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Abstract Content-Based large-scale image retrieval has recently attracted considerable
attention because of the explosive increase of online images. Inspired by recent advances in
convolutional neural networks, we propose a hierarchical deep semantic method for learn-
ing similarity function that solves the problems of precision and speed of retrieval in the
setting of large-scale environments. The distinctive contribution of our work is a novel
approach that can utilize previous knowledge of the semantic hierarchy. When semantic
information and a related hierarchy structure are available, significant improvements can
be attained. Exploiting hierarchical relationships is the most important thing for large-scale
issues. Binary code can be learned from deep neural network for representing the latent
concepts that dominate the semantic labels. Different from other supervised methods that
require learning an explicit hashing function to map the binary code features from the
images, our method learns Hierarchical Deep Semantic Hashing code (HDSH-code) and
image representations in an implicit manner, making it suitable for large-scale datasets. An
additional contribution is a novel hashing scheme (generated at the same time with seman-
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tic information) that is able to reduce the computational cost of retrieval. Comprehensive
experiments were conducted onHolidays,Oxford5k/105k,Caltech256 retrieval datasets, our
HDSH performs competitively even when the convolutional neural network has been pre-
trained for a surrogate unrelated task. We further demonstrates its efficacy and scalability
on a large-scale dataset Imagenet with millions of images. With deep hierarchical seman-
tic hashing, we report retrieval times are 0.15ms and 53.92ms on Holidays and Imagenet

dataset, respectively.

Keywords Hierarchical deep semantic hashing · Similarity search · Large-scale image
retrieval · Convolutional neural network

1 Introduction

Since the 2012 ImageNet competition [33] winning entry by Krizhevsky et al. [17], their
network AlexNet has been successfully applied to a larger variety of computer vision tasks,
for example to object-detection [7], segmentation [22], human pose estimation [35], video
classification [15], object tracking [36]. This paper tackles the problem of similarity image
retrieval. The objective is: given a query, find its most similar from a large assembly. As
shown in Fig. 1, results depicted hierarchical relationships can dramatically enhance the
discriminant ability. The integration of the feature presentation with semantic and hashing
hierarchical relationships is more important for increasing retrieval accuracy as images grow
larger.

In content-based image retrieval task, both image representation and computational cost
play a key role. Image representation is the engine of image retrieval, and it has been a

Fig. 1 Images retrieved by utilizing hierarchy with 128-bit hash code versus those without considering
hierarchy. The top query image is selected from the validation dataset of Holiday dataset, while the lower
one is selected from the Imagenet dataset. Accordingly, the retrieval is performed on the training dataset of
holiday and Imageset dataset, respectively. The query results show category hierarchy is good for preserving
the semantics of search results, which make the images more similar to the query image
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driving motivation for research in computer vision for many years. For much of the past
decade, feature revolution was established through the introduction of SIFT [23], HOG
[4], LBP, GIST [27], or Bag-of-Features (BoF). Nevertheless, learning mapping from these
representations to binary code is inadequate for dealing with relatively complex semantic
structure, because the representation ability of handcrafted features is still too low-level to
capture the semantic information from the image. In fact, how to choose suitable features to
represent objects, and use these features (or combination of features) to retrieve images is
extremely difficult. Thus more effective semantic feature representation is also desirable.

Additionally, because of the explosive increase of online images, rapid similarity search
is increasingly critical for large-scale image retrieval, therefore, search in a large database
becomes an emerging need. Many studies aim at answering the question that how to
efficiently retrieve the relevant image from the large-scale database. Owing to the high
computational overhead, traditional linear search is facing the problem of inadequate perfor-
mance. Instead of linear search, an alternative strategy is to take advantage of the technique
of hashing based method [21, 25, 39] or Approximate Nearest Neighbor (ANN) speedup.
These methods map the high-dimensional feature to a lower dimensional space, and then
generate the binary hash code. Benefiting from the compact binary code, fast image search
can be measured via Hamming distance and binary pattern matching, which significantly
reduces the computational overhead and further optimizes the efficiency of the search. Other
researchers [19] attach to the pair-wised method that uses the pairwise geometric relations
between correspondence and propose a strategy to incorporate spatial relations to reduce
the computational cost. However, these methods are requested to construct the correlation
matrix and generate the codes which maybe a bottleneck in large-scale dataset.

Inspired by the advancement of end-to-end learning methods such as convolution neu-
ral network, we think a question that can we make use of CNN to produce compact binary
code directly? To address this question, and handle such large scale data, computational effi-
ciency and scalability problems, we propose a hierarchical deep semantic hashing method,
which utilizes CNN model to learn semantic information and binary representation simul-
taneously. It demonstrates how to effectively integrate human knowledge in the form of a
hierarchical structure defined on semantic information of images. As an example, given an
image containing a semantic object “Monkey”, a predefined hierarchy might let us know
that an image containing a “Lemur” would be more similar to one containing a “house” or a
“person”. At this point, we can discard the images which belong to the irrelevant semantic
categories.

Once semantic-level similarity is determined, the next challenge is the efficient retrieval.
This paper presents a novel hashing learning strategy from CNN with semantic informa-
tion. Without any hashing index(such as inverted file), retrieval of similar images in the
Euclidean distance can be performed in 50 milliseconds per query on Imagenet dataset with
competitive accuracy. In fact, using index to retrieve further decreasing retrieval time, but
this is beyond the scope of this study.

The specific contributions of our work are as following:

– We present a simple but efficient supervised learning framework for rapid image
retrieval.

– With slender modifications to the vanilla network model, our ConvNet learns
probability-based semantic-level feature and hashing-level feature for image represen-
tation simultaneously.

– Exploiting the semantic hierarchy for similar image retrieval, can reduce search space
dramatically for matching similar image from a large-scale datasets.
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– Moreover, we use a simple but novel way to deal with the problems of samples few and
imbalance.

