
Multimed Tools Appl (2017) 76:21665–21690
DOI 10.1007/s11042-016-4079-6

Effective recognition of facial micro-expressions
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Abstract Facial expression recognition has been intensively studied for decades, notably
by the psychology community and more recently the pattern recognition community. What
is more challenging, and the subject of more recent research, is the problem of recognizing
subtle emotions exhibited by so-called micro-expressions. Recognizing a micro-expression
is substantially more challenging than conventional expression recognition because these
micro-expressions are only temporally exhibited in a fraction of a second and involve
minute spatial changes. Until now, work in this field is at a nascent stage, with only a
few existing micro-expression databases and methods. In this article, we propose a new
micro-expression recognition approach based on the Eulerian motion magnification tech-
nique, which could reveal the hidden information and accentuate the subtle changes in
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micro-expression motion. Validation of our proposal was done on the recently proposed
CASME II dataset in comparison with baseline and state-of-the-art methods. We achieve a
good recognition accuracy of up to 75.30 % by using leave-one-out cross validation eval-
uation protocol. Extensive experiments on various factors at play further demonstrate the
effectiveness of our proposed approach.

Keywords Micro-expressions · Motion magnification · EVM · CASME II · Local binary
patterns

1 Introduction

Facial micro-expression is a subtle, short, quick (1/3 to 1/25 second [8, 33]) and involuntary
expression, which appears when people try to conceal their genuine emotions, especially
in high-stake situations [8]. While macro-expressions are normal facial expressions that are
visibly noticeable and are normally intended, micro-expressions are much more rapid and
involuntary, or at times, an attempt to hide the true emotion felt. For example, in some
situations, people might be very sad, but she showed happiness to disguise her sadness for
not worrying people who cares her much. However, involuntarily and unconsciously, there
is still a fast expression of sadness revealed in her face which is too fast to be captured by
our naked eyes. Only when we examined the recorded video frame by frame, we will find
the subtle changes in her face, the so-called micro-expression. Due to the short duration of
micro-expressions compared to that of macro-expressions, micro-expressions are difficult
to be detected in real-time conversations [8]. Even the experts with professional training
can only achieve 47 % recognition accuracy [10] by using their naked eyes to perform the
tedious task of frame-by-frame observation. Therefore, an automatic and accurate micro-
expression recognition system will be helpful and useful to tackle these issues.

The ability to recognize subtle emotions in humans has vast applications in different
domains, ranging from lie detection in the case of crime and public safety to better under-
stand patients with special needs such as autism [39] and schizophrenia [36]. In clinical
work, to detect and recognition micro-expression is important to assist psychologists in
the diagnosis and remediation of patients with mental diseases. Sometimes patients might
not be cooperative towards psychologists, thus the detection of micro-expressions can help
psychologists judge whether the patients are telling the truth. Similarly in criminal inves-
tigation, the ability to identify micro-expressions also helps the police interrogate suspects
by analyzing the truthfulness of their responses as portrayed by their hidden expression [8].
As such, machine automated recognition of facial micro-expressions would be enormously
valuable.

While research in the direction of micro-expressions has seen considerable effort in the
past decades in the discipline of psychology, research into micro-expressions is only starting
to thrive in the discipline of pattern recognition and machine vision. There are currently
two promising spontaneous datasets for micro-expressions, notably the Spontaneous Micro-
expression (SMIC) [16] and Chinese Academy of Sciences Micro-expression (CASME) II
[49] databases. SMIC is of a small sample size taken from a small number of subjects,
thereby leaving CASME II to be the most comprehensive dataset for micro-expressions to
date. The creators of the CASME II dataset reported accuracy rates of up to 63.41 % using
standard techniques of Local Binary Patterns-Three Orthogonal Planes (LBP-TOP) [53] for
feature extraction and Support Vector Machine (SVM) for classification [7].
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The CASME II database is video based, consisting of an ordered sequence of images;
hence, dynamic textures are favored to describe the spatio-temporal information present
in videos. Local Binary Pattern - Three Orthogonal Planes (LBP-TOP) [53] is a dynamic
texture descriptor that is simple for computing and robust for recognition. The descriptor
considers the concatenation of LBP histograms on three orthogonal planes – XY, XT and
YT respectively. The XT and YT planes preserve the temporal transition information that
explains the facial movement displacement e.g. how eyes, lips, muscle or eyebrows move.
In contrast, the XY plane computes only spatial information that explains both expression
and identity information of a face appearance.

However, to solve the micro-expression recognition task using only the LBP-TOP
technique is not sufficient to fully describe the hidden information and patterns in micro-
expression faces because the spatio-temporal changes induced by micro-expressions are
not obvious. In this paper, we propose a new technique for micro-expression recognition
that adopts Eulerian Video Magnification (EVM) [48] to amplify subtle facial expression
motions. The motion magnification process first applies spatial decomposition pyramid and
temporal filtering to the video frames before amplifying the resulting signals to reveal hid-
den motion information. Following that, spatio-temporal feature patterns are then extracted
from the motion-amplified face video sequence. Through this process, our best accuracy of
75.30 % is achieved by using LBP-TOP for feature extraction and SVM with Radial Basis
Function (RBF) kernel for classification using leave-one-out cross-validation (LOOCV), the
same evaluation strategy as the baseline approach. Our novelty and contributions are listed
as follows:

– To our best knowledge, this is the first extensive application of EVM for the amplifica-
tion of micro-expression motions for micro-expression recognition.

– Video motion magnification by EVM is able to extract more discriminative spatio-
temporal features, dramatically improving the recognition of facial micro-expressions
over state-of-the-art methods.

– We demonstrated the effectiveness of applying EVM on a variety of scenarios – differ-
ent frame block partitions, plane combinations, local feature neighborhoods and various
classifiers.

