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Abstract In recent years, vehicle detection from aerial images obtained using unmanned
aerial vehicles (UAVs) has become a research focus in image processing as remote sensing
platforms on UAVs are rapidly popularised. This study proposes a detection algorithm using a
deep convolutional neural network (DCNN) based on multi-scale spatial pyramid pooling
(SPP). By using multi-scale SPP models to sample characteristic patterns with different sizes,
feature vectors with a fixed length are generated. This avoids the stretching- or cropping-
induced deformation of input images of different sizes, thus improving the detection effect. In
addition, an imaging pre-processing algorithm based on maximum normed gradient (NG) with
multiple thresholds is proposed. By using this algorithm, this research restores the edges of
objects disturbed by clutter in the environment. Meanwhile, the raised candidate object
extraction algorithm based on the maximum binarized NG entails fewer computations as it
generates fewer candidate windows. Experimental results indicate that the multi-scale SPP
based DCNN can better adapt to input images of different sizes to learn of the multi-scale
characteristics of objects, thus further improving the detection effect.

Keywords Unmanned aerial vehicle . Vehicle detection .Multi-scale spatial pyramid . Deep
convolutional neural network

1 Introduction

Unmanned aerial vehicles (UAVs) as low-cost, light-weight, imaging sensors have been
constantly developed over the last decade. As a consequence, UAVs have been widely applied
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to process remote sensing data, for example, traffic monitoring, monitoring of vegetation cover
[1, 6, 9, 10, 22, 26], archaeology [4, 12, 20], meteorology [21], volcano monitoring [2] and
forest fire monitoring [3]. The large area remote sensing images obtained using UAVs contain a
large amount of ground information. UAV-based remote sensing systems can provide complex
traffic data. As a supplement to traditional traffic devices, these data have begun to be used for
detecting vehicles. Vehicle detection from remote sensing images has been applied in various
fields: images of road networks and distribution of vehicles in various areas can provide
information for urban planning and traffic monitoring; vehicle detection and tracking from
aerial images are also an important component of any video monitoring system.

In recent years, numerous algorithms have been proposed to detect and recognise vehicles
from aerial images. They mainly include methods based on artificially designed feature
models, shallow neural networks, and deep neural networks which include deep belief
networks (DBNs) and convolutional neural networks (CNNs).

The method based on artificially designed feature models mainly refers to detecting objects
with illumination invariance by using the distinguishable structures and shapes of objects. This
kind of method generally presents a low recall rate (RR) and a high false alarm rate (FAR).
Shallow neural networks are used on the basis of their simple characteristics with few network
layers. Therefore, they present poor robustness to the displacement and rotation of objects, and
high FARs in complex scenes. Deep learning algorithms contain DBNs, DCNNs, and so on.
The deep neural network based vehicle detection has been proven to be the most flexible,
robust, and precise method and is one of the optimal methods for vehicle detection from large
area remote sensing images at present.

This research proposes a spatial pyramid pooling (SPP) based deep convolutional neural
network (DCNN) for vehicle detection. When the size of images input into traditional DCNN
is changed, stretching or cropping images can result in image distortion or information loss.
The SPP based DCNN adopts a multi-scale spatial pyramid models for down-sampling images
from characteristic patterns with different sizes, thus generating feature vectors with a fixed
length. In this way, the network can directly process original images without stretching- or
cropping-induced deformation, thus improving the detection effect.

2 Rapid extraction of candidate objects

Specific object detection from remote sensing images requires discovery of objects of interest in
large area images and then uses complex classifiers to deal directly with original images. The large
area images need to be segmented so as to reduce the size of images input into classifiers and extract
the candidate windows with suspected targets. This study adopts rapid extraction for candidate
objects based on binarized NG to obtain the candidate windows containing suspected targets.

2.1 Normed gradient features

The binarized NG-based rapid extraction for candidate objects generally uses generic target
detection models to locate, rapidly and effectively, all objects to be detected in remote sensing
images. Generally speaking, general objects have independent, favourable, closed boundaries.
On this basis, the NG of images presents obvious distinctions by adjusting the windows of
actual objects to a fixed size (e.g., 8 × 8). In this case, slight changes in closed boundaries can
be presented in the characteristics of the NG. To begin with, the input images are normalised to
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different quantitative sizes, followed by the calculation of the NG of adjusted images. Then,
the vectors in the 8 × 8 regions of images are defined as the 64-dimentional (64D) NG of
corresponding windows. Afterwards, as shown in Fig. 1, a 64D linear model is trained to select
proposal windows containing targets based on the NG characteristics.