– Our approach of learning hierarchical binary hash code is very stable. Compared with
state-of-the-art methods, the performance attenuation is not obvious when reducing the
feature dimension.

This paper is organized as follows: Section 2 briefly reviews previous related works. And
we elaborate on details of our hierarchical similarity methodology in Section 3. Finally,
Section 4 demonstrates the experimental results. Conclusions are provided in Section 5.

2 Related work

Recently, as the ever-growing large-scale web data make information retrieval and other
problems more challenging, hashing becomes a popular solution [37, 39]. The shortly binary
code makes retrieval efficient both on storage and computation. In many cases, search in
millions of data will only consume constant time via tens-of-bit representations mapped
from the hash code.

In the early stage of hash, methods were mostly data-independent. For example, Locality
Sensitive Hashing (LSH) [6] uses random projection to construct hash function. The prop-
erty of LSH, that samples within short Hamming distance in hash space are most likely to
near in their source space, makes it very attractive. But this metrics is asymptotically sub-
jected to the increasing code length. Thus, to achieve high precision, LSH-related methods
require large hash tables. And LSH works only with theoretic guarantees for some metric
spaces, such as Euclidean distance. Learning-based Hashing unlike data-independent hash-
ing, learning-based methods attempt to capture the inherent distribution of the task domain
by learning. Unsupervised methods use only unlabeled data as training set, such as KLSH
[18], Semantic Hashing [16, 34] and Spectral Hashing [38]. Semantic Hashing uses stacked
RBMs (Restricted Boltzmann Machines) to learn binary hash code from raw inputs. After
pre-trained layer by layer, the RBMs are unrolled and refined as a deep autoencoder. Spec-
tral Hashing defines similarity on the feature space and attempts to minimize the weighted
average Hamming distance between similar samples. The majority of these methods explic-
itly learn a hashing function to map the low feature to compact code. Another area is
learning hash code in the implicit way [20, 26, 41]. Zhao et al. [41] extract the mid-level fea-
ture of the neural network as the hash code. Similarly, our proposed method also uses CNN
to generate feature, but we do not need to explicitly learn a hashing function, the hash code
is implicitly generated by feed-forward of CNN, this avoids the complexity of designing a
hashing function.

Beside the research track of hashing, image representations also play an essential role
in CBIR. Convolutional neural networks [17] have become very popular in recent years for
many tasks in computer vision. Different from various traditional methods, CNN is a typi-
cal supervised learning method, it needs a large number labeled images to optimize model
and learn the parameters. This is a considerable challenge. Fortunately, Russakovsky et al.
[33] provide such a large-scale labeled dataset ImageNet. It can be utilized to achieve fea-
ture learning from the original images. DCNN-based feature has been applied on the task
of image retrieval recently [2, 8, 20, 24, 30, 39, 41]. Babenko et al. [2] focus on explor-
ing the feature of different layers, and improve the retrieval performance with dimensional
reduction. Xia et al. [39] proposed a two-stage framework to accurately preserve the seman-
tic similarity of image pairs, which demonstrates state-of-the-art retrieval performance.
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However, in preprocessing stage, a matrix-decomposition algorithm is employed to learn
the representation for data. It is unfavorable for the case when the data size is large (e.g.,
imagenet dataset in this paper) because it consumes both computational time and consider-
able storage. Zhao et al. [41] proposed employing multilevel semantic ranking supervision
to learn deep hash function based on CNN. However, feature extraction directly from the
compact hash code maybe increases the semantic information loss.

In contrast, we introduce a simple yet effective deep learning approach to learn an effec-
tive hash code from CNN directly, and it achieves more competitive results on the Holidays
and Oxford5k image retrieval benchmark datasets. We further apply our approach to the
larger Imagenet, Oxford105k and Caltech256 datasets to demonstrate the scalability of our
approach. In the next section, we will introduce our hierarchical deep semantic hashing
method.

3 Exploiting hierarchy for retrieval

3.1 Similarity strategy

The objective of similarity retrieval is trying to find out the most similar images from an
image gallery with the greatest similarity to a given image. But what is the most similar? In
order to answer this question and exploit hierarchical knowledge in retrieval, we consider
two subprocesses to evaluate the similarity between two images. One is how to express
the data effectively. The other one is how to compute similarity quickly. Generally, a hash
function h(·) : RD → {0, 1} is treated as a mapping that maps a D-dimensional input onto a
compact binary code. Supposed I = {(xn, cn)}Nn=1 is a set of images and their labels, where
each image xn ∈ R

D regarding a subset of semantic labels L = {1, . . . , C}. Our goal is to
learn a hash function h(·) to map the image xn to a binary hash codes h(xn)while preserving
its semantic c. We hope the D can be instead of the new pairwise data H = {h(xn), c)}Nn=1
to express the images and their labels without any semantic loss. In previous works, learning
a similarity function which maps low-level image presentation to a similarity value is the
main objective of retrieval. Given a pair of images a and b, we can denote their low level
presentation as fl(·), then we can define their similarity as sim(a, b) = Sim(fl(a), fl(b)).

As illustrated in Fig. 2, compared to previous work, our approach first obtains the mid-
level features f (a) and f (b) through feed-forward based on raw images a and b instead
the low-level presentation fl(a) and fl(b), we use the mid-level features to estimate the
probabilities p(a) = (L(a)|f (a)) and p(b) = (L(b)|f (b)) of semantic labels, then to
compute the hash codes h(a) = h(f (a)) and h(b) = h(f (b)). Furthermore, we use
the semantic probabilities p(a), p(b) and the hash codes h(a), h(b) to calculate the hier-
archical similarity step by step. Now, we can obtain the similarity function: Sim(a, b)

= (p(a), h(a))S(p(b), h(b)). Here, S is a hierarchical correlation matrix, which can be
achieved by two stages: semantic-level similarity and hashing-level similarity. This similar-
ity function is not merely allowed utilizing hierarchical information to enhance accuracy,
but also speeded up the similarity computing on the whole database.