The rest of the paper is organized as follows: We review the related work in Section 2.
Our approach and methods are described in Section 3 while experimental results and in-
depth analysis are shown in Section 4. Finally, conclusion and future work are provided in
Section 5.

2 Related work

2.1 LBP and its variants

Local Binary Patterns (LBP) which are introduced by Ojala et al., is a class of features
originally proposed for texture classification [25]. In recent years, LBP based features have
found applications in facial image recognition [13]. The original version of the LBP oper-
ator [24] works in a 3 × 3 pixel block of a gray scale image. The non-center pixels in
this block are thresholded by its center pixel value, multiplied by powers of two and then
summed to obtain a label for the center pixel. The basic LBP operator was revised by Ojala
et al. and a more generic form of LBP operator [25] was presented several years after the
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original publication. This generic revised form of LBP operator does not restrict on the size
of the neighborhood or the number of sampling points. As shown in Fig. 1, the size of the
neighborhood is controlled by the R index; the number of sampling points is set by the P

index.
More precisely, given a pixel c located at (xc, yc), then the LBP code is computed as

follows:

LBPP,R(xc, yc) =
P−1∑

P=0

s(ip − ic) × 2P (1)

where

s(x) =
{
1if x ≥ 0,
0if x < 0,

(2)

ic denotes the intensity of that pixel c, ip indexed by P denotes the intensity of the circular
neighbors of c of radius R, and s(x) is a function that outputs 1 if x is non-negative and 0
otherwise, and then proceeds to compute the histogram of all LBP codes for all pixels in an
image or region, and this histogram represents the texture feature descriptor of that image
or region.

Different variants of LBP have been subsequently proposed in the literature. The most
basic extension of LBP descriptors would be rotation invariant uniform pattern LBP [25]. To
be insensitive to rotation, P − 1 bitwise circular shifts are performed on the binary pattern
and the smallest value is chosen to be the texture feature for that block. A binary pattern is
defined as a uniform pattern if the total number of bitwise (0-1 or 1-0) transitions is at most
2 on the binary string traversed in circular form. To consider both the spatial and temporal
information of a dynamic texture, [53] proposed a 3D variant of the LBP. So-called LBP-
TOP, this considers the co-occurrences on three types of orthogonal planes: the XY plane,
the XT plane and the YT plane.

Another 3D LBP variant was proposed by [9], extending the original LBP from 2D
images to 3D volumetric data while maintaining full rotational invariance. To further reduce
the vector dimension, [11] proposed a variant of LBP, called Center-Symmetric LBP (CS-
LBP), where only center-symmetric pairs of pixels are compared instead of comparing each
pixel with the center pixel. To overcome the problem of sensitivity to noise in uniform
image regions, another variant called Local Ternary Patterns (LTP) was proposed by [43].
This method suggested a 3-valued coding scheme that is quantized to 0, +1 and −1 based
on whether the neighborhood pixel intensity is equal, higher or less than that of the center
pixel intensity, ic.

In another direction, instead of the original circular neighborhood definition, an ellip-
tical neighborhood definition was proposed for LBP, namely the Elliptical Local Binary

Fig. 1 Circularly symmetric neighbor sets for different (P;R)
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Pattern (ELBP) [23], which was applied in face recognition to exploit the anisotropic struc-
tural information. The concept of applying of elliptical patterns was originally proposed by
[17].

Besides the extensions or variants of LBP, researchers have tried to combine LBP with
other feature extraction methods for better performance. Wang et al. [45] proposed a new
method combining Histogram of Oriented Gradients (HOG) and LBP, called HOG-LBP.
This method is notably robust to partial occlusion as the HOG-LBP features contain both
shape/edge information and texture information. Ahonen et al. [1] proposed a rotation
invariant image descriptor - LBP Histogram Fourier features (LBP-HF). It is a descriptor
computed from discrete Fourier transforms of LBP histogram. The LBP-HF features are
rotation invariant (globally for the whole image to be described) and have high discrimi-
native power. Azmi and Yegane [2] proposed a method called Local Gabor Binary Pattern
(LGBP), which is the combination of Gabor and LBP. LGBP is robust to the appearance
variations due to misalignment and lighting.

2.2 Emotion and micro-expression recognition

In this section, we will review some popular techniques which have been applied in facial
macro-expression recognition (emotion recognition) and micro-expression recognition. To
some extent, macro-expressions and micro-expressions are in common, thus techniques
applied for macro-expressions could potentially work for micro-expression recognition as
well. However, micro-expressions are more difficult to analyze than macro-expressions,
since micro-expressions last only 1/3 to 1/25 seconds and involve minute spatial variations
that can hardly be detected by naked eyes.

2.2.1 Emotion recognition

Emotion recognition has been researched for decades primarily by the psychology commu-
nity [8]. In the pattern recognition and machine vision community, research started on posed
datasets [14, 20, 21, 28] i.e. where subjects were asked to show how they are feeling; it
was subsequently felt that spontaneous datasets [3, 22] capture more realistically the actual
emotional situations experienced by subjects i.e. subjects were induced to naturally express
their feelings rather than being asked to show a specific feeling. Stimuli included carefully
designed video clips to trigger different emotions.

A facial expression recognition method involves two different phases: facial feature
extraction and classification. Facial feature extraction involves extracting features of facial
images; the resulting feature vectors can then be used to project the facial image from the
higher dimensional image space into a lower dimensional feature space while preserving the
discriminative features. Discriminative features separate the facial images of one class from
facial images of other classes in the lower dimensional feature space [35]. Better separation
among classes in the lower dimensional space leads to higher classification rate.

