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Abstract In this paper, an active control technique is employed for anti-synchronization
between two identical fractional order reverse butterfly-shaped hyperchaotic systems. We
have shown that the convergence rate of anti-synchronization error is very faster by increas-
ing the value of an active controller gain. A new algorithm for image encryption and
decryption is introduced and established by anti-synchronized fractional order dynamical
systems. Experimental results show that the proposed encryption algorithm has high level
security against various attacks. Further, it confirms that the new algorithm is more efficient
compared to other existing algorithms.

Keywords Fractional order system · Hyperchaos · Anti-synchronization · Image
encryption

1 Introduction

1.1 Research background

With the development of communication and social networking technologies, multimedia
data such as images, video and audio are transmitted over the network more conveniently.
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Consequently, the security of multimedia data becomes more and more important. A huge
amount of digital data, which are either private or confidential, need to be protected against
the misuse. Therefore, a well secured encryption algorithm is essential for secure com-
munication. The security of multimedia data is receiving more and more attention due to
the widespread transmission over various communication networks. Yet a potential risk of
information security always exists during the processing and transmission of digital images
over an open network. The properties of an ideal encryption scheme for data security such
as confidentiality, integrity and authenticity have been drawn more attention by researchers
in the field of image encryption. Therefore, designing good image encryption schemes has
become a focal research topic. The conventional cryptographic algorithms like RSA (Rivest
Shamir Adleman) and DES (Data Encryption Standard) are not effective for encryption of
data owing to capacity of data, intrinsic characteristics of images, high redundancy and so
on. Due to the main features of chaotic systems like sensitivity to initial conditions, ergodic-
ity, simple analytic description and high complex behavior, cryptographic algorithms using
chaotic systems are more effective and secure than traditional cryptographic algorithms.
Further, chaotic system based encryption algorithms have several inherent features favorable
to data security.

1.2 Literature overview

Over the past decades, several chaos based image encryption techniques have been widely
investigated in the field of secure communication. In 1989, Matthews [23] developed the
first chaotic stream encryption algorithm. After that, a symmetric image encryption algo-
rithm using the two-dimensional standard Baker map has been proposed by Fridrich [8]
in 1998. Lately, the chaotic Boolean bit function has been employed and applied to the
image encryption in [14]. In [19], a color image encryption scheme has been designed
by using chaos with the help of bijective function. Synchronization of two different six-
dimensional hyperchaotic systems [36] has been utilized for image encryption. The total
plain image characteristics, crossover operator and chaos have been applied for image
encryption respectively in [9, 24]. The statistical properties of image encryption algorithm
have been improved by multiple chaotic maps in [40]. A fast color image encryption scheme
has been designed in [20] by one-time S-Box, which is generated by the complex chaotic
system. DNA sequence and hyperchaotic system have been utilized for image encryption in
[11].

In order to improve the security and efficiency performance, several image encryption
algorithms have been designed by applying the theory of fractional calculus. The fractional
differential equations are generalizations of classical differential equations and it gained
popularity in the nonlinear dynamical systems. Many real world systems have been deter-
mined by fractional derivatives since they allow more flexibility in the model [15, 21, 42].
The study of chaotic dynamics of fractional order systems has been a hot topic in the
field of nonlinear science. Furthermore, applications of control and synchronization of frac-
tional order chaotic systems have been reported in many areas, for instance in medicine [1],
telecommunications [32], robotics [7], secure communication and cryptography [3, 25–28,
30, 35]. Several types of control techniques and methodologies have been investigated for
synchronizing fractional order systems such as feedback control technique [25], adaptive
observer [41], active control method [4], non-fragile control [2], multi-scale synchroniza-
tion technique [26], fast projective synchronization method [28], Lyapunov based control
[17], hybrid phase synchronization [27] and sliding mode control [29]. Apart from synchro-
nization, anti-synchronization is a dominating phenomenon in symmetrical oscillators. The
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ultimate aim of anti-synchronization is to study the opponent behavior of the master and
slave systems so that the sum of their states will converge to zero asymptotically. Due to this
reason, different control methods have been utilized for anti-synchronizing chaotic systems
in [6, 13, 16, 31, 33].