2.2 General target models for NG learning

Inspired by the fact that human visual systems can perceive objects before recognising them,
64D NG and its approximate binarisation are input into classifiers. After that, a two-stage
cascaded support vector machine (SVM) is used to score the characteristics so as to acquire the
model for identifying objects from image windows.

Stage 1: the weight w of classifiers is learnt using linear SVMs. To find general objects from
an image, this study pre-defines and quantizes the window size (size and length-to-width ratio)
so as to scan images. In addition, a linear model w ∈ℝ64 is applied to score the windows.

xl ¼ w; glh i ð1Þ
l ¼ i; x; yð Þ ð2Þ

Where, xl, gl, l, i and (x, y) denote the confidence score, the characteristics of the NG,
position, size, and coordinates of windows, respectively; while w ∈w denotes the weight of the
classifier to be learned.

Stage 2: again, linear SVMs are used to learn the weights v and t of the second-level
classifiers. Based on the belief scores of candidate windows acquired during Stage 1, a group
of proposal windows are selected from each size i using non-maximum suppression (NMS).
Therein, the windows at some sizes, for example, 512 × 512, are unlikely to contain vehicles.
Therefore, the algorithm is used to screen these windows further.

zl ¼ vi⋅xl þ ti ð3Þ
Where, vi , ti ∈ℝ and vi ∈ v , ti ∈ t; vi and ti indicate the learnt coefficient and bias term of

each quantitative size i, separately; while zl stands for the score of the window in Stage 2.
Windows which have highest score are considered as input for the next step.

Fig. 1 NG features
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3 DCNN

3.1 Pre-processing of maximum NG with multi-thresholds

As an end-to-end network structure, DCNNs can be used to process the original images
directly. Nevertheless, when remote sensing images are disturbed by the environment, for
instance, when objects are blocked by trees or buildings, the characteristics learnt by the neural
network include noise. As a result, real information about objects is lost. To overcome this
problem, a pre-processing algorithm of maximum NG with multiple thresholds is proposed.

The outline of remote sensing vehicle images contains some main information which can be
used to distinguish vehicles fromother objects. In this study, the unidimensional differential operator
[−1, 0, 1] is used to calculate the gradient images in each channel of a colour image. The gradient
with the maximum L1 norm at each pixel position is taken as the final gradient of this pixel point.

For the gradient images obtained using the maximum NG from multi-channel colour
images, the edges of objects are more obvious than those in images acquired through the
use of traditional algorithms. However, when objects show little clear difference from the
background, or are disturbed, the edge information of the images with maximum NG is still
ambiguous and we cannot effectively distinguish objects. To overcome this problem, gradient
images are dealt with using a multiple threshold method so as to enhance the originally
unapparent outline information. As shown in Fig. 2, no obvious difference can be found
between dark cars and shadowed background and some cars are blocked by trees on the roads.
After processing by multi-threshold method, the outline of dark cars is enhanced, while the
textures of trees are suppressed. In this study, two thresholds (i.e., 40 and 130), are adopted. In
addition, similar multiple threshold processing is also performed on grey-scale images.

3.2 DCNN

The DCNN used in this research contains four convolution layers, four max-pooling down-
sampling layers, and three fully-connected layers. Convolution layer in the DCNN contains
multiple convolution kernels which output a feature map on which the weights of neurons are
equal. After neurons are processed using the ReLU non-linear activation function, the output
characteristics present better robustness to micro-displacement. The number of characteristic
patterns in each down-sampling layer is equal to that in the former layer. In these characteristic
patterns, the neurons are connected with local receptive fields of the former layer. Sampling-
based dimension reduction decreases the number of neurons and extracts higher level charac-
teristics therewith.

3.3 Convolution layers and feature mapping

For a traditional DCNN, its first four layers are convolution layers, followed by max-pooling
layers: these pooling layers can also be regarded as special convolution layers. In general, they
adopt sliding windows to deal with images. In addition, the last two layers are fully-connected
layers and the last layer uses an N-dimensional SVM classifier to output images where N
denotes the number of different categories.