Generally, the features that are commonly adopted can be categorized into two major
types: geometric features and appearance features. Geometric features measure the displace-
ment of face components such as eyes while appearance features capture the texture changes
on a face when an action is performed such as smiling. Geometry based techniques include
Haar-like feature extraction, LBP, and Gabor wavelets. Bashyal and Venayagamoorthy [4]
proposed recognition of facial expressions using Gabor wavelets and Learning Vector
Quantization (LVQ). This method was used to recognize seven different facial
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expressions from still pictures of the human face. Shan et al. [40] formulated Boosted-LBP
to extract the most discriminant LBP features. These selected features were then classified
by SVM. A better performance is obtained by using the Boosted-LBP features instead of
LBP features. Satiyan et al. [38] attempted to recognize facial expressions by using Haar-
like features. Namely, six statistical features mean, variance, standard deviation, power,
energy and entropy which were derived from the approximation coefficients of Haar-like
decomposition, and then use the neural network for classification.

Appearance based techniques consist of two fundamental methods i.e., Principle Com-
ponent Analysis and Independent Component Analysis (ICA). Oliveira et al. [26] suggested
2D PCA (2DPCA) for facial expression recognition. A multiobjetective genetic algorithm
called the Nondominated Sorting Genetic Algorithm (NSGA) [27] was applied on the
2DPCA features to perform further feature selection. The proposed approach was evalu-
ated on the Japanese Female Facial Expression (JAFFE) database. Both classifiers, kNN
and SVM were used to classify the 2DPCA features. Uddin et al. [44] suggested to uti-
lize Enhanced Independent Component Analysis (EICA) to extract independent features
which will then be classified by Fisher Linear Discriminant Analysis (FLDA) [5]. Using
these extracted features, Hidden Markov Models (HMMs) is then utilized to model various
expressions like joy, sad, anger, surprise, fear, and disgusting. The proposed approach was
evaluated on Cohn-Kanade database.

Besides these two types of techniques for feature extraction, there is another type of
technique called model based techniques. In the model-based methods, the statistical model
is used to recognize facial expressions and this statistical model is actually constructed
from training images. Lucey et al. [20] suggested to adopt holistic model based approach
called the Active Appearance Model (AMM) and a linear SVM classifier for detecting
both Action Units (AUs) and emotions on the Extended Cohn-Kanade (CK+) database.
Samarawickrame et al. [37] presented the promising accuracy and effectiveness of apply-
ing Active Shape Models (ASM) and SVM. The facial coordinates which are located by
ASM, were fed into SVM for classification. The proposed method was evaluated on JAFFE
Database. Once the feature extraction is performed then classification can be done by kNN
classifier or SVM classifier.

2.2.2 Micro-expression recognition

More recently, the research community has realized that while emotion recognition has seen
considerable research by both the psychology and vision community, challenges remain in
terms of being able to recognize more subtle emotions.

In the literature, there are not many papers working on facial micro-expression recog-
nition due to the lack of the existing micro-expression based high-speed video databases.
Shreve et al. [41, 42] computed the strain magnitude of optical flow to discriminate micro-
expressions from macro-expressions by observing the interval flow in a given threshold.
They evaluated their methods on BU [52], USF and USF-HD databases. however, the work
is contributed to the spotting the micro and macro expression in video only rather than the
recognition. Polikovsky et al. [33] extracted 3D-Gradient descriptors from the widely used
face region (FACS), and the approach was evaluated on their own 200 fps high-speed camera
recorded dataset. However, automatic FACS region detection still remains a challenge. To
mark face region manually would be tedious and professional training is required. Park and
Kim [29] used motion magnification to detect subtle facial expression. They first marked
facial shape points by using AAM model, and then aligned the face followed by motion
vector of 27 feature points magnified. The framework was evaluated on the SFED2007 [30]
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dataset. However, the SFED2007 dataset is actually based on static images rather than video
and it is not popularly used.

In the first attempt at recognizing spontaneous micro-expressions, Pfister et al. [32] used
temporal interpolation was used to count the length of short videos and the spatio-temporal
local texture descriptors to handle dynamic features with SVM, MKL and RF for classi-
fier training. Their approach was evaluated on the Spontaneous MICro-expression (SMIC)
database [16] which was recorded using a 100 fps high-speed camera. They reported that
temporal interpolation could help achieve equivalent micro-expression detection perfor-
mance to a standard 25 fps camera. Later on, Yan et al. [49] proposed CASME II, the most
comprehensive micro-expression dataset up to date, which comprises a total of 247 videos
from 26 subjects, captured at 200fps and coded into 5 class labels. More recently, more
approaches have been proposed for micro-expression recognition on this dataset; Liong
et al. [18, 19] introduced features derived from optical strain information, Wang et al. [46,
47] reinvented the popular LBP-TOP into efficient variants that retain essential information,
while Park et al. [31] attempted to improve recognition by leveraging on an adaptive motion
magnification approach.

With the exception of [31], most works in literature focused on the extraction of features
from micro-expression samples, and does not attempt to magnify these subtle facial motions
before feature extraction. We hypothesize that the subtlety of these motions is a bottleneck
to better performance as the minute change of intensities at these areas cannot contribute
better representation. Our work differs from the work of Park et al. [31] in that we do not
subscribe to the idea of adaptively selecting the most discriminative frequency band when it
is not constrained to AU-specific locations, i.e. a chosen frequency band may not be suitable
for different parts of the face. Moreover, their work considers only the highest frequency
cutoff of 10 Hz while micro-expressions of shorter durations can potentially reach the upper
limit of 15-25 Hz [8] (though Yan et al. [50] found that these are usually rare). Our work
also emphasizes on the choice of magnification factor, which is a crucial factor in achieving
good performance.