A short overview of the recently proposed image encryption schemes [10, 12, 18, 26,
37, 39] build from fractional order dynamical systems are given hereafter. A color image
encryption algorithm by using coupled-map lattices and a fractional order chaotic system
has been proposed to enhance the security and robustness of the encryption algorithms
with a permutation-diffusion structure in [37]. The scrambled image has been encrypted
once again by the pseudorandom sequences generated from the combined fractional-order
hyperchaotic systems in [10]. An encryption algorithm has been constructed in [12] by
the fractional order hyperchaotic system which can effectively enhance the cryptosystem
security. In [18], a color image encryption algorithm by combining the reality-preserving
fractional DCT with chaotic mapping in HSI space has been presented. A new cryptosys-
tem has been proposed for an image encryption by using synchronized fractional order King
Cobra chaotic systems with the supports of multiple cryptographic assumptions in [26]. In
[39], an image encryption algorithm has been presented where the original image is encoded
by a nonlinear function of a fractional chaotic state. Further, these encryption algorithms are
experimentally demonstrated which includes correlation analysis, histogram analysis, and
key sensitivity analysis to verify the security level of the encryption scheme. Compared to
integer order systems, the fractional order systems are found to have more complex dynam-
ics because the fractional derivatives have complex geometrical interpretation due to their
nonlocal character and high nonlinearity. Further, the derivative orders can be also used as
secret keys as well, which will increase the key space of the cryptosystem. To the best of
authors knowledge, few more encryption techniques are available in the literature using the
fractional order chaotic systems. Therefore, for the purpose of high security, the construc-
tion of new image encryption algorithm by applying fractional order chaotic systems is very
essential.

1.3 Our contribution

Based on the aforesaid studies, the anti-synchronization scheme for fractional order reverse
butterfly-shaped hyperchaotic systems is investigated via active control technique. The nec-
essary conditions are derived to achieve the anti-synchronization between two systems.
Apart from existing image encryption algorithms, a new image encryption-decryption algo-
rithm is introduced by utilizing anti-synchronized fractional order hyperchaotic systems
and encryption (decryption) of encryption (decryption) techniques, which is entirely differ-
ent from other existing image encryption techniques. Further, we have shown that the new
algorithm has higher level security by various experimental analysis tests and comparison
results.

In Section 2, some basic theories of fractional calculus are given. In Section 3, the
fractional order reverse butterfly-shaped hyperchaotic system is described. The process
of anti-synchronization between two identical fractional order reverse butterfly-shaped
hyperchaotic systems using active control technique is elaborately studied in Section 4.
Section 5 contributes to the applications: a new image encryption algorithm is described
by the anti-synchronized scheme. The experimental analysis of the proposed algorithm
is presented in Section 6. The performance analysis and the security of the proposed
algorithm are compared in Section 7. The conclusions of this paper are drawn in
Section 8.
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2 Preliminaries

In this paper, we have used the Caputo fractional differential operator since the Caputo’s
derivative of a constant is zero and it has conventional initial conditions.

Definition 1 [5] The Caputo fractional derivative is defined as

Dαf (t) = 1

�(n − α)

∫ t

a

(t − τ)−α+n−1f (n)(τ )dτ, (1)

where n = [α] + 1, [α] is the integer part of α, Dα is called the α-order Caputo differential
operator, � is the usual Gamma function given by and

�(z) =
∫ ∞

0
e−t t z−1dt. (2)

Further it is noted that �(z + 1) = z�(z).

Theorem 1 [22] The following autonomous fractional order system

Dαx(t) = Ax(t), x(0) = x0, (3)

where 0 < α ≤ 1, x ∈ R
n is asymptotically stable if and only if

| arg(eig(A))| >
απ

2
. (4)

Also, the system (3) is stable if and only if | arg(eig(A))| ≥ απ
2 and those critical

eigenvalues that satisfy | arg(eig(A))| = απ
2 have geometric multiplicity one.