Deep neural networks need to input an image of a fixed size; however, this requirement
arises mainly because the fully-connected layers require input vectors of a fixed length.
Besides, images of any size can be input into convolution layers as they use sliding filters to
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output feature maps. These maps show a basically consistent length: width ratio to that of the
input images and contain information about response intensity and spatial position.

The process of using convolution layers to generate feature maps is similar to that found
using traditional methods [32] to produce characteristic images. Traditional methods adopt
scale-invariant feature transform (SIFT) vectors [23] or image blocks to extract characteristics.
Afterwards, these characteristics are coded through vector quantization [8, 25], sparse coding,
kernel Fisher, etc. These coded characteristics contain several characteristic images and are
pooled through Bag-of-Words (BoW) or using spatial pyramids. Similarly, deep convolution
characteristics can also be pooled.

3.4 Multi-scale SPP layers

Also called spatial pyramid matching, SPP [5, 7, 8], as an extended version of a BoW model
[11], and is one of the most successful method used in computer vision applications. It
separates images into layers according to their precision and gathers local features therefrom.
Before the great success of CNNs, SPP is always the key component used in competitive
classification [13, 15, 17] and detection systems [18]. By combining SPP with pooling
operations, this research makes it possible for neural networks to process input images of
different sizes.

Images of any size can be input into the convolution layers of DCNNs to generate images
with corresponding sizes. The fully-connected layers need to input vectors of fixed length,

(a) Original image (b) Gradient image

(c) Gradient image with a highthreshold (d) Gradient image with a low threshold

Fig. 2 Multiple threshold images with the maximum NG
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which can be generated through pooling using the BoWmethod. SPP, which is improved from
BoW, can be used to obtain information from local space bins through pooling. For input
images of any size, the size of space bins is positively related to that of the images, while their
number is fixed. This differs from the sliding windows used in traditional deep networks as the
number of sliding windows depends on the size of input images.

To make deep networks adapt to input images of any sizes, multi-scale SPP layers are used
to substitute max-pooling layers, as shown in Fig. 3. In each space bin, the response of filters is
randomly pooled. If there are M bins, the outputs of SPP are the kM-dimensional vectors with
a fixed length where k denotes the number of filters used in the last convolution layer. Vectors
in fixed dimensions are the inputs of fully-connected layers.

4 Experimental results and analysis

In this study, the database used is the DLR Munich Vehicle dataset offered by the
Remote Sensing Technology Institute of the German Aerospace Centre [14, 16]. The
relevant images were acquired from the skies over Munich using DLR 3 K camera
systems. Due to the disturbance of various factors, such as, roads, streets, trees, and
similar objects, the environment in this city is far more complex than that in rural
areas. Accordingly, it is challenging to use this algorithm to detect vehicles from the
images in this database.

vectors with a fixed length

2*24*4 1*1

multiscale SPP 

layer

fully-connected layer

convolution layer 

outputs with any sizes from 

convolution layer 

input image 

Fig. 3 The structure of a network containing SPP layers

Table 1 Window number and DR based on binarized NGs

Windows number 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5000

Binarized NG (%) 98.6 98.6 97.9 95.9 94.4 92.6 89.6 84.6 76.2 62.6

Sliding window(%) 16.3 15.8 15.2 13.1 12.4 11.6 10.6 9.1 8.7 7
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With a resolution and focal length of 5616 × 3744 and 50 mm, separately, the aerial images
in the Munich Vehicle dataset are optical images obtained from 1000 m above the ground
using Canon Eos 1Ds Mark III cameras installed on aircraft. These images were sampled every
13 cm on the ground and saved in JPEG format. In this database, there are total 20 images, half
of which are used for training while the rest formed the test dataset. In the training images,
3418 cars and 54 trucks are contained in the positive samples with vehicles, while the test
dataset includes 5928 vehicles.

To measure the performance of the DCNN algorithm, this research adopted FAR, precision
rate (PR), and RR as test standards. They are defined as follows:

FAR ¼ number of false alarms

number of vehicles
� 100%

PR ¼ number of detected vehicles

number of detected objects
� 100%

RR ¼ number of detected vehicles

number of vehicles
� 100%

8
>>>>><

>>>>>:

ð4Þ

Where, the lower the FAR, the fewer objects were falsely regarded as vehicles in back-
ground windows; a higher PR implies that more vehicles are contained in the objects; while
more vehicles can be detected when the RR is found to be higher. Accordingly, the algorithm
aims to obtain a lower FAR and higher PR and RR as far as possible.

