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Abstract An automated plant biometric system is now an important step in preserving
nature’s biodiversity. This paper presents a novel Relative Sub-image Sparse Coefficient
(RSSC) algorithm for mobile devices (MDs) representing plant leaves into a mathemati-
cally compact vector for its classification. The RSSC feature vector includes local Statistical
Entropy Texture (SET) information inter-related to all the sub-images within a leaf. RSSC
space is merged with Gray Level Co-occurrence Matrix (GLCM) feature to refine the out-
puts using best-Nearest Neighbor (best-NN), designed for MDs. The experiments were
performed on three different types of leaf datasets: (i) Flavia, (ii) ICL and (iii) Diseased leaf
datasets. The results proves our method more accurate and better compared to other existing
plant identification systems. The proposed approach is also tolerant under shape distortion
caused while capturing. The mobile machine learning system for leaf image informatics is
deployed on Android devices which helps botanists, agriculturists and medical biologists to
recognize ubiquitously the herbs and plant species anywhere-anytime.

Keywords Human mobile interaction (HMI) · Best-NN · Leaf image informatics · Mobile
vision (MV) · Relative sub-image sparse coefficients (RSSC) · Shape descriptor

1 Introduction

The growth of mobiles and ubiquitous technologies are serving in many application domains
allowing information accessibility anywhere-anytime. The users of smartphones / phablets /
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tablets are increasing day-by-day and more than the population, as predicted by Cisco [6].
In mobile agriculture informatics, m-agriculture includes agricultural statistics, monitoring,
commerce and botanical research which can aid farmers and botanists in their daily routines.
As we know, the manual experimenting and monitoring the biodiversity is a tedious job
involving human experts and is a time consuming practice - for both experts and non-experts.
Therefore, an automated plant biometric system heightens such traditional identification
process.

A human vision system (HVS) recognizes the multitude of an object in a real and digital
world even with diversified changes in the viewpoints. Whereas, the artificial or computer
vision (CV) fails to analyze them as accurately and timely as HVS. Thus, leaving several
challenges for CV researchers including leveraging human intelligence, object recognition,
invariant to orientation and occlusion.

With increasing global warming, it’s important to recognize and preserve the rare and
the new hybrid plant species for better nature understanding by just looking at their leaves,
fruits, flowers, stems, and roots. However, leaf information is sufficiently rich and is avail-
able throughout the year for species identification based on its shape, color, and/or texture
[9]. In the past few years, various machine learning algorithms were proposed and used in
field of species identification [9] such as LeafSnap [19], LeafView [24] and ApLeaf [43].
In general, an automated plant leaf image informatics involves: (i) leaf acquisition, (ii) pre-
processing, (iii) feature extraction and (iv) leaf learning/matching, as listed in Fig. 1. In this
paper, we are mainly focusing on novel feature extraction from plant leaves.

As we know, a colored leaf image I 3
leaf , with resolution (x × y), is a 3D matrix having

0 to 255 intensity values; representing three different colors: red, green and blue. Similarly,
a sub-image is a 3D matrix selected using some pattern or relation from I 3

leaf , as shown in
Fig. 2. These sub-images may be called as relative sub-images if they share some common
information. In an ongoing research AgroMobile [30] and Agriculture-as-a-Service (AaaS)
[34], proposes a cloud based mobile assistant for farmers (or for any non-experts) to monitor
their crops in real-time by just using their MDs as their third eye. AaaS framework may also
be used by the experts like botanists in their research to find the new species and explore
the huge biodiversity of 4,20,000 species (reported by Govaerts [14]) within few seconds.

In this paper, three basic contributions are highlighted. Firstly, a novel local statistical
entropy-based texture (SET) leaf matrix for mobile plant leaf informatics is proposed. Sec-
ondly, the plant leaves are uniquely represented using the proposed derivational relative
sub-image sparse coefficient (RSSC) from SET matrix for classification of plant species,
efficiently and robustly. It makes feature space more rich and compact, suitable for MDs
and has high accuracy rate compared to state-of-the-art (see Section 5). Lastly, we have also
designed an Android based mobile client-server architecture for plant leaf analysis accessing
information related to it, anytime-anywhere.

Fig. 1 The basic block diagram for plant informatics system
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Fig. 2 3D colored leaf image, I 3
leaf and its 3D sub-image matrices, I 3

leafi
of resolution (x′ × y′ × 3)

Rest of the paper is organized as follows: Section 2 presents a brief literature background
on the existing systems, Section 3 proposes a new RSSC sparse transform for plant image
informatics, Section 4 shows the architecture for Mobile Vision (MV) system to retrieve
plant species, and in Section 5 the experimental results and discussions are covered. Lastly,
the paper concludes with few directions on future scope in Section 6.