Theorem 2 [34] A necessary condition for the system (3) to remain chaotic is keeping at
least one eigenvalue λ in the unstable region. This means

α >
2

π
arctan

( |Im(λ)|
Re(λ)

)
. (5)

3 Description of fractional order hyperchaotic system

Consider the fractional form of the reverse butterfly-shaped hyperchaotic system described
in [38],

Dαx1 = a(x2 − x1) + x4,

Dαx2 = bx1 + kx1x3,

Dαx3 = −cx3 − hx1x2,

Dαx4 = x1x3 − dx2,

(6)

where 0 < α ≤ 1, x = (x1, x2, x3, x4)
T ∈ R

4 is the state variable and a, b, c, d, h, k are the
parameters of the system (6). Dα is the α-order differential operator in the sense of Caputo
[5]. The authors in [38] have been shown that the integer order (α = 1) system (6) behave
hyperchaos for the parameters a = 10, b = 40, c = 2.5, d = 2, h = 1 and k = 16.

Throughout this manuscript, we have fix the same parameters a = 10, b = 40, c =
2.5, d = 2, h = 1 and k = 16 for the fractional order system (6). According to Theorem
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1, the fractional order system is stable for every α ≤ 0.9606. The system (6) exhibit chaos
with two positive Lyapunov exponents when the fractional order α > 0.9606 according
to Theorem 2. Therefore, the system (6) is called as a fractional order reverse butterfly-
shaped hyperchaotic system and the corresponding hyperchaotic attractors when α = 0.97
are depicted in Fig. 1.

4 Anti-synchronization of two identical fractional order hyperchaotic
systems

In this section, an active control technique is applied to achieve anti-synchronization
between two identical fractional order reverse butterfly-shaped hyper chaotic systems.

Consider the fractional order system (6) as a master system and the following identical
system of (6) as a slave system

Dαy1 = a(y2 − y1) + y4 + u1,

Dαy2 = by1 + ky1y3 + u2,

Dαy3 = −cy3 − hy1y2 + u3,

Dαy4 = y1y3 − dy2 + u4,

(7)

where 0 < α ≤ 1, y = (y1, y2, y3, y4)
T ∈ R

4 is the state variable, u = (u1, u2, u3, u4)
T

is the active control function to be determined later so that both systems (6) and (7) are
anti-synchronized successfully.

Fig. 1 Hyperchaotic attractors of the system (6) when α = 0.97
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To investigate the anti-synchronization between the systems (6) and (7), we define the
synchronization error states as ei = yi + xi for i = 1, 2, 3, 4. The ultimate aim is to select
the active control function u such that

lim
t→∞ ‖ei(t)‖ = lim

t→∞ ‖yi(t) + xi(t)‖ = 0, i = 1, 2, 3, 4. (8)

Then, the fractional order error dynamical system between the systems (6) and (7) is
described by

Dαe1(t) = a(e2 − e1) + e4 + u1,

Dαe2(t) = be1 + k(y1y3 + x1x3) + u2,

Dαe3(t) = −ce3 − h(y1y2 + x1x2) + u3,

Dαe4(t) = −de2 + y1y3 + x1x3 + u4.

(9)

Theorem 3 The fractional order mater system (6) and the slave system (7) are globally
asymptotically anti-synchronized with the following active control functions

u1(t) = v1 − ae2 − e4,

u2(t) = v2 − be1 − k(y1y3 + x1x3),

u3(t) = v3 + h(y1y2 + x1x2),

u4(t) = v4 + de2 − y1y3 − x1x3,

(10)

where vi is a linear function of ei such that vi < 0 for i = 1, 2, 3, 4.