By counting the size distribution of vehicles in the DLR Munich Vehicle dataset, the
candidate object extraction based on binarized NGs uses candidate windows at sizes of: 32,
48, 64, 80, 96, 112, and 128, separately. After being normalised, these windows measured

Table 2 The RRs and FARs of vehicle detection using SPP-based DCNN

Given Recall Rate

95 % 90 % 85 % 80 % 75 % 70 %

SPP-CNN 19.8 10.9 7.1 3.9 1.6 1.0

CNN 34.7 23.8 16.7 14.7 13 11.9

HOG + SVM 75.9 50.9 35.3 28 20.8 15

LBP + SVM 90.6 70.3 55.6 43.2 32.6 25.4

Adaboost 93 75.6 60.1 47 38.3 33.3

Fig. 4 The RRs and FARs of
vehicle detection using SPP-based
DCNN
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8 × 8. After scoring the windows by ranking SVMs in Stage 1, the approximate scores in the
range of NMS spanning ±1 are calculated based on the parameters Nw = 3 and Ng = 4. As
shown in Table 1, when there are 50,000 candidate windows, the binarized NG-based rapid
extraction algorithm shows a DR reaching 98.6 %, while the DR of sliding window algorithm
is only 16.3 %, which is far lower than that of the proposed algorithm.

In this study, the DCNN designed for vehicle detection consists of four convolution layers
and four max-pooling layers in series. The images input into the network are maximum NG
maps with multiple thresholds of 40 and 130, separately. In addition, the same thresholds are
also found in original gradient images and multiple threshold grey-scale images. Along with
the original grey-scale images, a total of six images are input to the network.

Taking the input image measuring 64 × 64 as an example, the structure of the CNNs is
illustrated in detail. The convolution kernel in the first convolution layer measures 7 × 7 and
the step of 1, generating 84 characteristic patterns measuring 58 × 58; max-pooling is adopted
in the first pooling layer with the size of the template and step being 3 × 3 and 2, separately.
With the size of the convolution kernel and step being 5 × 5 and 1, respectively, the second
convolution layer produces 96 characteristic patterns measuring 24 × 24; max-pooling is used
in the second pooling layer where data are processed in the same way and the layer shows the
same template and step as the first pooling layer. For the convolution kernel measuring 3 × 3
and 1, separately, in the third convolution layer, 128 characteristic patterns are generated, each
of which measured 10 × 10; with the size of the template and step being 2 × 2 and 1,
respectively, the third pooling layer adopts max-pooling for overlapped sampling. The fourth
convolution layer, which presents a 3 × 3 convolution kernel and a step of 1, separately,

Table 3 The RRs and PRs of vehicle detection using SPP-based DCNN

Given Recall Rate

95 % 90 % 85 % 80 % 75 % 70 %

SPP-CNN 92.9 95.9 97.1 97.9 98.9 99.5

CNN 80.5 88.5 92.1 93.2 94.4 95.7

HOG + SVM 54.6 65.2 72.4 77.6 81.6 85.7

LBP + SVM 42.8 55.7 61.9 67.6 71.7 76.1

Adaboost 39.9 52.2 57.3 62.1 66.7 70.4

MVC - 63 70 76 81 88

Fig. 5 The RRs and PRs of
vehicle detection using SPP-based
DCNN
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generates 128 characteristic patterns (measuring 7 × 7). While three pyramid pooling models
with sizes of 1 × 1, 2 × 2, and 3 × 3, respectively, are randomly used in the fourth pooling layer
to generate 128 characteristic patterns. Each characteristic pattern has a dimension of 14 and
therefore there are total of 1792 dimensions. Therein, 1024 and 256 dimensions are output
from the first and second fully-connected layers, respectively. During training, these two layers
are learnt using a drop-out method and 2-dimensional images are output using SVM classifiers
to judge whether, or not, the objects detected are vehicles. For other input images, as the
structure and parameter of each network are identical, except for the size of the generated
characteristic patterns, they are, therefore, not explained here.