It is noteworthy that we do not have explicitly to design and study a hashing function. It is
implemented by deep neural network inference and a hierarchical fusion strategy, described
in following section.

Probability-based semantic-level similarity The key to our method is to take advan-
tage of semantic knowledge to simplify the computing, then use hash feature to compute
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Fig. 2 Similarity evaluation between two images. Logically, our approach learns image representation with
two parts, an probability estimation for matching semantic labels, and a hash function for mapping feature.
The final similarity is computed by a hierarchical comparison function

similarity for retrieval. An easy method is by considering a label-based semantic-level (non-
probabilistic) version of such a similarity, and describe an image a by a set of binary
semantic information {1, . . . , L}. For example, we can assign a label to an image, and
calling it is a “house” or a “person”. Nevertheless, measuring the similarity by semantic
categories is a challenging problem in retrieval. On the one hand, natural semantics always
categories overlap and inherently ambiguous, using hard-categories to recognize object
always failure. On the other hand, perfect classification of semantic is unrealistic. For exam-
ple, most of the time, we think “Lemur catta” and “Eulemur coronatus” are similar, it means
both of them belong to “Lemur”.

In order to solve these problems and improve performance, we proposed a probabilis-
tic version similarity to instead of using simple label-based similarity. Given the semantic
labels L = {1, . . . , C}, the similarity between the two images a and b can be measured as
how much they match. Let δi(I ) ∈ {0, 1} be the indicator function of image I has seman-
tic i. Similarly, we can use a probability YC

i = P(δi(a) = 1|a) to indicate the possibility
of image a has semantic i. Obviously, the index of i = max(YC

i ) is the semantic label of
image a. In this work, the probability YC

i can be obtained by CNN inference, and its value
is equal to the input of the Softmax classifier. Follow the research of [3], we use the relevant
information of query-image to define the similarity of the probabilistic version as follows.

For each i ∈ L, let I+
i denote the set of images that are relevant to the semantic i, and

let I−
i denote the set of irrelevant. The semantic-image relevance is defined by the matrix

RIL : I × L → R
+, and obeys RIL(i, I+

i > 0) and RIL(i, I−
i = 0) for all i ∈ L, I+

i ∈
Ii , I

−
i ∈ Ii . In order to compute the image-image correlation matrix RII : I × I → R

+,
we treated images as being conditionally independent given image a, b and the semantic i,
P(I (a), I (b)|i) = P(I (a)|i)P (I (b)|i), and computed the joint image-image probability as
a relevance measure

P(I (a), I (b)) =
∑

i∈L

P (I (a), I (b)|i)P (i)

=
∑

i∈L

P (I (a)|i)P (I (b)|i)P (i) (1)



Multimed Tools Appl (2017) 76:21281–21302 21287

To improve scalability, we considered two images to be related only if their joint
distribution exceeded a cutoff threshold t .

RII (I (a), I (b)) = [P(I (a), I (b))]t (2)

That is to say,

x =
{ [x]t , x > t

0, otherwise
(3)

where x = P(I (a), I (b)).
Built on the above discussion, we can know the correlation matrix is a diagonal matrix,

due to the image correlation only occurring when they both have semantic i. Moreover, most
of the semantic probability is very low, hence after limited by cutoff threshold t , most of the
probability forced to 0. Therefore, this correlation matrix is quite sparse, which makes the
probability-based semantic-level similarity can filter a large number of irrelevant images.
We take many experiments to select the threshold t , described in Section 4.4.1.

Hashing-level similarity In this section, we discuss hashing-level similarity. Given an
image I , we first extract the output of the fully-connected layers as the image representation
which is denoted by a D-dimensional feature vector g(I), where g(·) is the convolution
transformation over all of the previous layers. Then one can obtain a q-bit binary code by a
simple hashing function h(·). For each bit i = 1, . . . , q, we output the binary hash code of
H by

H = h(x) =
{
1, f (xi) − Avg

q
i (f (xi)) > 0

0, f (xi) − Avg
q
i (f (xi)) < 0

, (4)

where x = g(I) is the CNN feature and xi(i = 1, . . . , q) is the activation value of the i-
th neuron unit. f (x) is a Sigmoid function defined by sigmoid(v)= 1

1+e(−v) , and Avg(u) is an
average function calculated on vector u. Here the function Sigmoid is used to normalize the
feature to [0, 1].

Let I = {I1, I2, . . . , In} denote the dataset consisting of n images for retrieval, and
H = {H1, H2, . . . , Hn} with Hi ∈ {0, 1}q is the corresponding binary code of each image
I . Given a query image Iq , we use its binary code Hq to identify the image from the images
set I . We use Euclidean distance between Hq and Hi ∈ H to define the hashing-level
similarity:

d(q, i) = Dist (Iq, Ii) = ||Hq − Hi ||. (5)

The smaller the Euclidean distance is, the higher the similarity of the two images is. Each
image Ii is ranked in descending order by the similarity. Hence, top k ranked images are
identified.

Combined with semantic-level and hashing-level similarity Now, after defined the
semantic-level similarity and hashing-level similarity, we can combine them to produce our
hierarchical similarity between image a and b by:

Sim(a, b) =
C∑

i

(p(a),Ha)S(p(b),Hb)

=
C∑

i

[P(I (a), I (b))]t × (1 − d(a, b)), (6)
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where RII (I (a), I (b)) = [P(I (a), I (b))]t is the probability-based semantic-level similar-
ity and 1−d(q, i) is the hashing-level similarity. The former is a diagonal matrix, while the
latter is a value. Operation “×” combines the two similarities to a certain value to measure
the similarity between images a and b. In practice, RII is very sparse, which is beneficial to
quickly create an image list relevant to the query image. Given a query image q, we go over
the whole dataset for which image is semantic relevant to q. These images may be related
to several relevant semantics or approximate semantics. We collect a list of all images those
are related to these relevant semantics. The number of semantics relevant for a query image
in our experiment about 1 ∼ 10. As a consequence, the total computation time of Sim(a, b)

can be calculated efficiently even for large-scale image sets.