Proof The fractional order error dynamical system (9) together with active control functions
ui defined in (10) yields

Dαe1(t) = v1 − ae1,

Dαe2(t) = v2,

Dαe3(t) = v3 − ce3,

Dαe4(t) = v4.

(11)

Since by hypothesis, without loss of generality, we assume that vi(t) = −liei where li > 0
is the gain of vi as well as active control functions ui for i = 1, 2, 3, 4.

Then, the system (11) can be written as

Dαe1(t) = −(l1 + a)e1,

Dαe2(t) = −l2e2,

Dαe3(t) = −(l3 + c)e3,

Dαe4(t) = −l4e4.

(12)

The Jacobian matrix J of fractional order error dynamical system (12) is

J =

⎛
⎜⎜⎝

−(l1 + a) 0 0 0
0 −l2 0 0
0 0 −(l3 + c) 0
0 0 0 −l4

⎞
⎟⎟⎠ (13)

The eigenvalues λi, i = 1, 2, 3, 4 of (13) are λ1 = −(l1 + a), λ2 = −l2, λ3 = −(l3 + c)

and λ4 = −l4. Since li > 0 for every i, a = 10 and c = 2.5, then all eigenvalues are less
than zero. Further, the value of | arg(λi)| is equal to π for i = 1, 2, 3, 4. Thus, the asymptot-
ically stable condition (4) is satisfied for the fractional order error dynamical system (12).
Consequently, the error states ei are tend to zero as t → ∞. Therefore, the proposed active
control function is fulfilled the requirement (8). Hence, anti-synchronization between the
master system (6) and the slave system (7) is achieved successfully.
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4.1 Numerical simulations

Consider the initial values of the master system (6) and the slave system (7) respectively
by (x1(0), x2(0), x3(0), x4(0)) = (0.1, 0.1, 0.1, 0.1) and (y1(0), y2(0), y3(0), y4(0)) =
(−1, −1, 1, 1). For convenience, we fix the fractional order α = 0.98 and the controller
gain li is selected as li = l > 0 for i = 1, 2, 3, 4.

In simulations, the state trajectories between the systems (6) and (7) are depicted in
Figs. 2, 3 and 4 for l = 0.5, l = 5 and l = 15 respectively. Further, the corresponding time
response of anti-synchronization error states are depicted in Figs. 5, 6 and 7 respectively.
From Figs. 5–7, we observed that the convergence rate of anti-synchronization errors are
gradually decreased in the fractional order α = 0.98 by increasing the value of controller
gain l. Thus, we conclude that anti-synchronization is achieved faster by increasing the
control gain.

In the following section, these anti-synchronized fractional order reverse butterfly-
shaped hyperchaotic systems are utilized to develop an encryption and decryption algorithm
for digital images.

5 Proposed encryption-decryption algorithm

In this section, a new encryption algorithm for an image without any key exchange is intro-
duced by anti-synchronized fractional order reverse butterfly-shaped hyperchaotic systems
with the support of the discrete logarithm problem and it can be described as follows.

Assume that two cryptographic entities Alice and Bob. Let Alice be a sender and Bob be
a receiver. Also, assume that the master system (6) as a sender system and the slave system
(7) as a receiver system. Both Alice and Bob agree on the fractional order α > 0.9606 and
l > 0 at time t > t0 where t0 is a time if anti-synchronization errors between the systems
(6) and (7) are tend to zero from t0 onwards for given values of α and l.
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Fig. 2 State trajectories between the master system (6) and the slave system (7) when l = 0.5
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Fig. 3 State trajectories between the master system (6) and the slave system (7) when l = 5

Further, assume that I is the original image and D is the dummy image of size M × N .
The images (A1, A2, A3) and (B1, B2) are the encrypted images computed by Alice and
Bob respectively. R is the decrypted image, which is computed by Bob. Alice and Bob
agree on a positive integer ρ such that ρ < 256 and gcd(ρ, 256) = 1. Note that, |X| is the
absolute value of X and f loor(X) is the largest integer less than or equal to X.
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Fig. 4 State trajectories between the master system (6) and the slave system (7) when l = 15
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Fig. 5 Time response of the anti-synchronization error states when l = 0.5

Step 1. Alice wants to send a digital image I .
Step 2. Alice chooses a real number t1 > t0 and finds the solution of the system (6) at t1.
Step 3. She computes the first encrypted image A1 of I .