For convenience of comparison, the detection results using six other methods based on the
DLR Munich Vehicle dataset are also listed. These algorithms include: general DCNNs,
histograms of oriented gradients (HOGs), SVMs, local binary patterns (LBPs), SVM [19],
Adaboost, and MVC [24]. For these algorithms, grey-scale images are used as input. In the
characteristic calculation using HOGs, nine orientation bins are adopted and the input grey-
scale images measured 64 × 64. They can be divided into 1 × 1 + 2 × 2 + 3 × 3 + 4 × 4 +
5 × 5 = 55 blocks. Accordingly, the HOG measured 55 × 9 = 495. As for the LBPs, where
P = 8 and R = 1.5 along with 58 uniform patterns and one non-uniform pattern, the feature
dimension was 59 × 55 = 3245. The kernel function of SVMs is a radial basis function.
Besides, five kinds of Haar characteristics and 2000 stumps are used in Adaboost. The specific
detection results are illustrated in Table 2 and Fig. 4. Table 3 and Fig. 5 show the PR of the
MVC algorithm [16]. Since same data to this study are adopted in MVC algorithm, Table 3
and Fig. 5 only show RR and PR results.

The experiment indicates that the detection rate of the algorithm proposed in this research is
improved compared with those of traditional algorithms including: HOG + SVM, LBP +
SVM, Adaboost, MVC, and general DCNNs. When the RR is given as 95 %, the multi-scale
spatial pyramid network shows a detection rate of 92.9 % and a false detection rate of 19.8 %,

Table 4 The RRs and FARs of vehicle detection using single-scale image

Given Recall Rate

95 % 90 % 85 % 80 % 75 % 70 %

SPP-CNN 19.8 10.9 7.1 3.9 1.6 1.0

Single-scale 22.8 14.1 10 6.9 5.1 3.9

Fig. 6 The RRs and FARs of
vehicle detection using single-
scale image
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respectively: the detection rate and false detection rate of general DCNNs are 80.5 % and
34.7 %, separately. This is because multi-scale spatial pyramids can reduce the over-fitting
problem in a network. Meanwhile, it can extract the characteristics of objects under different
resolutions, thus showing a better detection effect for input images of different scales.

The impact of key parameters on the performance of the algorithm is also analysed in the
experiment. Since the PR of SPP-based DCNN is already very high when RR is 95 %, we
mainly use FAR as evaluation criteria. Table 4 and Fig. 6 show a false detection rate of 22.8 %
when taken single-scale image as input. False alarm rate is increased owing to the character-
istics extracted from single-scale image are less than multi-scale images.

The effect of gradient images with multiple threshold is tested as well. As shown in Table 5
and Fig. 7, when the RR is given as 95 % and taken grey image as input, the network shows a
false alarm rate of 45.5 %. Gradient images with multiple thresholds could provide more
information in certain range of grey level. Lack of such information leads to an increase of
FAR. When the RR is given as 95 % and taken grey image with rotation as input, the network
shows a false alarm rate of 41.1 %, lower than grey image without rotation because rotated
images can help DCNN obtain more rich features, while it still presents poorer performance
compared with gradient images with multiple threshold. Figure 8 shows the detection results.

5 Conclusions

This study investigates the detection of vehicles from remote sensing images in the light of the
characteristics of aerial remote sensing images obtained using UAVs. By using multi-scale SPP-
based DCNN to detect images of different sizes, the detection effect is improved. Although this
detection algorithm has presented favourable generalisation capabilities, more universal

Table 5 The RRs and FARs of vehicle detection using grey image with rotation

Given Recall Rate

95 % 90 % 85 % 80 % 75 % 70 %

SPP-CNN 34.7 23.8 16.7 14.7 13 11.9

Gray image 45.5 33.1 23.8 19.2 16.9 14.3

Gray image with rotation 41.1 30.2 21.2 17.2 14.3 13.1

Fig. 7 The RRs and FARs of
vehicle detection using grey image
with rotation
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algorithms still need to be studied to increase the universality by reducing the number of pre-
processing steps required. Besides, the background of objects in remote sensing images is
generally complex as objects in city scenes are disturbed by streets, trees, architectural shadow,
similar objects, etc. Therefore, it is necessary to research characteristics of stronger robustness so
as to improve the detection effect of the algorithm in complex environments.
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