3.2 Learning similarity

In the real world, the retrieval system needs to handle thousands of semantic categories and
large-scale images, and the most important considerations are scalability and efficiency.
As illustrated in Fig. 3, our approach includes two main steps. The first step is to get
the image representation via a ConvNet which supervised pre-training on the ImageNet

[17] dataset and fine-tuning on a target datasets. The pre-trained CNN model is proposed
by Krizhevshy et al. [17] which consists of five convolutional layers, two fully-connected

Fig. 3 The architecture of our proposed image retrieval method via hierarchical deep semantic hashing.
Top: An image is input into a convolutional neural network which is supervised pre-training on Imagenet
and fine-tuning on target dataset. The network has two output vectors per image: a Softmax probabilities
and a hash-like representation. The two branches share the convolutional layers. Two CNN are both trained
end-to-end with the groundtruth labels. The input of the two vectors are utilizing the fully-connected layers
(FCs). Down: The images retrieval procedure is using a coarse-to-fine strategy that separate into two logistic
components semantic-level retrieval and hashing-level retrieval
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layers, and one 1000-ways one-hot encoding softmax classifier. Constructing hash function
through incorporating the CNN model had been reported in some recent literature [41].
Different from [41], we compute the semantic from the last fully-connected layer directly,
instead of hash layer. We contend that semantic feature extract only from the compact hash
code will increase the semantic information loss. Hence, we branch the output of the final
fully-connected layer into two streams. One is a n-ways softmax (n is corresponding to the
number of categories of the target dataset) to generate semantic information. The other one
is a hash-like function to make the CNN feature map to hash code.

To obtain the probability-based semantic representation, a deep mid-level feature is com-
puted by forward a mean-substracted 227 × 227 image. We extract the mid-level feature
from the last fully-connected layer, and learn a softmax classifier for each semantic simulta-
neously. Then we adjust the output of the classifier into probability. In our implements, we
treat the scores of softmax as the probability of semantics.

To obtain the hashing-level feature representation, we concatenated the FC6 and FC7
layers to the DeepHash Layer to enable it encoding a much wider and various visual
appearance, as shown in Fig. 3. We argue that the hash code only computed from the last
fully-connected layer is dependent on categories too much and the strong invariance goes
against to capture subtle semantic distinction. Accordingly, we redefine our deep hidden
feature vector g(I) as: g(I) = [gf c6(I ); gf c7(I )], where gf c6(·) and gf c7(·) denote the
output features of the first fully-connected layer FC6 and the second fully-connected layer
FC7, respectively. Here bias terms and parameters of g(·) are omitted for the sake of conci-
sion. The deep hash function is still H = h(xi), but i = 1, . . . , qf c6 + qf c7. To generate a
q-bit hash code, H = [h(x1), . . . , h(xqf c6+qf c7)] can be computed.

3.3 Retrieval process

The second step of our procedure is image retrieval via hierarchical deep semantics hashing.
In contrast to existing similarity learning algorithms that learn similarity from low-level
feature, our similarity is the combination of semantic-level and hashing-level similarity. As
(2) show, Sim(a, b) is a joint algorithm. To calculate the similarity over all the images will
consume considerable time with a simple similarity algorithm. Therefore, we adopted a
hierarchical strategy to achieve retrieval task. As described in Fig. 3 (down), the semantic-
level similarity is computed firstly, if the semantic relevanceRII (I (q), I (b)) between query
image q and target image b equal to zero, the image b will be discard, otherwise identify b as
a candidate image. After the semantic relevance checking, we will obtain a pool of proposal
set of m candidate images P = {Im}, m � N ∈ R. Then we compute the hashing-level
similarity over proposal set P .

3.4 Efficiency analysis

Efficiency is the major challenge for large-scale retrieval. Thus computing the similarity
between a query and each image is unacceptable.

Given a query image Iq and image dataset I = {I1, I2, . . . , In} with their semantic
labels L = {1, . . . , C}. Assuming the time complexity of calculating the similarity between
image Iq and Ii is O(1), then we can obtain the computational complexity over the whole
dataset is O(n). Our proposed method uses a hierarchy to reduce the system complexity.
The number of the categories C+ which semantics relevant to a query image is usually less
than 10 (most of these are less than 5). Actually, computing the semantic relevance nearly
cost-free, therefore, the system complexity depends on the size m of the proposal set P . If
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the data distribution of each category is homogeneous, the computational complexity of our
method can be denoted by O(m)

(
m << n, n

C
= m

C+
)
and the speedup ratio is O(n)

O(m)
= C

C+ .
For example, the speedup ratio of the Holidays dataset is about 500/(5 ∼ 10) = 50 ∼ 100
times. We believe that this is a surprising result.

4 Experiments

In this section, we compare our CNN-based method to the current state-of-the-art retrieval
pipelines including traditional SIFT-based methods [1, 5, 12, 19, 28, 40] and CNN-based
methods [2, 8, 24, 30, 31, 41]. For a fair comparison, we only report results on representation
with relevant dimensions and exclude post-processing methods such as spatial re-ranking
or query expansion.