A1 ≡ Iρr (mod 256),
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Fig. 6 Time response of the anti-synchronization error states when l = 5
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Fig. 7 Time response of the anti-synchronization error states when l = 15

where r ≡ |f loor(t1
4∑

i=1
xi(t1))| (mod 256).

Step 4. The element r is kept secret by Alice and she sends A1 to Bob.
Step 5. Bob receives A1, then he chooses a real number t2 > t0 and finds the solution of

the system (7) at t2. Then, he chooses a dummy image D with the size of A1.
Step 6. He computes the second encrypted image B1 of I by using the dummy image D

and assign the dummy image D as B2.

B1 ≡ (A1ρ
s + D) (mod 256),

B2 ≡ D (mod 256),

where s ≡ |f loor(t2
4∑

i=1
yi(t2))| (mod 256).

Step 7. The element s is kept secret by Bob and he sends (B1, B2) to Alice.
Step 8. Alice receives B1 and B2, then she computes the resulting encrypted image A2

of I and the encrypted dummy image A3 of D.

A2 ≡ B1ρ
−r (mod 256),

A3 ≡ B2ρ
−r (mod 256).

Step 9. She sends the encrypted images A2 and A3 to Bob.
Step 10. Finally, Bob recovers an original image I by computing

R ≡ (A2 − A3)ρ
−s (mod 256).

For,
(A2 − A3)ρ

−s ≡ (B1ρ
−r − B2ρ

−r )ρ−s (mod 256)
≡ (B1 − B2)ρ

−rρ−s (mod 256)
≡ (A1ρ

s + D − D)ρ−(r+s) (mod 256)
≡ (Iρrρs)ρ−(r+s) (mod 256)

R ≡ I (mod 256).
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Remark 1 The proposed encryption and decryption algorithm is fully based on the discrete
logarithm problem with the backbone of fractional order systems. Obviously, it contains an
encryption (decryption) of encryption (decryption) images more than one time. Therefore,
this algorithm is called as cascade encryption and decryption or multiple encryption and
decryption algorithm.

The purpose of introducing multiple encryption is, no one got fully encrypted image or
encrypted trick in the middle of the two parties because the encrypted image is encrypted
more than one time. Consequently, nobody decrypts an image from the knowledge of
encrypted image between two parties. Hence, the proposed cascade encryption and decryp-
tion processes are more efficient than existing encryption algorithms established by chaotic
systems.

6 Experimental analysis and results

In this section, the performance of the proposed cascade image encryption algorithm is
analyzed and its high level security has been investigated experimentally through various
security test measures. These measures are taken as follows: key space analysis, statistical
analysis including correlation coefficients of adjacent pixels, information entropy analysis,
histogram analysis and test security against differential attack.

The standard image processing color plain image of Lena and the Baboon image with a
size of 256 × 256 are utilized for encryption and decryption processes. The parameters of
the systems (6) and (7) for experimentation are: a = 10, b = 40, c = 2.5, d = 2, h = 1 and
k = 16. The value of the fractional order α, the feedback gain l, a positive integer ρ, the
real numbers t1 and t2 are taken as 0.98, 5, 5, 7 and 3.85 respectively. Assume that the Lena
image is an original image I and the Baboon image is a dummy image D. We implement
the proposed algorithm by using Matlab 7.1. The original color image, the dummy image
and the encrypted images are displayed in Fig. 8.