3 Proposed approach

The workflow (Fig. 2) of our proposed approach is succinctly summarized with the fol-
lowing three main steps: 1) Video motions are pre-processed and amplified with Eulerian
Video Magnification (EVM); 2) Spatio-temporal feature patterns are extracted from the
motion-amplified data by LBP-TOP; 3) SVM classification is performed on the features to
recognize the facial micro-expression present in the video. The following sub-sections will
elaborate these steps in detail.

3.1 Eulerian video magnification

EVM was proposed by [48] to reveal subtle motion changes in videos, which can be almost
impossible to see with the naked eye. In general, there are 4 steps to amplify the subtle
motion: 1) compute the full Laplacian pyramid [6], which decomposes the frame sequences
of the video into different spatial frequency bands. 2) A band-pass filter, e.g. Ideal, Butter-
worth, Second-order IIR, is applied to extract the frequency bands of interest. 3) Amplify
the motion by multiplying the extracted bandpassed signal at different spatial level by a
magnification factor α. 4) The amplified signal is added back to the original to obtain the
final motion magnified video.
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Fig. 2 The flow diagram of the
proposed approach, with three
main steps: 1) micro-expression
signals are amplified using
EVM; 2) LBP-TOP features are
extracted from motion-magnified
XY, XT and YT planes; 3) SVM
is used to predict classes

3.1.1 Motion magnification using first-order Taylor series expansions

In [48], the mathematical inference of EVM is presented as the first-order expansion of the
Taylor series. The magnification is produced by analyzing the temporal motion based on
the first-order Taylor series expansions rather than directly tracking the motion. We will
briefly mathematically describe the relationship between temporal processing and motion
magnification in depth next. For further reference, the details of EVM can be found in [48].

Let I (x, t) be the image intensity at position x and time t , and δ(t) denote the motion
displacement function with respect to the observed pixel intensity at position x, such that
I (x, t) = f (x + δ(t)) and I (x, 0) = f (x). By equation, we will have the synthesized signal
that is magnified by the factor α

Î (x, t) = f (x + (1 + α)δ(t)) (3)

The first-order Taylor series expansion is used to approximately expand the image displaced
intensity f (x + δ(t)) about x at time t , as

I (x, t) ≈ f (x) + δ(t)
∂f (x)

∂x
(4)

Formula (4) is applicable only if the image is approximately expandable by the first-order
Taylor series.

Moving on to the band-pass filtered signal. Let B(x, t) be the result of applying a broad-
band temporal band-pass filter to I (x, t) as shown in equation (5), which later will be
amplified with the factor α and added back to the original signal I (x, t).

B(x, t) = δ(t)
∂f (x)

∂x
(5)

To amplify the band-pass filtering processed signal by the factor α, and synthesize the
signal, the result of adding original and band-pass filtering processed signal, will be

Î (x, t) = I (x, t) + αB(x, t) (6)

Replacing I (x, t) and B(x, t) with (4) and (5), we have

Î (x, t) ≈ f (x) + δ(t)
∂f (x)
∂x

+ αδ(t)
∂f (x)
∂x

≈ f (x) + (1 + α)δ(t)
∂f (x)
∂x≈ f (x + (1 + α)δ(t))

(7)
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Through the final inference equation, we can see that the displacement δ(t) is amplified by
the magnitude of (1 + α) via the first-order Taylor series expansion. However, in practice,
the assumptions presented above have some limitations that hold for smooth images with
small motions only.

(1 + α)δ(t) <
λ

8
(8)

where the spatial wavelength, λ = 2π/ω of the moving signal of frequency ω. The
bounds shown in (8) provides a guideline that gives the largest motion amplification fac-
tor, α, compatible with accurate motion magnification of a given video motion, δ(t) and
image structure spatial wavelength, λ. However, in certain video scenarios detailed in [48],
violating the approximation limit can be perceptually preferred.

3.2 LBP-TOP based Spatio-temporal feature extraction

LBP-TOP is a robust dynamic texture descriptor proposed in [53], which has been popularly
applied to facial expressions. To consider both spatial and temporal information of the video,
LBP-TOP extends the LBP in that three types of planes (XY, XT, YT) are considered instead
of one plane (spatial XY) only. Given a video sequence, it can be viewed as a stack of
XY, XT, YT planes along time T axis, spatial Y axis and spatial X axis respectively. The
XY plane mainly reveals the spatial information, while XT and YT planes contain rich
information of how pixel grayscale values transit temporally.

The computation of LBP-TOP is the same as LBP in (1) for each independent plane, i.e.
in the case of LBP, one plane XY is considered only for LBP computation. Each pixel of the
plane will be indexed by the local binary pattern, which computes the spatial relationship
between the observed pixel and neighbor pixels. The length of the binary code is the same as
the number of the neighbor pixels. Then one histogram is used to statistically compute how
those binary codes are distributed. The size of the histogram is determined by the number
of neighbor pixels used. For n number of neighbor pixels, the length of the histogram is 2n.
However, to reduce the number of histogram bins, uniform patterns were introduced for the
LBP [25]. For example, for 8 neighbor pixels, the number of histogram bins are reduced
from 256 to 59. Essentially, much of the computation of LBP-TOP is directly inherited from
LBP. The difference is that the XT and YT planes have to be computed the same way as the
XY plane such that three histograms are derived from the three types of planes respectively
and concatenated to form one single histogram as the dynamic video texture descriptor, as
shown in Fig. 3.