4.1 Datasets and evaluation criteria

We utilize the famous open source toolkit Caffe[14] to evaluate the performance of our
method on several well-known instance-level image benchmark datasets listed below. We
use Holidays [11], Oxford5k [29] to compare with existing similarity learning algorithm,
use Oxford105k [29] and ImageNet [33] for large scale experiments, and use Caltech256 [9]
and ImageNet [33] to evaluate cross-category generalization. TheHolidays [11] dataset con-
sists of 1491 images corresponding to 500 groups, each of which represents a distinct scene
or object. We use 500 queries images as our validation dataset, while the other 991 images
as training dataset. The Oxford5k [29] consists of 5062 images collected from Flickr by
searching for particular Oxford landmarks. The collection has been manually annotated to
generate a comprehensive groundtruth for 11 distinct landmarks (some have complex struc-
ture and comprising several buildings), each represented by 5 possible queries. There are
512 images related to the 11 landmarks in “good” and “ok” setting, so we use these images
to train our CNN, while use 55 queries images to validate the model. The Oxford105k
dataset [29] is the combination of Oxford5k with a set of 100k negative images, in order to
evaluate the search quality on a large scale. Following the standard evaluation protocol, the
performance is measured by the mean average precision(mAP) over the provided queries.
Caltech256 dataset [9] consists of 30607 images associated with 256 object categories. In
this work, we use 200 categories for training, 56 categories for validation. In the validation
set, 30 % images for selecting threshold, 70 % images for testing. ImageNet ILSVRC 2012
dataset contains about 1.2 million training images, 50,000 validation images, roughly 1300
images in each of 1000 categories. For tuning parameters, we separate the original vali-
dation into two parts, 10,000 for parameter selection, 40,000 for testing and performance
evaluation. We use the ranking based criteria [13] to evaluate this dataset.

In addition, we used the average query time to measure the time complexity of algorithms
on all above datasets.

4.2 Data augmentation and preprocessing

Because of lack of training images of Holidays and Oxford5k dataset, training CNN from
scratch becomes unrealistic. We use two effective ways to solve this problem, and to avoid
over-fitting problem. Firstly, we use transfer learning to pre-train CNN on the large-scale
ImageNet dataset and fine-tune on target datasets. Secondly, we take a novel data augmen-
tation to reduce the effects of over-fitting. The Holidays and Oxford5k dataset have 991
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and 512 raw training images, respectively. The imbalance problem of each category is quite
prominent. As shown in Table 2, e.g. the category of Oxford5k “pitt rivers” has only 1
training image, but the “radcliffe camera” has 216 training images. To address this issue,
we expand the number of each category to 1000, utilizing horizontal flipping, rotation and
brightness transformations. We define an expansion ratio n for each category, where n =
floor(1000/N), N is the number of raw image corresponding to category c. Then we perform
n/3 times random rotation on the N images in angle [-25, 25], and their horizontal flipping.
Similarly, we perform n/6 times random luminance transformation by function f. Assuming
L is the brightness of the original image range in (lowin, highin), then the new brightness
L′(lowout , highout ) = f (L(lowin, highin)), function f is a mapping function, it maps the
brightness range from (lowin, highin) to (lowout , highout ). We define the largest range of
luminance L is from 0 to 1, then the lowout is randomly selected from 0 to 0.2 and highout

is randomly selected from range 0.8 to 1. In this way, we not only increase training data,
but also balance the samples of each category. Furthermore, similar to [17], we also execute
image crop and horizontal reflection on the whole training set.

4.3 Model training

Similarly to the Faster-RCNN [32], we adopt a pragmatic 2-step training algorithm to learn
shared feature via step-by-step program. In the first step, we train the CNN by initialized
with an ImageNet-pre-trained model and fine-tuned end-to-end on the target dataset. In the
second step, we fix the semantic branch, then branch a new hash branch to generate hash
code. The hash branch consists of two full-connected layers, a DeepHash layer, a hash
function layer (include a Sigmoid activation function and an average-subtracted function,
described in Section 3.1) and a new Softmax classifier. We train this network end-to-end
with the same images until convergence, but we do not care about the accuracy of the
hash branch. In inference stage, we combine the two branches to a unified framework and
generate the semantic-level feature and hashing-level feature, simultaneously, as shown in
Fig. 3(Top).

4.4 Hierarchical retrieval

4.4.1 Comparison of hierarchical

Feature layer in HDSH We first study the performance of convolutional feature from dif-
ferent layers with our Hierarchical Deep Semantic Hashing (HDSH) method. For simplicity,
we denoted the last convolutional layer and the first, second fully-connected layers of CNN
by Conv5, FC6 and FC7, respectively. The output before the softmax classifier is denoted
by FC8. As illustrated in Fig. 3, we extract the features from these layers as our deep CNN
feature. Moreover, we use the FC6 and FC7 features to generate three kinds of synthetic
features. We compute the average value and maximum value between the FC6 and FC7
features, and denote the results as Mean and Max. Finally, we denote a cascade feature by
Cas, which concatenated with the FC6 and FC7 features. On the other side, we extract the
DeepHash layer feature as our hashing feature (denote as Hq, q is the length of hash code,
which is equivalent to the length of DeepHash Layer) to save storage space and accelerate
retrieval. In all, we total obtain seven kinds of full-size features (HDSH-Conv5(FC6, FC7,
FC8, Mean, Max, Cas)) and six kinds of compact features (HDSH-(H16, H32, H64, H128,
H256, H512)). Figure 4 (Left) shows the performance for both hierarchical (HDSH-0.2)
and non-hierarchical (HDSH-0) methods with different setting. The MAP first increases
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Fig. 4 The performance of different feature on both Holidays and Oxford5k datasets. Left: Retrieval Pre-
cision of our Hierarchical Deep Semantic Hashing method against non-hierarchical method as described in
Section 4.4.1. Solid and dash lines correspond to the hierarchical and non-hierarchical methods respectively.
Right: Combining Probability-based Semantic-Level Similarity with different threshold in retrieval step as
described in Section 4.4.1. The solid and dash lines indicate the results of Mean feature and 128-bits deep
hash codes extracted from CNN directly

until reaching a peak, because the deep network can achieve more invariance. However, the
performance went an apparent decline at the last layer since the features become too gen-
eralized and less discriminative for instance-level retrieval. The best result of our approach
on the Holidays, Oxford5k datasets is the HDSH-Mean which is the average value of the
layer FC6 and FC7, but the feature of FC6, FC7, Max, Cas are not that bad. On the Holi-
days dataset, the performance of hierarchical Mean feature is much better than that of the
Conv5 layer and the last layer(0.885 vs 0.823 and 0.857). Similar trend can be obviously
seen on Oxford5k dataset. We then perform a similar experiment with the non-hierarchical
feature, we still see this tendency. To our delight, the hierarchical feature is always bet-
ter than non-hierarchical feature on both Holidays and Oxford5k datasets. On Holidays, the
hierarchy has about 6 ∼ 10 percent performance boosts for all layers. In contrast, more
than 30 percent improvements on Oxford5k datasets. In our opinions, more images in each
category on Oxford5k dataset may be good for our HDSH method. This verifies that across
different network layers and datasets, hierarchical perform the best and should be used for
instance-level retrieval.