6.1 Key space analysis

The size of key space is the total number of different keys that can be applied in the encryp-
tion process. A good encryption algorithm should be sensitive to the secret keys and the
key space should be large enough to ensure the security of the encryption algorithm against
brute-force attacks. In our cascade encryption algorithm, the initial conditions of the master
system xi(0) and the slave system yi(0), i = 1, 2, 3, 4, the fractional order α, the parameters
a, b, c, d, h, k, the time t1 and the feedback control gain l are secret keys. If the precision
is 10−14, then the size of the initial conditions key space is 1014×8. Additionally the frac-
tional order, the time and the feedback control gain keys can also produce large key spaces.
Therefore, the total key space is more than 1014×8, which is greater than 2370 approximately.
Hence, the proposed cascade encryption algorithm has a large enough key space to resist all
varieties of brute-force attacks.

6.2 Correlation analysis

The correlation coefficient between images can be used to evaluate the quality of the encryp-
tion algorithm. In ordinary images having definite visual content, each adjacent pixels are
highly correlated. This means that the correlation coefficients of plain image are closer to
1. For the good encryption algorithm, the correlation coefficients among the adjacent pixels
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of the encrypted image are close to 0. The correlation coefficient of two adjacent pixels in
an image is calculated by using the following formula:

γxy = cov(x, y)√
D(x)

√
D(y)

, (14)

where
cov(x, y) = 1

N

N∑
i=1

(xi − E(x))(yi − E(y)),

D(x) = 1

N

N∑
i=1

(xi − E(x))2,

E(x) = 1

N

n∑
i=1

(xi),

ba c

d e f

Fig. 8 a Original image I , b First encrypted image A1, c Second encrypted image B1, d Dummy image B2,
e Resulting encrypted image A2 and f Encrypted dummy image A3
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where x, y are grey scale values of two adjacent pixels in the image, cov(x, y) is the
covariance between x and y, D(x) and D(y) are the variance of x and y respectively, and
E(x), E(y) are the expectation of x and y.

For the proposed algorithm, the correlation coefficients of two adjacent pixels in the
original image and encrypted images are tried out respectively in horizontal, vertical and
diagonal directions. Table 1 shows the outcomes of the correlation coefficients in three
directions. Figures 9 and 10 show the corresponding distribution of the original and the
resulting encrypted image in horizontal, vertical and diagonal directions respectively. From
Table 1, one can see that the estimated correlation coefficients of encrypted images in three
directions are very close to 0, implying that the ciphered image has been well encrypted.
Therefore, the proposed encryption algorithm is secure and robust against correlation
attacks.

6.3 Information entropy analysis

Information entropy defines the randomness and the unpredictability of an information in
the image. To measure the value of entropy H(s) of a source s, we have

H(s) = −
2N−1∑
i=0

P(si) log2 P(si), (15)

where si is the i-th gray scale value for an 256 gray level image, P(si) is the probability of
si , si ∈ s. For truly random source emitting 2N symbols, the entropy value of the source
is H(s) = N . For a random image with 256 gray levels, the entropy should be H(s) = 8
theoretically. However, a good encryption algorithm should produce an encrypted image
with the entropy very close to 8. For the proposed algorithm, the entropy values of encrypted
images are calculated and listed in Table 2. The results show that the information entropies
of encrypted images are close to 8 and the resulting encrypted image is very close to 8.
Hence, the proposed encryption algorithm is secure against the entropy analysis.

6.4 Histogram analysis

For an image encryption algorithm, the histogram analysis is very important because it
describes the distribution of the image pixels by plotting the number of pixels at each inten-
sity level. If the histogram of an encrypted image is uniform, then the encryption scheme

Table 1 Correlation coefficients
of two adjacent pixels in original
image and encrypted images

Directions

Images Horizontal Vertical Diagonal

The original image I 0.9897 0.9791 0.9687

First encrypted image A1 0.1294 0.0597 0.0469

Second encrypted image B1 0.1098 0.0706 0.0428

The dummy image B2 0.8834 0.9404 0.8610

Resulting encrypted image A2 0.0036 0.0032 0.0030

The encrypted dummy image A3 0.0142 0.0093 0.0161

The decrypted image R 0.9897 0.9791 0.9687
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Fig. 9 The correlation of two adjacent pixels in different directions for original image I : (a) Horizontal, (b)
Vertical and (c) Diagonal

is more robust against statistical attack and differential attack. Figure 11a and b represents
the histograms of the original and resulting encrypted images in red, green and blue color
components respectively. It shows that histograms of the resulting encrypted image are uni-
form and significantly different from the histograms of original image. Hence, it does not
provide any clue to employ statistical attack and differential attack on the encrypted image.