3.3 Classification

For classification we consider the SVM technique due to its strong mathematical foun-
dations and high reliability in many practical applications. Depending on the number of
classes that the data samples are to be from, the SVM can be divided into two problems:
two-class problem and multi-class problem [34]. However, in this paper we consider the
multi-class problem since the number of emotions considered is more than two, which are
‘Happiness (HAP)’, ‘Surprise (SUR)’, ‘Disgust (DIS)’, ‘Repression (REP)’, and ‘Others
(OTH). There are two classical approaches to solve the multi-class problem: one-against-
all and one-against-one. Hsu and Lin [12] reported that the latter approach is quicker and
more practical than a one-against-all approach. In the one-against-one approach k(k −1)/2
classifiers are constructed for k classes, with each classifier training data from two different
classes in a pairwise fashion. However, the matching class can be found by majority voting
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Fig. 3 The process of LBP extraction from XY, XT, and YT planes to form the LBP-TOP feature histogram

technique [12]: each binary classification performed on an input pattern contributes a vote
to either class of the classifier. At the end, we predict the input pattern as belonging to the
class with the largest vote.

4 Experiments

4.1 Dataset

There are only a few micro-expression databases available due to the difficulty in eliciting
these micro-expressions and annotating them into relevant ground truth categories. In the
aspect of acquisition, high speed recording devices are required to capture the subtle expres-
sions since micro-expressions by definition only exist in fractions of a second. Furthermore,
to be realistically useful, naturally induced expressions are favored rather than posed ones.
However, how these spontaneously expressed micro-expressions are collected is tricky,
as the emotional stimuli used to naturally induce a micro-expression has to be carefully
designed. When all the videos are collected, to label the ground truth requires professional
expertise, which can only be done by trained professionals through careful observation of
the video, frame by frame. Thus, to create a spontaneous micro-expression video database
is a costly effort. SMIC [16], CASME [51] and CASME II [49] are the most current micro-
expression databases to the best of our knowledge. However, the SMIC dataset is much
smaller in size (with only 164 samples from 16 subjects) with only 3 valid labels for recog-
nition (positive, negative, and surprised) while the CASME is simply a preliminary subset
of the newer CASME II.

Hence, we consider the most comprehensive dataset up to date – CASME II [49], which
was created by the Chinese Academy of Sciences and publicly available for research use,
to validate the performance of our proposed technique. There are a total of 247 videos from
26 Asian subjects with average age of 22.03 years old. All videos are labeled by two profes-
sional coders (to an acceptable reliability of 0.846) into 5 micro-expression class labels, i.e.
‘Happiness (HAP)’, ‘Surprise (SUR)’, ‘Disgust (DIS)’, ‘Repression (REP)’, and ‘Others
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(OTH)’ which include other emotions such as anger, sadness and tense). To avoid flicker-
ing light from the high-speed recording, they strictly selected and placed four LED lamps
under umbrella reflectors to make sure the illumination is steady and of high-intensity. The
participants’ faces were captured by using a Grey GRAS-03K2C camera with resolution
640 × 480 at 200fps through “Raw 8” mode. The recordings were then saved in MJPEG
format without any interframe compression. For further details, refer to [49]. Figure 4 shows
a sample video of ‘subject6’, which is labeled as the ‘Surprise’ micro-expression. Visually
by the naked eye, it is very difficult to spot the subtle or “hidden” changes present in the
video. Hence, to tackle this issue, the amplification of these subtle changes is desirable.

4.2 Experimental results and discussions

In this section, we first discuss the parameter settings in Section 4.2.1, particularly the
choice of band-pass filter and amplification factor. In Section 4.2.2, the performance of
our proposed approach is reported, including a benchmark comparison against current
state-of-the-art approaches. Besides, we also analyze how EVM improves the recognition
capability for each micro-expression class as shown by confusion tables. The following
sections further verify the effectiveness of our approach by an array of extensive tests that
investigates the impact on performance under various conditions: different combination of
LBP-TOP planes (Section 4.2.3), LBP-TOP spatial block partitions (Section 4.2.4), LBP-
TOP feature neighborrhood size and classifiers (Section 4.2.5). In all these experiments, we
compared the EVM based and non-EVM based approach fairly with all other parameters
and conditions held unchanged.

Fig. 4 A sample video of ‘Surprise’ class (“EP15 02”) from the CASME II dataset with subtle changes in
the eye and eyebrow regions. The micro-expression exhibited by the subject is almost unnoticeable to the
naked eye. Refer to animation in Online Resource 1
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4.2.1 Motion magnification: filter and parameter selection

The selection of parameters for motion magnification is a difficult and manual task, but
the original EVM paper [48] offers a heuristical guide that is largely empirical in nature,
in order to arrive at some sufficiently good values. The authors note that “the choice of
filter is generally application dependent”. For motion magnification, filters with a broad
passband such as low-order infinite impulse response (IIR) filters are the preferred choice.
In experiments from the original paper, second-order IIR filters are found to be capable of
revealing small head movements and subtle body motions of a sleeping baby. The slow roll-
off of the IIR filter introduces a broad-band that tapers off indefinitely towards zero, making
it suitable for motion sweeps instead of short pulses (where ideal filters with sharp roll-offs
are more suitable).

Therefore, in our work, we opt for a second-order IIR filter to best magnify the subtle
motions present in facial micro-expressions. The parameters used for the ‘baby’ video in the
original paper [48] are taken as our initial choice of parameters. This is intuitively chosen
as the breathing motion of the baby is somewhat similar to that exhibited by subtle facial
motions.

By visual inspection, the resulting output video is generally more appealing, as the effect
of motion magnification is clearly visible (Fig. 5) on selected frames of the sample video
(Fig. 4). At a closer look, the motion between frames, particularly in the eye region, appears
more pronounced in Fig. 5 than Fig. 4. For better comparison of the same sample sequence
before and after motion magnification, refer to the animations given in Online Resource 1.