2 Background and existing systems

In past, several machine learning methods have been proposed for identification of plant
species using their fruits, flowers or leaves. Majority of these methods are plant leaf features
based such as leaf shape, leaf margin, leaf vein and/or leaf texture [9]. These classification
are briefly described in Table 1.

Warren [38], in 1997, proposed an automated system to recognize plant genus Chrysan-
themum with 30 species. In this, the three basic mathematical descriptors such as shape,
color and size of leaf, flower and petal of a species were used for identification. White
[24, 39, 40] used morphological descriptor for shape information extraction from a com-
plete leaf image. They designed a MV Tablet-PC-based an electronic field guide to identify
plant leaves. Since LeafSnap [19] is designed for iOS, Zhao et al. [43], in 2015, proposed
ApLeaf – an Android based species identification.

On the other side, Mobile Computing (MC) can aid anytime-anywhere accessing agri-
cultural related information such as production, monitoring, banking policy, m-agriculture
commerce, and so on [30, 34]. As a third eye to farmers, Mobile Cloud Computing
(MC2) automatically monitors the crop field by remote experts. MC2 also manages the
energy consumption of MD by supporting an off-line accessibility of plant and pathologi-
cal information. Kim et al. [18] proposed a self-growing agriculture knowledge using cloud
computing (CC) services assisting farmers to make smart decisions.

In plant identification, Bai et al. [4] used graph transductive learning approach on
Swedish leaf dataset and achieved an accuracy of 93.8 % in 2010. Whereas, in 2011-
12, ImageCLEFs plant identification task [12, 13] provided a testbed for plant leaf based
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automated plant species identification. Further, in 2013, Mouine et al. [25] proposed a
multi-scale triangular shape representation method for plant species recognition. This trian-
gle side lengths (TSL) gives an accuracy of 95.73 % on Swedish leaf dataset. While in the
latest literature, Wang et al. [37] proposed MARCH description for mobile retrieval of leaf
images.

There must be a generic low-cost automated plant leaf informatics system in every ones
pocket which is easy to operate by anyone-anywhere-anytime. Hence, this paper aims to
increase the reliability and accuracy of classification by reducing the complexity such that
it is suitable for MDs. This proposed MV system, aims to various groups working with and
for agricultural sectors such as botanists, agronomists, gardeners, foresters, land managers
and farmers.

3 Proposed methodology

To automate the process of plant leaf identification in real-time, accurately and efficiently,
we proposed SET texture based RSSC algorithm. The system is designed as a combination
of several modules, viz image acquisition followed by extraction of RSSC features with a
detailed discussion on the algorithm properties, matching and computational complexity in
further sections. The complete flow graph of the approach is shown in Fig. 3 for an overview.

3.1 Image acquisition and pre-processing

In pre-processing three basic steps are involved: (i) transformation of device dependent RGB
color space to device independent L*a*b* color space, (ii) noise removal and (iii) extraction
of region of interest (ROI) with minimal computational power and memory consumption.

While capturing leaf image MD uses a device dependent RGB sensors and therefore for
same leaf samples the color may vary from one device to another device. Hence, a device
independent color space transform such as RGB to CIE L*a*b* color space is used [32],
(1). In all cases, the color space volume is same.

I 3
leaf (x, y)

XYZ−→ I 3
leafXYZ

(x, y)
L∗a∗b∗−→ I 3

leafL∗a∗b∗(x, y) (1)

Then an average filter is applied to remove the unwanted non-uniform pixel distribution
of size (5 × 5) by using (2).

I 3
leafL∗a∗b∗(x, y)

5×5−→ I 3
leafη

(x, y) (2)

Fig. 3 Flow graph of proposed leaf image informatics
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Now, in order to have translation and scale invariant leaf features, I 3
leafη

is cropped and
rescaled to a standard resolution (w × h), by using (3) and (4). It helps to distinctively
identify and focus on ROI [32].

I 3
leafη

(x, y)
crop−→ I 3

leafcropped
(x′, y′) (3)

I 3
leafcropped

(x′, y′) rescaled,(w×h)−→ I 3
leaf (w, h) (4)

where, (x′ × y′) is the translation image size. For example, as in Fig. 4a, the leaf sample of
resolution (1600 × 1200) is cropped and scaled to (w × h) = (460 × 460) and Fig. 4b, to
focus on ROI.

3.2 Relative sub-image sparse coefficient (RSSC)

RSSC features are extracted from a series of 3D sub-image matrices in such a way that each
sub-image within the image has a relation with the other adjacent sub-images. The colored
leaf, I 3

leaf (w, h) is divided into (s1 × s2) grid matrix each of size ((w/s1 + c)× (h/s2 + c)),
lets say it as (x′′ × y′′). Here, si denotes the grid size and c is the number of common
overlapping pixels between the two sub-images. Note: c is a whole number and si is a
natural number, i.e. c ∈ R and si ∈ N.

si and c highly influence the computation cost because if they are increased the grid
matrix tends to behave like I 3

leaf and therefore increases the computation cost. Here, in this
paper, we have considered a square grid matrix, that is s1 = s2 = s to study the behavioral
analysis of c in species classification.