6.5 Differential attack analysis

Differential attack means that attacker creates a slight change to the original image, and
use the proposed image encryption algorithm to encrypt for the original image before and
after changing, to find out the relationship between the original image and the cipher image
through comparing two encrypted images. The number of pixel change rate (NPCR) and the
unified average changing intensity (UACI) are two most common measures used to assess
the strength of image encryption algorithms with respect to differential attacks. The NPCR

Fig. 10 The correlation of two adjacent pixels in different directions for resulting encrypted image A2: (a)
Horizontal, (b) Vertical and (c) Diagonal
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Table 2 Information entropy of
encrypted images Images Entropy

First encrypted image A1 7.9562

Second encrypted image B1 7.9998

Resulting encrypted image A2 7.9998

The encrypted dummy image A3 7.7555

is applied to measure the percentage of the number of pixels change rate of the ciphered
image while one pixel of the original image has changed and it is calculated as:

NPCR = 1

M × N

M∑
i=1

N∑
j=1

D(i, j) × 100%, (16)

where

D(i, j) =
{
0 if I1(i, j) = I2(i, j)

1 if I1(i, j) 
= I2(i, j)
,
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Fig. 11 Histograms of the color image in red, green and blue components: (a) Original image I and (b)
Resulting encrypted image A2
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Table 3 NPCR and UACI
percentage of encrypted images Images NPCR(%) UACI(%)

First encrypted image A1 98.2952 33.9635

Second encrypted image B1 99.6151 34.0900

Resulting encrypted image A2 99.6330 34.1319

The Encrypted dummy image A3 99.6235 33.9419

where I1(i, j) and I2(i, j) are the pixel gray value of two cipher images in the same position.
The closer the NPCR comes to 100 %, the more sensitive the encryption algorithm is to the
original image and the more effective the encryption algorithm resists differential attack.

The UACI is applied to measure the percentage of the the average intensity difference
of two ciphered images, whose corresponding original image has only one pixel difference
and it is calculated as:

UACI = 1

M × N

M∑
i=1

N∑
j=1

|I1(i, j) − I2(i, j)|
2N − 1

× 100 %, (17)

where I1(i, j) and I2(i, j) are the pixel gray value of two cipher images in the same position.
The value of UACI is very close to 33%. The greater the UACI is, the better the encryption
algorithm resists the differential attack.

For a image with 256 gray levels, the expected NPCR and UACI values are 99.6094 %
and 33.4635 % respectively. For the proposed algorithm, the NPCR and UACI values are
given in Table 3 for resulting encrypted images with one bit difference in original image.
Note that the value of NPCR and UACI of resulting encrypted image is higher than their
expected values.

7 Comparison with previous work

In this section, we compare the security performance of the proposed encryption algorithm
with other existing chaos based image encryption algorithms suggested in Refs. [9, 10, 12,
14, 19, 20, 24, 36, 37, 40].

The total key space of the proposed algorithm is greater than 2370, which is enough to
prevent the exhaustive searching. Thus, brute-force attacks on the key are computationally
infeasible and the proposed scheme has the large key space size than other encryption algo-
rithms in Refs. [9, 10, 12, 19, 20]. This signifies more number of trials required to crack the
proposed encryption algorithm by comparing the other chaos based encryption algorithms.