In Fig. 6, we further analyze the amplified motion effect on the XT and YT planes of the
same sample sequence. Although the changes on the XT plane (Fig. 6a) are not obvious,
the visual difference in the texture of the motion-amplified image (on the right image) is
noticeable compared to that of the original sequence (on the left image). This verifies the

Fig. 5 The sample video (from Fig. 4) after motion magnification. The motion at the eye and eyebrow
regions is much more obvious now. Refer to animation in Online Resource 1
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Fig. 6 a Visualizing the effect on the XT plane without (left) and with (right) motion magnification, and b
visualizing the effect on the YT plane without (left) and with (right) motion magnification

augmentation of noise after magnification. The changes in the YT plane are much more
obvious. From Fig. 6b, there are three dark horizontal strips. In the first and second dark
strips of the motion-amplified image (on the right), we can clearly see that the vertical
displacement along these strips swell more than that of the original sequence (on the left);
the first two black areas correspond to the regions of eyebrows and eyes respectively.

The subsequent steps after motion magnification are as follows. We apply LBP-TOP
[53] to extract spatio-temporal features from each video sequence, with 4 neighbor pixels
for all three planes, using 5x5 block partitions. Videos are not normalized into equal-sized
volumes (width (X), height (Y) and length (T)), since LBP-TOP does not require this for
different videos. Instead, the resultant histogram is normalized, providing a statistical rep-
resentation of the distribution of textures within the video. We set the radii of X, Y and T to
1, 1 and 2 respectively, which is our default setting that achieves the best result. We perform

Fig. 7 a Second-order IIR filter (wl = 0.4, wh = 3); b Comparison of micro-expression recognition with
EVM using different filter types (Ideal, Butterworth, IIR) with α = 10 and λc = 16. The red horizontal line
indicates the performance of the baseline method [49] without motion magnification
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Table 1 Comparison of micro-
expression recognition with
EVM using second-order IIR
filters of different α and λc values

α λc IIR filter (%)

10 16 72.47

20 16 75.30

30 16 74.49

20 26 74.49

classification of videos from the CASME II dataset on 5 micro-expression classes (i.e. hap-
piness, disgust, tense, surprise, repression), using SVM classifier with a leave-one-out cross
validation strategy. This is conducted in the same manner as that performed by the original
authors [49].

The choice of amplification factor α is crucial, but yet sensitive. This is because as the
value of α increases, the noise present in the image is also amplified. Also, a large value of
α violates the bounds in (8) that sufficiently amplifies the motion to a translation of δ(1) =
π/8. With the knowledge of these parameter constraints and the author’s suggestions, we
experimented with various filter types and refine its related parameters to obtain the best
results.

Figure 7b shows the recognition performance using the ideal, Butterworth and second-
order IIR filters with magnification factor, α = 10 and spatial frequency cutoff (wavelength)
λc = 16 (following settings used by the ‘baby’ video from [48]). We note that the second-
order IIR filter (7a) clearly outperforms the other two filters, thus verifying the strengths of
the IIR filter mentioned earlier. As expected, the ideal filter performed the worst based on
suggestions in [48] since the narrow passband is more suited for color or intensity ampli-
fication. Based on this observation, we proceed to test the recognition performance using
a second-order IIR filter with various α and λc settings, as shown in Table 1. By first con-
straining λc while increasing α, it can be observed that the accuracy rates start to drop
when α increases beyond 20. Meanwhile, the value of λc does not appear to influence the
magnification output.

Table 2 Confusion tables of the
proposed and baseline methods
using SVM classifier with linear
kernel (LOSOCV protocol)

Expression OTH DIS HAP SUR REP

Proposed method (with EVM)

OTH 0.735 0.147 0.059 0.020 0.039

DIS 0.433 0.433 0.133 0.000 0.000

HAP 0.182 0.091 0.606 0.000 0.121

SUR 0.320 0.200 0.040 0.400 0.040

REP 0.370 0.074 0.333 0.000 0.222

Baseline (without EVM)

OTH 0.559 0.245 0.137 0.020 0.039

DIS 0.467 0.283 0.167 0.050 0.033

HAP 0.303 0.030 0.394 0.061 0.212

SUR 0.240 0.080 0.240 0.320 0.120

REP 0.407 0.037 0.444 0.074 0.037
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Table 3 Confusion tables of the
proposed and baseline methods
using SVM classifier with RBF
kernel (LOSOCV protocol)

Expression OTH DIS HAP SUR REP

Proposed method (with EVM)

OTH 0.735 0.167 0.049 0.010 0.039

DIS 0.550 0.367 0.083 0.000 0.000

HAP 0.212 0.091 0.576 0.000 0.121

SUR 0.400 0.200 0.040 0.320 0.040

REP 0.407 0.037 0.370 0.000 0.185

Baseline (without EVM)

OTH 0.784 0.176 0.000 0.020 0.020

DIS 0.850 0.083 0.067 0.000 0.000

HAP 0.727 0.121 0.091 0.000 0.061

SUR 0.560 0.360 0.080 0.000 0.000

REP 0.704 0.037 0.222 0.037 0.000

4.2.2 Performance of proposed technique

With a sufficiently good parameters (α = 20 and λc = 16), we achieve the best recognition
accuracy of 75.30 %. Despite the empirical nature of determining these parameters, it is
important to highlight that all recognition results in Table 1 are significantly better than the
baseline result of 60.32%without motion magnification.1 This singles out the importance of
amplifying subtle motions found in facial micro-expressions for the purpose of recognition.