On the other hand, the criteria for selecting si depends on the ratio of w and h to si which
must be a natural number N. Depending upon si , in total for a colored image, there will be
(s2 × 3) sub-images and in case of gray image (L*) its only s2, (5).

I 3
leaf (w, h) = {I 2

leafL∗(w, h) + I 2
leafa∗(w, h) + I 2

leafb∗(w, h)}
= {{I 2

leafL∗1
(x′′, y′′), . . . I 2

leafL∗
s2

(x′′, y′′)}
+ {I 2

leafa∗1
(x′′, y′′), . . . I 2

leafa∗
s2

(x′′, y′′)}
+ {I 2

leafb∗1
(x′′, y′′), . . . I 2

leafb∗
s2

(x′′, y′′)}} (5)

Fig. 4 (a) The input leaf of resolution (1600 × 1200), and (b) cropped and rescaled (460 × 460) leaf image
(ROI)
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To clearly visualize and represent the local leaf patterns in I 3
leaf (w, h), each and every

sub-image, I 2
leafkl

(x′′, y′′), denoted as nodes in Fig. 5, are inter-related to adjacent nodes by

minimum of c2 pixels where k = {L∗, a∗, b∗} and l = {1, . . . s2}. If c is non-zero, x′′ = y′′
and s = 5 then the connected weighted graph is as shown in Fig. 5.

I 3
leafl

is then further processed to extract the local statistical entropy texture (SET) infor-
mation of every sub-image. Entropy is a key feature of a matrix used to uniquely identify it.
Whereas SET is a quantitative measure of randomness of intensities within the sub-image
locally. So it is the suitable parameter to measure irregular leaf patterns with minimum
energy consumption and is computed using (6).

epykl
=

L−1∑

L=0

(−pkl
(L) ∗ log2 pkl

(L)) | ∀ l = {1, . . . s2} (6)

where, pkl
(L) is the probability of lth sub-image in kth layer, defined by (7).

pkl
(L) = ngraykl

(L)

n
(7)

Fig. 5 Connected weighted graph for I 2
leafkl

(x′′, y′′). Double rounded nodes are the corner sub-images in

I 3
leaf (w, h). For example, (1, 5, 21, 25) for s = 5
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Here, ngraykl
(L) is the number of pixels in I 2

leafkl
with maximum intensity L for total

number n = (x′′×y′′) pixels. Note that, the sum of pkl
(i) is always a unity, where 0 < i < L

and ngraykl
is calculated using (8).

ngraykl
(L) =

{
1; if

∑x′′
i

∑y′′
j (I 2

leafkl
(i, j) = L)

0; otherwise
(8)

The SET, epykl
defines the information present in lth sub-image of kth layer by analyzing

its gray level distribution. The higher the entropy, the lower the information, see Fig. 6b.
A series of these local SET characterizes the leaf and independently used to represent

them. But in majority of times it happens that the other leaf species have few SET elements
similar and so may misclassify. Therefore, to separate such SETs, a derivative relative sub-
image sparse coefficients are computed. A simple relative approach given by (9), relates
epyki

with epykj
, such that the min-max ranges between −1 to +1.

RSSCkα = | (epyki
− epykj

)

(epyki
+ epykj

)
| | ∀ (k & l) but i �= j (9)

where, α is the total number of RSSC features in a single color space, i, j ∈ l. Note that i is
paired with every other j and i �= j . The only condition is that the denominators must not
be zero, i.e. | epyki

+ epykj
| �= 0, in any situation. The total RSSCkα features of a leaf for a

single color layer is Cs2

2 , a combination formula, which is again multiplied by 3 for colored
space. The majority of adjacent sub-images may have similar pixel intensity and the entropy
texture possibly be same so (9) results in many zeros. This vector resembles a sparse vector
and thus, the coefficients are named as sparse coefficients.

Fig. 6 I 3
leaf (w, h): (a) segmented to 52 sub-image, and (b) SET matrix of I 3

leaf (w, h) for L∗, a∗, and b∗
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Fig. 7 SET matrix distribution of I 3
leaf projected in 1D space. (Layer 1 = L∗, Layer 2 = a∗ and Layer

3 = b∗)

RSSC presents a local block-by-block SET feature vector representation of an image.
The SET graph comparison of colored layers with gray leaf is shown in Fig. 7. It is seen
that even grayscale vector is sufficient to represent leaf in feature space. But along with this
RSSC, to refine the classification, there must be a global texture information too and so
GLCM is fused to complete the vector.

3.3 Gray level co-occurrence matrix (GLCM)

In this subsection, I 3
leaf (w, h) is processed to extract global GLCM texture features [15].