Parameters in HDSH The main function of threshold t is to filter the categories with
lower semantic similarity, thus to improve the retrieval precision. The threshold t determines
the number of the filtered categories. Therefore, in the probability-based semantic-level
similarity, we need to determine a cutoff parameter t to filter the images which are not
similar to the query image Q.

In order to choose appropriate threshold t , we perform image retrieval over a set of fixed
threshold search space T , t ∈ T , T = [0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5,
0.6]. Due toHolidays and oxford5k/105k datasets are too small, threshold search and perfor-
mance evaluation are all performed on the validation set directly. Besides, on the Imagenet
and Caltech256 datasets, threshold search worked on the validation set, but performance
evaluation is implemented on testing set. In the threshold search space, t = 0 means the
similarity between the image I and query image Q is only computed by the feature of the
last fully-connected layer, this means a non-hierarchical method. As Section 3.1 described,
higher threshold can filter more semantic dissimilar images, thus increase accuracy and
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accelerate retrieval. But a higher threshold maybe excludes similar categories potentially,
especially some complex pictures. Figure 4 illustrates the MAP curves on Holidays and
Oxford5k with different thresholds t . We also compare the full-size feature HDSH-Mean
with compact feature HDSH-H128 using 128bit hash code. We discover that MAP first
increases with the increasing threshold, until reaching a peak it gradually drops. It shows
that t = 0.2 is a great choice, because it gives a high MAP and filter appropriate images. In
practice, threshold t probably dissimilar in different datasets, but in a certain range it is sta-
ble and acceptable. E.g., Holidays: 0.01 ∼ 0.2 and Oxford5k: 0.05 ∼ 0.6 are the acceptable
choice. For convenience, we set t = 0.2 in this work for all the remaining experiments. It
should be pointed out that most of the hierarchical methods are better than non-hierarchical
methods. On holidays dataset, the HDSH-Mean-0.2 brings 6.8 % accuracy improvement
(from 0.829 to 0.885). The same for compact version, the HDSH-H128-0.2 bring 15.4 %
improvement (from 0.74 to 0.855). Oxford5k give a more surprising result, 24.6 % for
HDSH-Mean-0.2 and 4.4 % for HDSH-H128-0.2.

Another very important key to set the cutoff threshold t is it reduce the retrieval space.
Usually, computing the similarity is done on the whole dataset. That is to say all the cat-
egories will be scanned. By setting the cutoff threshold t , we only need to search a few
categories, usually less than 10, even only one category. This strategy greatly increases the
speed of retrieval. Table 4 shows the experimental results.

4.4.2 Comparison to state-of-the-art

Since our Hierarchical Deep Semantic method combined simple CNN hashing-level sim-
ilarity with semantic-level similarity to express images, we only compare to other classic
SIFT-based and CNN-based approaches.

Uncompressed representation We first compare our approach with other advanced
approaches using uncompressed full-size representation in Table 1. In Fig. 4(Left), the
feature HDSH-Mean performing very well, so we use this feature with/ without hierar-
chical deep semantic (HDSH-Mean-0/ HDSH-Mean-0.2) to compare with other methods.
Although we do not focus on producing state-of-the-art results on full-size representation,
our system gives competitive result compared to state-of-the-art methods. Specifically, our
approach significantly outperforms most of the classic SIFT-based approaches with BoW
encoding, which verifies the powerful representation ability of the CNN feature. Although
better results are reported by other methods, such as a traditional approach [19] using
Pairwise Geometric Matching, Hamming Embedding and Multiple assignment, and a CNN-
based approach [31] using multi-resolution spatial search. Our approach still produces better
or comparable results. Like the best method, our framework is not confined to the current
setting, and can easily be extended to other re-ranking techniques and multi-resolution meth-
ods. In addition, compared to recent CNN-based approaches, our approach outperforms its
opponent that retrain the entire network using extra data [2] or use time-consuming multi-
scale sliding windows to extract feature [8]. [30] and [31] produce competitive method with
ours, we believe that spatial search on multi-scale features can improve our performance.

To further demonstrate the performance of the proposed hierarchical deep semantic hash-
ing (HDSH) algorithm, we show the MAP of each category of Oxford5k dataset in Table 2.
Because CNN is a typical data-driven approach, enough raw data is especially impor-
tant for training the network. There are 4 categories lower than the average value, but we
can discover that the number of images of these categories are very few. Especially, class
“pitt rivers” and “keble” only have 1 and 2 pictures, respectively. Although we extend every
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Table 1 The MAP of
uncompressed representation Method Holidays Oxford5k Oxf105k

SIFT-based methods

BoW 200k-D [12] 0.54 0.364 –

Improved FV [28] 0.626 0.414 –

VLADintra [1] 0.653 0.558 –

LCS+RN [5] 0.658 0.517 0.456

CVLAD [40] 0.827 0.514 -

HE+MA+PGM [19] 0.892 0.737 –

CNN-based methods

Neural Codes [2] 0.793 0.545 0.512

MOP-CNN [8] 0.808 – –

LFDN [24] 0.840 0.581 54.2

CNNaug-ss [30] 0.843 0.68 –

Spatial Pooling [31] 0.896 0.843 0.795

DHRS [41] 0.858 0.712 0.603

HDSH-Mean-0 0.829 0.597 0.523

HDSH-Mean-0.2 0.885 0.744 0.712the bold indicate the best results
in the comparison experiments.

category to 1000 images manually, the number of raw images is more important than the
extended version, because these raw images can bring more invariant of categories. This
implies that the accuracy can be improved effectively by increasing some raw images. In
addition, it can be observed that the proposed hierarchical HDSH algorithm can get better
retrieval application than the non-hierarchical algorithm for most queries.