For a closer look at the performance of individual expression classes, we compare the
confusion tables of the proposed method (with EVM) to that of the baseline (without
EVM) with respect to two different kernel functions (linear, RBF) of the SVM classifier.
Tables 2 and 3 compares the confusion tables with and without EVM based on the lin-
ear and RBF kernel respectively by using leave-one-subject-out2 cross validation protocol.
This is arguably less bias for datasets with an imbalanced distribution of samples across
subjects [15], providing a fairer measure of class-specific performance. Overall, the pro-
posed technique greatly improves the recognition accuracy for each micro-expression class.
Using SVM linear kernel (Table 2), there are marked improvements of up to 50 % for the
‘OTH’, ‘DIS’, ‘HAP’ and ‘SUR’ classes, while the ‘REP’ class is five-fold better than the
baseline performance. A similar trend is observed when the RBF kernel is used instead. In
Table 3, we see that the performance of four of five classes (‘DIS’, ‘HAP’, ‘SUR’, ‘REP’)
vastly improved using the proposed technique, with the exception of the ‘OTH’ class which
dropped slightly. At this juncture, it is important to first point out that the RBF kernel seems
to be inappropriate for the baseline method as it tends to over-fit the ‘OTH’ class. This
is obvious from the high number of false positives matching to this class. We postulate
that with motion magnification, the samples become more distinguishable, providing larger

1Original paper [49] reported the best possible result of 63.41 % using different set of settings.
2Leave-one-subject-out cross validation (LOSOCV) is a subject-independent evaluation where the videos of
one object are held out as testing set while the remaining videos form the training set. This is then repeated
for all subjects in dataset, and the average accuracy rate across all folds is taken.
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Table 4 Benchmarking against
current state-of-the-art
approaches for micro-expression
recognition on the CASME II
dataset

Methods Recognition rate (%)

Baseline [49] 63.41

OSW [19] 66.40

LBP-MOP [47] 66.80

LBP-SIP [46] 67.21

Adaptive MM [31] 69.63

Proposed method 75.30

between-class margins within the underlying distribution, hence reducing the effect of over-
fitting. This observation of the effect of applying motion magnification was also noted by
Park et al. [31].

Our best result reported in this paper (75.30 %) uses the RBF kernel for SVM classifi-
cation. Table 4 summarizes how our proposed method fare against current state-of-the-art
works on the benchmark CASME II dataset. The recent work of Park et al. [31] is much
similar in nature to our approach. Although they have proposed an adaptive method for
motion magnification which predicts the frequency band using intensity variation features,
our approach is still superior in terms of recognition capability. Our conjecture is that our
method simply uses a fixed bandwidth across all samples instead of relying entirely on the
predictor to return a frequency band range (which was ad-hocly fixed as well), for each
different test sample.

With EVM, the subtle expressions that are hardly detected by naked eyes now are more
visually notable as shown in Fig. 5. Besides, more discriminative features are extracted
with useful motion signals amplified. However, the limitation of this technique exists as
well. With amplifying the expected signal, the noise signal might be also magnified which
will interfere the extracted feature with less discriminative. To decrease this limitation, we
can either improve the filter for filtering out noise signals or increase the resolution of our
recorded videos.

4.2.3 Analysis on LBP-TOP plane selection

To further show the effectiveness of our proposed method for micro-expression recognition,
we tested it on individual LBP-TOP planes and their possible combinations. The results
showed the effectiveness of EVM on all possible planes combinations.

Table 5 Comparison of micro-
expression recognition accuracy
with different combination of
LBP-TOP planes (5x5 block
partitioning), classified using
SVM with linear kernel

Baseline (%) Proposed method (%)

XY 55.47 68.83

XT 51.42 63.97

YT 55.47 72.87

XY-XT 58.70 75.71

XY-YT 59.51 74.09

XT-YT 59.92 73.68

XY-XT-YT 60.32 74.90
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Table 6 Comparison of micro-
expression recognition accuracy
with different combination of
LBP-TOP planes (5x5 block
partitioning), classified using
SVM with RBF kernel

Baseline(%) Proposed method(%)

XY 55.06 69.64

XT 53.04 65.99

YT 60.32 72.47

XY-XT 59.41 75.30

XY-YT 59.92 74.09

XT-YT 59.51 75.30

XY-XT-YT 59.11 75.30

Tables 5 and 6 reports the recognition accuracy on different feature planes (XY, XT, YT)
of LBP-TOP and their combinations, using SVM with linear and RBF kernel respectively.
This analysis assumes a 5x5 block partitioning for LBP-TOP.

Firstly, we observe that even with motion magnification, the classification accuracy when
only two planes are used (XY-XT, XY-YT, XT-YT), does not differ much compared to when
all three planes (XY-XT-YT) are used. This strengthens the results in [53] that using two
planes is comparable to using all three planes, albeit with some insignificant decrease of
accuracy in most cases. More importantly, Table 5 shows that the recognition accuracy of
our approach is significantly higher than that of the baseline method. In fact, the increase in
accuracy is consistently above 10 % regardless of the type or combination of planes used.
Likewise, the same experiment conducted using SVM classifier with RBF kernel (shown in
Table 6) also yielded similar conclusions with regards to the use of motion magnification.
The improvement observed with the RBF kernel is slightly more pronounced, averaging
(across all plane combinations) an increase of 12.45 % compared to 12.15 % for the linear
kernel.

In short, the recognition performance of our proposed technique is consistently better
than that of the baseline technique on different types (and combinations) of LBP-TOP planes
(XY, XT, YT).