GLCM is a well-known second order derivative texture matrix [15]. It considers the refer-
ence pixel and the neighbor pixel relationship which is a user defined entity. GLCM offset
is the reference window length used to find relationship between the pixels within that win-
dow. As we know GLCM is not rotation invariant and so in this paper a circular GLCM [5]
is used.

The circular GLCM is applied on I 2
leafgray

(w, h) to get a global leaf texture,

GLCM2
leaf (i, j) by using (10).

GLCM2
leaf (i, j)(δx, δy) =

w∑

x=1

h∑

y=1

{
1, I 2

leafgray
(x, y) = i & I 2

leafgray
(x + δx, y + δy) = j

0, otherwise

(10)
where, 0 ≤ i, j ≤ (L − 1), and (δx, δy) is the offset, i.e., {[0 δ], [−δ δ], [−δ 0], [−δ − δ]},
as shown in Fig. 8. In L*a*b* color space, the L* component shows the intensity of an
image and independently it acts as a gray image. Therefore, I 2

leafgray
is the L* component of

L*a*b* space (11).

I 3
leaf (w, h)

L∗ component−→ I 2
leafgray

(w, h) (11)

The four basic statistical properties of GLCM2
leaf matrix: energy or uniformity E, con-

trast Con, homogeneity H , and correlation Crn, are calculated using Equations, as shown
in Table 2.
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Fig. 8 GLCM matrix calculation
using four different directions

In Table 2, (μi, μj ) and (σi, σj ) are the means and the standard deviations of the
marginal probability of I 2

leafgray
(w, h), respectively. This is calculated for all four angles

(0◦, 45◦, 90◦, 135◦). Therefore, GLCM feature vector is a set of all 16 features com-
puted at four different orientations, i.e., GLCM = {Ea, Cona,Ha, Crna} such that
a = {0◦, 45◦, 90◦, 135◦}.

RSSC and GLCM are fused to form a single vector, Fleaf = {GLCM + RSSC}. Note
that, the GLCM features are normalized to a range [−1 + 1] before Fleaf . Thus, the feature

length of Fleaf is ((4 × 4) + (Cs2

2 × 3)) = (16 + (Cs2

2 × 3)) = N , which is a high
dimensional feature vector and requires N dimension feature space to represent it. In such
a high dimension space, feature vector faces the curse of dimensionality where it has a high
chance to mis-classify a leaf with the other species. This vector, Fleaf ∈ R

N (12) is a type
of sparse vector and so it may be possible to reduce the feature space dimension by reducing
the zeros by using Multi Linear Discriminant (MLD).

Fleaf =

⎡

⎢⎢⎢⎢⎢⎢⎣

x11 . . . xm1
0 . . . xm2
. . . . . . . . .

x1i . . . 0
. . . . . . . . .

x1N . . . xmN

⎤

⎥⎥⎥⎥⎥⎥⎦
(12)

Here, m is the total number of samples from each C class, having N attributes with zeros
and non-zeros.

3.4 Multi linear discriminant (MLD)

The MLD is the commonly used dimension reduction method in pattern recognition [10].
It is a generalized form of Fishers LD for multiple classes which is used to extract the
linear combination of features such that it clearly separates the objects. Unlike principal

Table 2 GLCM parameters used in this paper

E = ∑L−1
i,j=0(GLCM2

leaf (i, j))2 H = ∑L−1
i,j=0

GLCM2
leaf (i,j)

(1+(i−j))

Con = ∑L−1
i,j=0(i − j)2GLCM2

leaf (i, j) Crn = ∑L−1
i,j=0 GLCM2

leaf (i, j)[ (i−μi )×(j−μj )√
((σi )

2×(σj )2)
]
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component analysis (PCA), MLD explicitly models the difference between the classes to
clearly separate them in feature space. Basically, PCA seek directions that are efficient for
presentation of the classes while MLD seeks for efficient discriminations of classes. MLD
maximizes the ratio of between-class variance δ2

between to within-class variance δ2
within so

that the adequate class separability is obtained. The separation between the classes is

S = max
δCbetween

δCwithin

(13)

where, δCbetween and δCwithin are defined by (14) and (15), respectively.

δCbetween = 1

m′
∑

i=1:C
(μ′

i − μ′)(μ′
i − μ′)T (14)

δCwithin =
∑

i=1:C
δCi (15)

Here, m′ is the number of samples per class, μ′
i is the mean of ith leaf sample, μ′ is mean

of complete leaf data and δCi is the class dependent scatter variance matrix, given by (16):

δCi =
∑

i=1:C

∑

Fleaf
m′ ∈i

(Fleafm′ − μ′
i )(Fleafm′ − μ′

i )
T (16)

Since Fleaf is a sparse matrix, the computation cost required to compute MLD basis vec-
tor to represent leaf will be reduced. The Fishers basis vector is calculated using eigenvalue
(λ) and eigenvector (ω), that is

ω = max|ω
T δCbetweenω

ωT δCwithinω
| (17)

The high dimensional RSSC feature vector can be now projected to a low dimensional
Fishers hyperplain by using (18):

[FMLD]m×(C−1) = [Fleaf ]m×NωN×(C−1) (18)

That is, the FMLD will be minimized to a vector with optimal hyperplane having
minimum zeros, similar to (19).