Table 4 Comparison of
correlation coefficients of two
adjacent pixels in different
directions encrypted Lena image
using the proposed algorithm
with some other algorithms

Directions

Images Horizontal Vertical Diagonal

The proposed algorithm 0.0036 0.0032 0.0030

Ref. [9] 0.0802 0.0706 0.0738

Ref. [12] −0.0006 0.0051 0.0094

Ref. [14] 0.0141 0.0107 0.0097

Ref. [37] −0.0037 0.0001 −0.0230
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The proposed  algorithm Ref. [9] Ref. [12] Ref. [14] Ref. [37]
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Fig. 12 Comparison graph of correlation coefficients of two adjacent pixels of encrypted Lena image in
horizontal, vertical and diagonal directions with some other algorithms

The comparison performed of the correlation coefficient of the proposed algorithm in
Table 4 shows that the proposed encryption algorithm is superior to other methods reported
in Refs. [9, 12, 14, 37]. The comparison of correlation coefficients of two adjacent pix-
els of encrypted Lena image in different directions with some other algorithms is depicted
in Fig. 12. It shows that the correlation coefficients of the proposed algorithm in horizon-
tal, vertical and diagonal directions are close to 0. Therefore, The encrypted image using
our proposed algorithm has the highest performance in the horizontal, vertical and diagonal
directions. Table 5 compares information entropy using the proposed encryption algorithm
with those using the existing algorithms mentioned in Refs. [9, 10, 14, 19, 20, 24, 36, 37,
40]. Hence, the entropy obtained using our proposed algorithm is indeed closer to the max-
imum entropy value of 8, which shows the strength of the proposed encryption algorithm.
So, information leakage in the encryption process could be negligible and the proposed
algorithm is secure against entropy analysis. Table 6 compares the NPCR and UACI for the
proposed encryption algorithm and the existing algorithms in Refs. [9, 10, 12, 14, 19, 20,

Table 5 Comparison of
information entropy of encrypted
Lena images with different
algorithm

Encrypted image Entropy

The proposed algorithm 7.9998

Ref. [9] 7.9973

Ref. [10] 7.9979

Ref. [14] 7.9972

Ref. [19] 7.9899

Ref. [20] 7.9811

Ref. [24] 7.9973

Ref. [36] 7.9896

Ref. [37] 7.9895

Ref. [40] 7.9993
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Table 6 The results of NPCR
and UACI with different
algorithm

Images NPCR (%) UACI (%)

The proposed algorithm 99.6330 34.1319

Ref. [9] 99.6058 33.5260

Ref. [10] 99.6196 33.2648

Ref. [12] 99.6013 33.4134

Ref. [14] 99.6124 33.4591

Ref. [19] 99.6180 33.6069

Ref. [20] 99.6216 33.4158

Ref. [24] 99.6100 33.3600

Ref. [40] 99.6080 33.4712

24, 40]. From the results, one can easily see that the proposed encryption algorithm achieves
a higher performance by comparing the other methods. Therefore, the proposed algorithm
is very sensitive with respect to the small changes in the original image and it has a strong
power and secures to resist the differential attack.

Remark 2 The experimental and comparison results show that the proposed cascade encryp-
tion algorithm has large key space and more secure against the most common attacks such
as correlation attack, entropy attack, differential attack, sensitivity to the secret key. There-
fore, the proposed encryption algorithm can be applied to encrypt images for transmission
over insecure channel.

8 Conclusions

In this paper, anti-synchronization scheme for fractional order reverse butterfly-shaped
hyperchaotic system has been suggested by using active control technique . In order to ver-
ify the effectiveness of the anti-synchronization, enough numerical investigations have been
done by different values of active controller gain. Finally, we conclude that the conver-
gence rate of anti-synchronization errors are inversely proportional to an active controller
gain. A novel secure cascade encryption-decryption algorithm for digital images has been
presented analytically and numerically. The security and performance analysis of the pro-
posed algorithm have been carried out by several tests. The obtained results prove that the
proposed image encryption algorithm preserves good encryption performance than existing
algorithms.
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