Low-dimensional representation To trade-off retrieval accuracy, retrieval speed and
storage space, most approaches compress the low-level feature to a low-dimensional repre-
sentation. Unlike these methods, we generate hash code by CNN feature. As illustrated in
Fig. 3, we focus on end-to-end method to product compact hash code and semantic feature
simultaneously.

In Table 3, we compare with the previous best results. Our approach HDSH with thresh-
old t = 0.2 achieves very competitive accuracy on all datasets with minimal performance
loss. We demonstrate six kinds of different low-dimension feature to verify the algorithm
validity. For all SIFT-based approaches, our HDSH outperforms them by a large margin,

Table 2 The detailed results of each category on Oxford5k dataset

Method Souls Ashm Ball Bodle Christ Corn Hert Keble Magd Pitt Red Avg

HDSH-mean(0) 0.566 0.486 0.439 0.802 0.597 0.385 0.936 0.434 0.285 0.680 0.958 0.597

HDSH-mean(0.2) 0.905 0.794 0.375 0.959 0.913 0.245 0.990 0.476 0.843 0.679 0.999 0.743

HDSH-H128(0) 0.963 0.917 0.521 0.802 0.833 0.290 1.000 0.440 0.739 0.280 1.000 0.708

HDSH-H128(0.2) 0.968 0.939 0.491 0.907 0.936 0.257 1.000 0.439 0.913 0.287 1.000 0.740

Numbers 72 20 7 19 73 4 49 2 49 1 216 512
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Table 3 Comparison of low
dimensional descriptors Method D Holidays Ox5k Ox105k

LCS+RN [5] 16 0.323 0.27 0.222

Neural Codes [2] 16 0.609 0.418 0.354

HDSH-H16(0.2) 16 0.815 0.722 0.665

Neural Codes [2] 32 0.729 0.515 0.467

HDSH-H32(0.2) 32 0.858 0.723 0.665

Neural Codes [2] 64 0.777 0.548 0.508

HDSH-H64(0.2) 64 0.856 0.737 0.671

FV + T [10] 128 0.617 0.433 –

VLADintra [1] 128 0.625 0.448 –

LCS+RN [5] 128 0.335 0.322 0.262

Neural Codes [2] 128 0.789 0.557 0.523

LFDN [24] 128 0.836 0.558 52.9

HDSH-H128(0.2) 128 0.855 0.739 0.676

Neural Codes [2] 256 0.789 0.557 0.524

DHRS [41] 256 0.818 0.574 0.488

Spatial Pooling [31] 256 0.742 0.533 0.511

HDSH-H256(0.2) 256 0.858 0.754 0.688

MOP-CNN [8] 512 0.784 – –

Neural Codes [2] 512 0.789 0.557 0.522

DHRS [41] 512 0.838 0.672 0.563

HDSH-H512(0.2) 512 0.86 0.768 0.693the bold indicate the best results
in the comparison experiments.

which again demonstrates the power of CNNs. Moreover, our low-dimension result out-
performs [2] on every scale of dimension reduction version, even though [2] fine-tune the
pre-trained model on a mess of extra images. Most interesting is the largest performance
gap at the end, such as 16,32,64-bits. It is important to use sophisticated encoding meth-
ods to capture the local information of convolutional feature instead of simple max-pooling
as in [31], but with low-dimensional descriptors it drops notably compared to our 256-
bits representation, showing that elimination of spatial search greatly reduces the power of
CNN representation. Besides that, our approach still outperforms MOP-CNN [8] using a
larger 512-bits VLAD encoding, which further verifies that extracting convolutional fea-
ture from DeepHash layer is more suitable for instance-level image retrieval. To be sure,
HDSH method has been no significant decline in accuracy when reducing the length of
hashing-level code. It means the low-dimensional representation is robust and can retain
good discriminative ability.

4.5 Result on imagenet large-scale dataset

Finally, we assessed the similarity on precision to demonstrate its efficacy and scalability
on the imagenet dataset. We split the images to training set and validation set. To learn
the Hierarchical Deep Semantic Hashing, we extract binary code using carefully crafted
CNN described as Fig. 3. We compare our HDSH with several state-of-the-art binary meth-
ods [13]: B-Hie: a bilinear similarity hash with prior matrix; Cosine-Hie: same as B-Hie
except with L2 normalized probability vectors; B-Flat: bilinear similarity without encoding
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Fig. 5 Left: Retrieval precision of our Deep Semantic Hashing with hierarchy encoded against other methods
on Imagenet dataset. For all curves of our approach, the threshold of hierarchical semantic is 0.2. Middle:
HDSH use training data from 1000 categories and test on the same data (“seen in training”) performs the best,
but train on 900 categories and test on the other 100 categories (“unseen in training”) compares favorably to
other methods are very competitive. Right: Retrieval on Caltech256 dataset. HDSH use training data from
256 categories (“seen in training”) performs the best, and train on 200 categories and test on the other 56
categories (“unseen in training”) is always better than the other methods

the hierarchy prior matrix; Cosine-NoCal: cosine similarity of semantic classifiers with-
out probability calibration; Cosine-Flat: cosine similarity without probability calibration;
SPM: a no learning method which rank the images and representing low level feature by
intersection kernel on SPM histograms of visual words;Hard-Assign: classifying the query
image to the most likely category and ranking others by their probabilities related to this
category.