FMLD =

⎡

⎢⎢⎣

x11 . . . x1i

x1j . . . x1N ′
xm1 . . . xmi

xmj . . . 0

⎤

⎥⎥⎦ | N ′ = (C − 1) (19)

The maximum length of Fishers hyperspace to separate plant species is (C − 1). This is
because the maximum rank of δCbetween is (C − 1), which can be increased by its recursive
application.

Now after dimension reduction, FMLD is used for classification via a well-known k-
Nearest Neighbor (k-NN) classifier. Since k-NN is a simple, powerful, accurate and efficient
method; easily implemented on a low processing device like mobile phone. The value k is
set to one an so named best-NN. The experimental results and discussion are presented in
detail in Section 5 after discussing the proposed architecture for mobile device.
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4 Proposed architecture for mobile device

Today, the smart ubiquitous device possesses all required sensors for the proposed system:
mobile machine learning for plant leaf image informatics. Mobile phones with camera, pro-
cessor and Internet connection (not always compulsory) are sufficient for proposed species
identification. Android is today’s major market capturing operating system (OS) and is open
source. Therefore, we targeted to deploy the proposed system on Android.

Due to MD constraints, the majority of high computing processes are offloaded to a
high-end processing unit - the Server. To offload the tasks, unfortunately a regular commu-
nication connectivity is required and in countries like India where communication channels
are very poor and overloaded, the system may not be so feasible. Thus, to have a real-time
efficient system, the algorithms must directly execute on device without depending up on
a remote Server. Therefore, in our implementation, both the problems are solved by intro-
ducing an intelligent agent to adaptively decide whether to compute-on device or to offload
the job.

The complete architecture of the proposed mobile plant leaf informatics system is shown
in Fig. 9. As discussed previously (Section 3.1), MD is used to capture leaf image and pre-
process, extract features, then classify and augment results on the screen. Here, in this
architecture, there are three scenarios: (1) execute everything on MD, if it is capable, (2)
computer pre-processing and SET extraction on MD and rest is processed on the remote
Server, and (3) perform pre-processing on MD and transmit rest to the Server for further
processing, as labeled in Fig. 9. There is an Agent module in pre-processing phase, designed
to record the current health status of MD and decide the transmission. The decision is made
by estimating the processing capacity, battery life and communication cost of mobile device

Fig. 9 Architecture for proposed mobile system: 1. Completely on mobile device; 2. Pre-processing on
mobile and rest on server; and 3. Feature extraction on mobile and classification on Server
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at that instant [32].If the bandwidth is very less and requires more energy and time to trans-
mit compared to computing on MD, then only the RSSC feature vector is transmitted for
classification on the server.

On the other hand, whenever MD is online, an update module automatically updates the
online database storage. This helps in getting better performance time-to-time and explore
new plant species even if there is no connectivity. The description of various modules used
in Fig. 9 are given below and is briefed in Table 3.

1. Pre-Processing: As the very first module of the proposed mobile client-server archi-
tecture, it captures and transforms image to device independent color space (as in
Section 3.1). The L*a*b* color image is denoised and transformed to translation and
scale invariant space (Section 3.1). All these tasks are carried on mobile itself.

2. Agent: Then the Agent sitting on mobile device estimates the computation cost and
transmission cost, decides whether further high-level computations can be carried on
on-board or offloaded to the server [32]. For the estimation, Agent computes following
parameters: battery strength, network strength, bandwidth, image size, and computation
power of MD. This task is also performed on MD.

3. SET Matrix: This module of mobile client -server architecture computes SET matrix
of pre-processed images for further RSSC features (Section 3.2). Depending upon the
transmission cost it can be performed either on-board or on the server. If the bandwidth
is small then mobile computes the SET values and transmits on the SET matrix else the
pre-processed image is transmitted, as shown in Fig. 9.

4. RSSC Feature: The SET matrix is derived to RSSC for classification as discussed in
Section 3.2. This task can also be performed on both the sides: client or server depend-
ing upon Agent. Since RSSC is local vector it is fussed with the global GLCM leaf
features to increase the efficiency.

5. MLD&Classification: The RSSC vector is further reduced to MLD feature space and
then classified using best-NN either on-board using online dataset or on server using
offline dataset (Section 3.4).

6. Result Display: The result module simply transforms the information into the read-
able form such as species name and augmented on mobile screens. It helps user in

Table 3 Module description of the proposed mobile architecture

Modules Descriptions

Pre-Processing Transforms image color space, denoising, translation and scale invariant process.

