier trained for that specific eth-
nicity, the accuracy would be greater. Some further observations are worth about the results
in Table 8. In all three cases AEMoD is closer to MEMoD than IMoD, which however is
often the one with best performance. This can be explained by considering that the reliabil-
ity index used by the SM is an additional information, and concretely influences the choice
of the returned identity. Moreover, all three systems behave in a consistent and compara-
ble way with respect to the three features, e.g., they all provide the best performance on
ethnicity.

In the second experiment the population was divided in 15 disjoint groups correspond-
ing to 5 possible ethnicities by three possible ages, so that the Supervisor in IMoD acted
as a selector. In particular, it implemented the first fusion strategy described in Section 5.4.
Table 9 compares performance. Left part of Table 9 shows that both automatic systems
decrease their performance with respect to Table 8, due to the high number of subgroups
resulting from the combination of different demographics. However, IMoD is more seri-
ously affected. This has a rationale. If we consider a higher number of subgroups, we have a
lower number of samples in each subgroup, which in a manual pre-selection would always
be assigned to the right expert. In IMoD, high fragmentation is detrimental, since the selec-
tion by SMmust rely on a single choice in a high number of responses, with the consequence
of a higher probability of an error.

In the third experiment we had overlapping non-disjoint groups, and the Supervisor Mod-
ule implemented the second fusion strategy described in Section 5.4. The whole population
was divided into 10 groups corresponding to 5 ethnicities, 2 genders, and 3 ages. Notice that
the number of groups for each demographics is just summed up, since they were not a par-
tition. In other words, the groups overlapped with each other, since we had a full partition
for each single feature, but each element of such partition included subjects with different

Table 8 CIR/CRR/FRR at FIR 10−1 from different systems when the population is partitioned according to
a single demographic feature

Ethnicity Gender Age

CIR CRR FRR CIR CRR FRR CIR CRR FRR

MEMoD 0.81 0.07 0.02 0.67 0.08 0.15 0.67 0.07 0.16

AEMoD 0.81 0.07 0.02 0.67 0.08 0.15 0.62 0.10 0.18

IMoD 0.79 0.09 0.02 0.78 0.10 0.02 0.79 0.09 0.02
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Table 9 CIR/CRR/FRR at FIR 10−1 from different systems when the population is either partitioned into
15 disjoint subgroups or divided into 10 overlapping subgroups

15 disjoint subgroups 10 overlapping subgroups

CIR CRR FRR CIR CRR FRR

MEMoD 0.814 0.036 0.045 0.741 0.070 0.113

AEMoD 0.710 0.076 0.113 0.702 0.068 0.122

IMoD 0.601 0.163 0.126 0.782 0.085 0.027

values for the other features. The SM returned the most voted identity or, when all received
only one vote, returned the identity with the maximum product between similarity and reli-
ability. Results are in the right part of Table 9. Performance of both MEMoD and AEMoD
decrease with respect to left part of Table 9 (partitioning). This happens because the cate-
gory assignment is performed a-priori, therefore the system does not exploit the redundancy
(overlap) among the groups. On the contrary, in the IMoD system, the SM can combine, and
not only select, the different responses, and also exploit the majority vote as a further con-
firmation of the correctness of the selected identity to return. Results (see Tables 8 and 9)
seem to indicate that overall performance is lower than with demographically homogeneous
datasets, therefore confirming the results by Klare et al. We can further observe that IMoD
performance, tough slightly lower than in Tables 8, does not degrade by much, while it is
better in terms of feasibility / deployment and computation.

7 Conclusions

Current literature suggests that, when demographics are relevant discriminating features
in a population, the pre-selection of an appropriately trained recognition system can sig-
nificantly improve performance. Pre-selection entails either human intervention, or that a
demographic module (soft biometrics) runs before the recognition process, in order to trig-
ger the appropriate classifier. The first solution is not always applicable, e.g., in unattended
mass screening biometric recognition applications, like tagging of huge amounts of images.
The use of soft biometrics may slow down the overall process, since two different classifiers
must be run in sequence, and also introduce an early error affecting the overall recog-
nition procedure. This paper describes a novel system architecture to handle recognition
across different demographic groups. It uses demographic information, yet implicitly. We
avoid determining the value for demographic features for each single probe, thus avoiding
both human intervention and the increase of computational time. We use a multiple-expert
approach, with different classifiers trained on different demographic classes and run in par-
allel on each probe. Thanks to this, the only overhead is caused by a supervisor module,
which only executes a couple of simple mathematical operations to fuse the results returned
by the single experts. As expected, this strategy may achieve slightly lower performance,
since the choice among more responses from different experts can introduce further error
in the final result. To confirm this influence, we can observe that the smaller the subgroups
(the higher the fragmentation, and therefore the number of experts, but also the higher the
possible confusion), the worse the results. However, the positive counterpart is the absence
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of both manual and automatic pre-processing step in the recognition workflow. Future work
will investigate more fusion strategies, to better exploit the information overlap provided by
non-disjoint galleries. It is also planned to carry out experiments using the LWF dataset. To
this aim, and to avoid an often unfeasible preliminary classification of enrolled subjects, we
will also test our architecture with experts trained on different classes, but working with the
same overall gallery.
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