We illustrate the results in Fig. 5(Left). Our HDSH with threshold t = 0.2 achieves
significantly better precision than all others. It also demonstrates that hierarchy is important
to our hash code. Compare to the runner-up, the HSDH-H128-0.2 is often beyond 7 % in
precision. Furthermore, this performance has been done in 128-bits instead of thousands
of bits.

4.6 Hierarchical efficiency

The most important improvement of our hierarchical deep semantic hashing method
dramatically reduces search time. In this paper, we use the Hamming distance to calcu-
late the similarity between two images. In Table 4, HDSH-xxx-0 means using the last
fully-connected layer feature of CNN to compute similarity, while HDSH-xxx-0.2 means

Table 4 Comparison of retrieval times(ms) on all dataset

Method D (1) (2) (3) (4) (5)

Categories 500 12 12 257 1000

HDSH-mean-0 4K 138 693 3504 1121 45558

HDSH-mean-0.2 4K 0.83 167 666 13 333

Speedup Ratio 167.3 4.14 5.26 87 134.9

HDSH-H128-0 128 8.1 114 613 198 8900

HDSH-H128-0.2 128 0.15 28 140 5.4 54

Speedup Ratio 54 4.15 4.37 36.7 165.1

Dataset: (1) Holidays, (2) Oxford5k, (3) Oxford105k, (4) Caltech256, (5) Imagenet
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using hierarchical strategy with threshold t = 0.2. The results indicate that hierarchy
is very useful for image retrieval. Nevertheless, we found hierarchical method for speed
improvement is not consistent. It is obvious that speedup ratio depends heavily on the num-
ber of categories. Actually, compute the semantic relevance nearly cost-free, so the retrieval
time mainly depends on the proposal set size. Therefore, the more categories the dataset
has, our proposed method can filter the more unrelated categories, and decreasing the search
space is more significant.

Besides, we investigate our proposed method from the perspective of resource consump-
tion. Following the most common implementation methods, we first use the GPU to achieve
inference and feature extraction. In this process, other resource consumption can be ignored.
Then, in the retrieval stage, we load the feature of images in advance. In this process, the
consumption of memory is the most significant problem. Figure 6 shows the consumption
of memory space with each 10,000 images. Increasing the length of the hash code can
improve the performance (as shown in Table 3), but with the unwanted result of seri-
ously increased memory consumption. It is noteworthy that, the result without hierarchy
consumed 240MBytes memory each 10,000 images, but only achieves 0.829 MAP on Hol-
idays, which is much worse than the low-dimensional HDSH methods, e.g. 128bit HDSH
can achieve 0.855 MAP. The same phenomenon occurs in the Oxford5k, Oxford105k and
Imagenet datasets.

4.7 Cross-category generalization

A potential advantage of using hierarchical deep semantic hashing is the ability to generalize
to unseen categories in training. We use two large-scale dataset Imagenet and Caltech256 to
achieve this task. For fair, on the Imagenet dataset, the model is not using the pre-training
model, but train from scratch. In the classification setting, only 900 semantic categories
are used to train and build the semantic feature, and retrieval is only evaluated for other
100 categories for which no images are seen in the course of training (“unseen in training”
curve in Fig. 5 (Middle)). Although the performance is much lower than the result which
categories are seen in training(“seen in training” curve in Fig. 5 (Middle)), it is still better
than other baseline [13] with the same setting, even using compact version on 128-bit Hash
Code. Encouragingly, our hierarchical deep semantic hashing with threshold t = 0.2 is
always better than non-hierarchical version with threshold t = 0. It means hierarchical
information is helpful to cross-category generalization so much. Similar to the Imagenet,
we divide the Caltech256 dataset into two parts, 200 categories are used to train, and the
rest of 56 categories are used to retrieval. In other words, these 56 categories are unseen in
training. Figure 5 (Right) shows the search results. The unseen images are far worse than
the seen images, but it is still better than the other methods. It proves our proposed method

Fig. 6 The consumption of
memory space. The vertical
coordinate shows the memory
requirement each 10,000 images,
while the horizontal coordinate
list the length of hashing feature.
“without HDSH” means directly
calculating similarity by
Hamming distance without
hierarchical methods
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has the ability to generalize the unseen categories in training. Note here that training and
testing image sets are mutually exclusive in all experiments.

In the real world application, retrieval on an open environment is a very challenging
task. For example, if we want to retrieve a concept “Mexican pork soup” from Imagenet
dataset, which belongs to a nonexistent category. Thanks to the Imagenet provide a rich
category space, the system maybe returns a set of images which are related to a container,
such as “soup bowl”. However, if the semantics of a query is far apart with all the cate-
gories, the search result may be a tragedy, even if the proposal set consists of the “most
similar” categories. As a consequence, the HDSH model based on supervision training, is
more applicable to retrieve images in limited specific categories environment, even if its
generalization ability is better than the other traditional and deep methods.

5 Conclusion

We have present an approach that can utilize the semantic hierarchy for similar image
retrieval, and can be expanded to process large-scale image retrieval. The results presented
in the previous section indicate the suitability of the proposed Hierarchical Deep Semantic
Hashing method, even when the feature dimension reduces to a small scale such as 128-
bit hash code. Combined with semantic-level similarity and hashing-level similarity, HDSH
provides strong priors for computing distance, and reduces search space dramatically for
matching similar image from a large-scale datasets. Moreover, we use a simple but innova-
tive way to deal with quite a small dataset and imbalanced problem. Our final contribution
is completing a unified architecture for generating probability-based semantic-level feature
and hashing-level feature for image representation simultaneously. The results shown that
it provide efficient retrieval, and may be useful in a wide range of applications, and better
accuracy and scalability than the state of the art. Actually, in this paper, we mainly focus
on the investigation whether the semantics can help us to improve retrieval performance.
Therefore, replace the AlexNet with more powerful models(like VGG-16 or ResNet) will
further improve performance.
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