Agent Monitors the mobile health (computation power, battery level and transmission cost).

SET Matrix Computes the local SET matrix of input leaf image.

RSSC Feature Compute sparse vector from SET of input image.

MLD & Classification Reduces the dimension using unsupervised MLD reduction algorithm and classify
using best-NN.

Result Display Interprets the classification result to user readable format and augments on mobile
screen.

Update Updates the application parameters and online database on mobile whenever con-
nected.

Online Database Its the subset of the plant leaf database on mobile device used for information
processing.

Offline Database Its the complete leaf database stored on server.
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understand nature more continently anywhere-anytime. This module is performed on
client device and so is a light-weighted thread.

7. Update: The Update module updates the parameters of mobile-based plant leaf infor-
matic system whenever it is connected to Internet so that the result is up to the users
satisfaction. It also uploads and downloads the online dataset on local mobile machines
from server. It fetches a connection with server and updates the dataset with the key
instances. This task is performed on client side.

8. Online & Offline Database: In this phase, the online database, that is, the subset of the
original plant leaf database is stored on MD to perform species identification in offline
mode. Whereas, the offline database is the actual complete leaf database that performs
the complete match and validates the results before any decision is made. The offline
database is updated by the research term day-to-day and is also updated with exceptions
received from users.

5 Experimental results and discussion

In this segment of paper, the experimental results and the performances are shown on three
different types of datasets: two are publically available leaf datasets and the third is a dis-
eased leaf dataset. The first dataset is ICL (Intelligent Computing Laboratory) Leaf dataset
[17], second is Flavia Leave dataset [11, 41] and the third is a diseased leaf dataset collected
from Indian Institute of Technology (IIT) Roorkee, India and Forest Research Institute (FIR)
Dehradun, India campuses [32, 33], as seen in Fig. 10. The ICL leaf dataset includes 220
different plant species (Fig. 10a) whereas Flavia leaf dataset contains around 1905 leaf sam-
ples for 32 different plant species (Fig. 10b). The diseased leaf dataset [33] is a small dataset
with four different species having five different diseases and are around 297 leaf samples,
Fig. 10c.

5.1 Implementation

The proposed system is implemented using Android SDK and OpenCV on Eclipse Windows
environment. The system is deployed on an original Micromax mobile device of configura-
tion: 1GHz processor, 512MB internal RAM, and Android 4.1.x or above. We used different
evaluation approach to compare the proposed method with the existing systems; discussed
in Section 5.2.

Fig. 10 Sample images from: (a) ICL dataset [17] (b) Flavia dataset [11] and (c) Diseased leaf dataset [33]
one per species used in this leaf dataset
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Table 4 Accuracy comparison of various plant leaf recognition methods

Flavia Dataset ICL Dataset Other Datasets

Methods % Methods % Methods %

REM [20] 57.21 % MCC [1] 73.17 % FT [16] 72.00 %

PNN [41] 90.00 % TAR [2] 78.25 % CSSCD [4] 83.33 %

RSC [29] 95.02 % IDSC [23] 81.39 % GT [8] 85.16 %

CT [28] 95.60 % MARCH [37] 85.31 % EFT [27] 88.40 %

RSSC 99.36 % HSC [35] 86.03 % TOA [25] 96.00 %

RSSC 92.94 %

5.2 Parameters

In this paper, for experiment, the parameters selected are: w = h = 460, a square matrix,
to acquire at least a standard of VGA quality image, the size of grid is five (s = 5), bigger
blocks to reduce the computational cost and memory requirement. The third and the most
important parameter is c = 10, i.e. at least 100 pixels are common with their adjacent sub-
images, (x′′ = 100 = y′′) and therefore, the length of vector will be 916. Whereas in case
of gray image, it will be 316, which is reduced further by using MLD.

5.3 Experiments

With these parameters, FMLD is computed for a plant leaf to recognize it using best-NN.
The accuracy of the proposed RSSC algorithm is better than other existing methods discussed
in this paper and is fast and efficient. The state-of-the-art comparison of all different datasets
are shown in Table 4. Here, the accuracy of algorithms like Riemannian Elastic Metric
(REM), probability neural network (PNN), RSC, CT, Multi-scale Convexity Concavity
(MCC), Triangle-Area Representation (TAR), Inner Distance (IDSC), Multiscale-ARCH-
height (MARCH), FT, GT, Elliptic Fourier transform (EFT), curvature scale scope corner
detection (CSSCD) method and Triangle Oriented Angle (TOA) are compared with RSSC.

From Table 4, the maximum accuracy achieved with Flavia dataset is 99.36 % and
92.95 % for ICL leaf dataset using our proposed RSSC approach. The accuracy rate tested
with our diseased leaf dataset is 100 %. Even a single dimension feature space clearly
separates the diseased leaves, Fig. 11a. This is due to the small size of dataset.