4.2.4 Analysis on feature block partitions

Similarly, we also examine the performance of micro-expression recognition with respect
to different block partition sizes to further evaluate the robustness of our proposed method.
Block partitioning is a method of representation in which the image is divided into several
non-overlapping or overlapping blocks to obtain region-concatenated descriptors. This was

Table 7 Comparison of
micro-expression recognition
using different n × 2
symmetrical block partitioning

Baseline(%) Proposed method(%)

5x2 55.87 64.78

6x2 58.70 65.18

7x2 57.89 66.40

8x2 53.44 62.35
All three LBP-TOP planes are
used while linear kernel is used
for SVM
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Fig. 8 Illustration of the 5 × 5
(left) and 6 × 2 (right) block
partitions

primarily employed in [53] for the LBP-TOP feature descriptor. For clarity, we consider the
division of an image on a certain plane into n × m blocks; n rows and m columns. With
the exception of this analysis, we fixed the block partitioning for all of our experiments to
5 × 5 blocks, in accordance with that chosen in the original baseline work [49].

Table 7 shows the recognition performance (SVM linear kernel) of a variety of symmetri-
cal block partitions of the n×2 form. The reason why the number of columns is fixed to 2 is
that the face is to some extent, symmetric in nature. Using such a partition, the facial compo-
nents e.g. eyes, eyebrows, etc. could be preserved as a whole in one single block compared
to that of n × n partitions (see the illustration of partitions in Fig. 8), which could divide
the image into two or more blocks, both row-wise and column-wise. Interestingly, from the
experimental results (in Table 7), we see that the 6× 2 partition (baseline) achieved an accu-
racy of 58.7 % compared to the 5× 5 partition (baseline) that managed a 60.32 % accuracy.
Although the partition of 6 × 2 performs slightly worser than the 5 × 5 partition, the fea-
ture dimension drops dramatically by more than half, from (16 × 3 × 25)=1200 for 5 × 5
blocks to (16 × 3 × 12) = 576 for 6 × 2 blocks. This reduction of feature dimensionality
comes at the expense of recognition accuracy.

Furthermore, we also investigated the impact of block partitioning on the recognition
accuracy with RBF kernel for SVM classification (shown in Table 8). We observe that the
best performance of the baseline method is 59.92 % with 6 × 2 partition compared to
59.11 % with 5× 5 partitions (reported in Table 6). Contrary to that of the linear kernel, the
6×2 partition performs marginally better than the 5×5 partition on the RBF kernel, it does
not appear to be statistically significant.

Nevertheless, it turns out that regardless of the choice of block partitioning and SVM
kernel used, the role of EVM is crucial for better recognition of facial micro-expressions.

Table 8 Comparison of
micro-expression recognition
using different n × 2
symmetrical block partitioning

Baseline (%) Proposed method (%)

5x2 57.09 68.02

6x2 59.92 65.59

7x2 59.11 66.80

8x2 57.09 64.78
All three LBP-TOP planes are
used while RBF kernel is used
for SVM
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Table 9 Micro-expression
recognition performance using
kNN and SVM classifiers with
different kernels, with and
without EVM, based on 5x5
blocks partition

Classifier Baseline (%) Proposed method (%)

KNN (k=5) 52.03 61.79

SVM (linear kernel) 60.32 74.90

SVM (polynomial kernel, 60.73 72.87

5th order)

SVM (RBF kernel)) 59.11 75.30

4.2.5 Analysis on classifiers and feature neighborhood

In our final analysis, we further compare the recognition performance of the proposed
method against the baseline in Table 9, classified by the k-nearest neighbor (kNN)3 and
SVM with different kernels. We see that across all classifiers, the recognition performance
of our proposed technique is superior to that of the baseline method [49]. Our best result,
the SVM classifier with RBF kernel posed an improvement of more than 14 % over the
baseline. As expected, the SVM is a more effective classifier than the kNN owing to its
maximum margin properties that is able to separate high-dimensional data.

We also changed the number of neighbor pixels that construct the LBP-TOP feature
pattern to 8 for all three planes. This resulted in a baseline recognition accuracy of 62.35 %
and 69.23 % for the proposed method. Hence, the positive effect of motion magnification
on facial micro-expressions remains telling.

4.2.6 Summary

Overall, the in-depth experimentation presented in this section demonstrated the reliability
and robustness of our proposed micro-expression recognition approach by amplifying subtle
facial motions for better feature representation. We uncovered the following points:

– The second order IIR band-pass filter performed best for magnifying facial micro-
expressions, with the most visually obvious results.

– The extracted LBP-TOP features were more discriminative on EVM-magnified frames.
– EVM is found to be effective on all possible combination of LBP-TOP feature planes

(XY, XT, YT).
– EVM is also found to be effective on various LBP-TOP spatial block partitions and

neighborhood sizes.

5 Conclusion and future work

In this paper, we introduced a new approach that incorporates video motion magnification
to accentuate subtle motions in facial micro-expressions, resulting in a greatly improved
recognition performance. In our extensive experiments, we demonstrate that the proposed
approach which adopts Eulerian Video Magnification (EVM) consistently performs better

3We empirically found that k = 5 yielded the best possible result for kNN.
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than baseline and current state-of-the-art methods. This was also noticeable across vari-
ous conditions; notably, different EVM parameters, LBP-TOP with different combination
of planes, different frame partitions, different SVM kernels as well as different neighbor-
ing pixels for LBP-TOP feature. Hence, we elucidate in this paper, the vital role of motion
magnification in amplifying subtle micro-expression changes in video. This uncovers a
promising new direction towards effective machine recognition of facial micro-expressions.

With this framework in place, there are many future directions for further improvements.
One possible work is to make use of facial landmarks of Action Units (AU) to improve over-
all recognition accuracy; or in that very sense, attempt to magnify only selective regions
that correspond to these landmarks instead of the entire face area. Also, LBP-based feature
descriptors have their intrinsic limitations. Thus, the introduction of more robust spatio-
temporal texture descriptors may potentially unlock further discrimination between the
micro-expressions.
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