Fig. 11 Accuracy measure with varying MLD feature length. (a) Diseased leaf dataset, (b) Flavia leaf
dataset, and (c) ICL leaf dataset
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Fig. 12 Accuracy bar graph for L*a*b* and gray image. (a) ICL dataset, (b) Flavia dataset and (c)
Homemade dataset

Further, experiments are carried out to find the minimum feature dimension of FMLD

required to represent a leaf image properly, Fig. 11. This approach again optimizes the
classification computation cost and increases the accuracy rate, avoiding the curse of dimen-
sionality. Figure 11a, shows an accuracy rate of diseased leaf dataset with varying FMLD

length followed by Flavia and ICL leaf datasets, Fig. 11b and c, respectively. The compar-
ison is also made with other different local statistical textures: energy and sum, (20) and
(21), respectively. It is seen that, in Fig. 11a, even single dimension is sufficient to separate
the species. But in Flavia dataset, the vector of length 20 successfully represents the leaf for
mobile vision identification and in case of ICL leaf dataset, its 31.

egykl
=

L−1∑

i,j=0

(I 2
leafkl

(i, j))2 (20)

Fig. 13 Flavia error graph for L*a*b* (square) and gray (triangle) image. (a–e) Length of FMLD 1, 5, 10,
20 and 31 respectively
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Fig. 14 ICL error graph for L*a*b* (square) and gray (triangle) image. (a–g) Length of FMLD 1, 5, 10, 20,
31 and 100 respectively

sumkl
=

L−1∑

i,j=0

I 2
leafkl

(i, j)) (21)

In shape recognition, Mouine et al. [25], proposed TOA and triangle side length and
angle (TSLA) to represent the object shape uniquely, but it is a complex approach, see
Table 6. Unlike TOA, RSSC is a simple and less complex to identify species/shape.
Figure 12 shows the RSSC comparison with different color dimension local SET features
for all three different datasets using different classifiers. The bar graph compares five differ-
ent types of classifiers: Bayes - Nave Bayes, Functional - Sequential Minimal Optimization
(SMO), Lazy - k-NN, Meta-classifier, and Tree - Random Forest and found that best-NN
outperforms in all the cases. Whereas, Nave Bayes also results equally good compared to
best-NN but due to MD limitations best-NN is chosen. It is clear that the local entropy tex-
ture of I 3

leaf results better using RSSC representation. The computation cost is even reduced
in case of grayscale image with marginal accuracy compensation.

Table 5 Feature extraction time complexity for L*a*b* and grayscale images

Methods L*a*b* Time (in sec.) Grayscale Time (in sec.)

ICL Flavia Diseased ICL Flavia Diseased

Energy 1.375 .509 0.246 0.538 0.182 0.126

Sum 1.260 0.438 0.228 0.521 0.173 0.125

Entropy 1.292 0.419 0.192 0.467 0.178 0.119
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Table 6 Parameter comparison
of RSSC feature of L* image (w, h, s, c) Flavia Leaf Dataset

Length (#) Time (sec.) % (#20)

120, 120, 4, 8 136 0.066 86.207 %

460, 460, 4, 8 136 0.215 81.913 %

120, 120, 5, 10 316 0.059 90.385 %

460, 460, 5, 10 316 0.178 95.952 %

120, 120, 6, 12 646 0.056 89.209 %

450, 450, 6, 12 646 0.152 86.956 %

Another comparison graph, Fig. 13, shows an error rate change with varying Flavia
training dataset size for different vector length (N). The graph shows a relation between
grayscale image, i.e. L* component of L*a*b* color space with L*a*b* color image. The
graph compares entropy texture with energy and sum texture at 15, 25, 50 and 80 percent of
training sets, FMLDtrain

. Similarly, Fig. 14 shows the error rate change for ICL leaf dataset
with feature length: 1, 5, 10, 20, 31 and 100.

The time complexity of computing FMLD , in both L*a*b* and grayscale, is compared
in Table 5. It is clear that the cost involved in RSSC texture feature calculated of grayscale
leaf is almost three times smaller than L*a*b* image and thus highly suitable for MD
computing.

5.4 Performance on mobile

The research is also carried on optimizing the different parameters (w, h, s, and c) in terms
of accuracy and complexity, see Table 6. The third column in Table 6 gives the execution
time for SET-based RSSC feature extraction (in seconds) for Flavia leaf dataset. Here, the
L* (grayscale) image is used for comparison. The snapshots of leaf image informatics is
shown in Fig. 15 where user captures the plant leaf and partially processed on the device
and rest of the computations are pushed to the computing server.

The detailed misclassification of each class of a dataset can easily be shown by using
a confusion matrix, representing the confusing classes. A confusion matrix or the error
(matching) matrix is the visualization of performance of any algorithm. A confusion matrix,
Cmatrix of Flavia dataset is shown in Table 7. In Cmatrix , the values in each column repre-
sents the prediction class and each row represents the actual class. Note, for the readability
purpose, the scientific names of species in Cmatrix are represented by their serial numbers

Fig. 15 Snapshots of proposed leaf informatics system: (a) Leaf samples in a plain background, (b) captured
via MD, (c) partially processed and (d) offloads the computation to remote computing server
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Table 8 Comparison of
computational complexity RSSC HSC [35] MCC [1] TAR [2] IDSC [23]

O(N) O(MlogN) O(N3) O(N3) O(N2)

as used in [41]. The accuracy rate A, in this paper, is a ratio of total number of predictions
that were correct to the total number of observations and is defined by (22).

A = totalcorprdt

totalcorprdt
+ totalincorprdt

(22)

where, totalcorprdt
and totalincorprdt

are the count of correct and incorrect prediction in
Cmatrix , respectively.

Wang and Gao [35], proposed and RST-mirror invariant hierarchical string cuts (HSC)
algorithm for shape retrieval with a maximum accuracy of 89.40 %. The accuracy achieved
by this approach is around 86.03 % for ICL dataset which is very less compared to our
proposed algorithm, see Table 4.

5.5 Computational complexity

The final parameter to measure any algorithm is its computational complexity. Since the
proposed model is executed on MD, the cost must be minimum. The computational com-
plexity of the proposed system is a sum of two models: the cost involved in RSSC feature
extraction and the cost involved in best-NN classification.

Suppose, the size of a normalized input leaf image is (w×h), divided into s2 sub-images,
each of (x′′ ×y′′) then the complexity required to extract RSSC feature is O(s2x′′y′′) which
can be rewritten as O(wh). If (wh) = N, then the complexity will be O(wh) = O(N). At
the classification end, the time complexity required for best-NN is O(FMLDmC). If (m ×
C) = M, that is, if the dataset size is M and FMLD = 20 then complexity reduces to O(M).
Therefore, the total time complexity involved for our proposed system is (O(N) + O(M))

and if M is reduced to 25 % for MD the complexity is directly affected, without effecting
accuracy much (Figs. 12 – 13). In Table 8, a complexity comparison of different algorithms
used in leaf shape identification is compared.

The proposed leaf informatics system helps in identification of species and further pro-
vide information for plant leaf disease diagnosis [14, 33, 34]. Species identification reduces
the search database for disease recognition and enhance the system performance.

6 Conclusion and future work

This paper presents a novel RSSC algorithm for mobile vision based plant leaf infor-
matic system. The RSSC entropy texture feature describes uniquely the texture of a plant
leaf captured via MD. Fleaf is a combination of four orientation independent GLCM
features and local SET information. Best-NN classifier designed for MD is used for
species classification. To validate the proposed system, the experiments were carried out
on three different leaf datasets: ICL, Flavia and Diseased leaf datasets. The algorithm is
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compared with various other methods and techniques in state-of-the-art and come up with a
decision that the proposed algorithm is more robust and efficient in terms of accuracy and
computational complexity.

The proposed system is designed for isolated leaf and so leaf segmentation in a complex
background in a low vision is still an open challenge for future. Secondly, for real-time
feasibility and scope, mobile augmented reality in agriculture can be a new direction. And
thirdly, the RSSC can be tested on other texture datasets to study its robustness.
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3. Backes AR, Gonċalves WN, Martinez AS, Bruno OM (2010) Texture analysis and classification using
deterministic tourist walk. Pattern Recogn 43(3):685–694

4. Bai X, Yang X, Latecki LJ, Liu W, Tu Z (2010) Learning context-sensitive shape similarity by graph
transduction. IEEE Trans Pattern Anal Mach Intell 32(5):861–874

5. Barrera M, Andrade M, Kim HY (2012) Texture-based fuzzy system for rotation-invariant classification
of aerial orthoimage regions. jip 1(1):4

6. C V N I (2014) Cisco: global mobile data traffic forecast update, 2013-2018. White Paper, pp 1–40
7. Clark JY (2009) Neural networks and cluster analysis for unsupervised classification of cultivated

species of tilia (malvaceae). Botan J Linnean Soc 159(2):300–314
8. Cope JS, Remagnino P, Barman S, Wilkin P (2010) Plant texture classification using gabor co-

occurrences. In: International Symposium on Visual Computing. Springer Berlin Heidelberg, pp 669–677
9. Cope JS, Corney D, Clark JY, Remagnino P, Wilkin P (2012) Plant species identification using digital

morphometrics: a review. Expert Syst Appl 39(8):7562–7573
10. Deypir M, Boostani R, Zoughi T (2012) Ensemble based multi-linear discriminant analysis with boosting

and nearest neighbor. Scientia Iranica 19(3):654–661
11. Flavia leave dataset. http://flavia.sourceforge.net/. Accessed: 2012-10-14
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