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Abstract Vector quantization has been widely employed in nearest neighbor search because it can
approximate the Euclidean distance of two vectors with the table look-up way that can be
precomputed. Additive quantization (AQ) algorithm validated that low approximation error can
be achieved by representing each input vector with a sum of dependent codewords, each of which is
from its own codebook.However, theAQ algorithm relies on computational expensive beam search
algorithm to encode each vector, which is prohibitive for the efficiency of the approximate nearest
neighbor search. In this paper, we propose a fast AQ algorithm that significantly accelerates the
encoding phase. We formulate the beam search algorithm as an optimization of codebook selection
orders. According to the optimal order, we learn the codebooks with hierarchical construction, in
which the search width can be set very small. Specifically, the codewords are firstly exchanged into
proper codebooks by the indexed frequency in each step. Then the codebooks are updated
successively to adapt the quantization residual of previous quantization level. In coding phase, the
vectors are compressed with learned codebooks via the best order, where the search range is
considerably reduced. The proposed method achieves almost the same performance as AQ, while
the speed for the vector encoding phase can be accelerated dozens of times. The experiments are
implemented on two benchmark datasets and the results verify our conclusion.

Keywords Additive quantization . Beam search .Vector compression .Nearest neighbor search

1 Introduction

Nearest neighbor (NN) search is a fundamental technique for many computer vision tasks,
such as classification [3], recognition [21, 27], matching [5, 26] and retrieval [8, 10, 15, 23,
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28]. The traditional NN search needs to calculate and store Euclidean distance between the
high dimension vectors, thus it costs large amount of disk space and computation to deal with
large scale data. To achieve higher efficiency, compact codes are widely used to speed up NN
search for several reasons. First, representing high dimensional vectors with a small number of
bits takes much less space while maintaining almost the same information (e.g., [27] shows
that compressing images into binary codes still preserves the information required for recog-
nition). Thus, compact codes of large dataset can be stored in memories, which are much faster
than hard drives. Second, compact codes allow fast query because computing distance with the
compressed data is much more efficient.

Recent work on learning compact codes falls into two categories. The first one is the hashing
method that compresses vectors into binary codes using two stages [5, 9, 10, 16, 21, 26–29].
The first stage is to find a low-dimensional embedding and the second stage is to binarize the
low-dimensional vectors. The other category is quantizing the input data with learned code-
books [1, 2, 4, 6, 8, 12, 15, 20, 30]. Both of the two categories of method can be used for the
approximate nearest neighbor (ANN) search, in which the Euclidean distance can be replaced
with the Hamming distance or the table look-up way like asymmetric distance computation
strategy [15]. However, there are several differences between hashing and quantization method
for ANN search. The most different impact is the way of computing the approximate distance.
To approximate the Euclidean distances between query and database, hashing method com-
putes Hamming distance between the binary codes of query and database, while quantization
store the Euclidean distances between codewords and inquires them by the codes. Therefore the
range of distance of quantization is much larger than hashing. Moreover, since the codewords
and query are in the same Euclidean space, quantization methods can extend to asymmetric
distance search strategy, which is proved better than the symmetric distance [15] like the
Hamming distance. Since the proposed method follows the idea of the second category, we
explicitly introduce the recent works about quantization as following.

Vector quantization (VQ) [11] implements Llody’s method [17] to train a codebook where
the nearest codeword is selected to represent an input vector. Product Quantization (PQ) [15]
splits one input vector into several subvectors where each subvector is quantized independent-
ly by their own vector quantizers. The compact code of PQ is the concatenation of the indices
of all quantizers. This quantization technique is efficient for high dimensional vectors because
the size of each codebook can be considerably reduced compared to standard VQ techniques.
However, PQ algorithm treats the subvectors as being independent, which does not consider
the relationships between subvectors. To remedy this problem, transform coding (TC) [4] uses
a set of scalar quantizers to compress each subvector, which employs principle components
analysis (PCA) and adaptive bit allocation to reduce the information redundancy in each
dimension. Optimized Product Quantization (OPQ) [8] learns an orthogonal projection
matrix for input data to minimize quantization distortion by the space decomposition.
Another quantization framework uses the addition of codewords instead of the Carte-
sian product to reconstruct the input vectors. Hence, it has no independence assump-
tion on the codebooks. Residual vector quantization (RVQ) recursively implements the
VQ method to quantize the residual of the previous quantization level [2, 6]. Additive
quantization (AQ) [1] and Composition quantization (CQ) [30] trains a set of codebooks at the
same time, where one and only one codeword from each codebook is selected to reconstruct the
input.

AQ algorithm represents each input vector with a sum of codewords, where each codeword
is from its own codebook. Since the independence assumption of PQ and OPQ is eliminated,
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AQ has considerable improvement compared to the above two state-of-the-art methods.
However, AQ relies on a heuristic search strategy called beam search [19, 25] to encode the
input vectors. Beam search needs to exhaustively search over all available codebooks during
the vector encoding, which causes high computational complexity that may not proper
to dispose large-scale dataset. In practical applications, the efficiency of quantization
method influences two aspects of the applied technique. On the service side, ANN
search methods need to compress the data off-line and store the codes before a new
query is given. Since amount of data is generated every day, fast encoding strategy
can significantly save time so that the servers can compress the new data in time. On
the client side, the query needs to be compressed to compact code for ANN search. A
fast encoding strategy will reduce the retrieval time Therefore, an efficient encoding
algorithm is significantly important.

The rest of the paper is organized as follows. In Section 2, the additive quantization is
reviewed. In Section 3, the beam search problem is formulated and the proposed solution is
introduced. In Section 4, we show the experimental results. The paper is concluded in Section 5.

2 Additive quantization

We first introduce the additive quantization which is the basis of our work. Figure 1 shows its
whole framework, which contains the training phase and the compressing phase. In the
training phase, the codebooks and the code of data are updated in codebook learning stage
and encoding stage iteratively. Then the learned codebooks are used to compress the large-
scale database in the compressing phase.

The process of the training phase can be described as follows. With N input vectors
X ¼{xn}

N
n=1 in training phase, the additive quantization represents one vector x as

x≈
XM
m¼1

cm bmð Þ; bm∈1;⋯;K ð1Þ

where cm(bm) denotes the bm th codeword in codebook Cm, K is the number of codewords in
each codebook, andMmeans the number of codebooks. We further denote the set ofM codebooks

C Mð Þ ¼ ⋃
M

m¼1
Cm and anM-tuple code b= [b1, ⋯ , bM]. The training phase aims to find the proper

codebooks and codewords representing training data with minimum approximation error. i.e.,

min
C Mð Þ;b

X
x∈X

������x−X
M

m¼1

cm bmð Þ
������2 ð2Þ

training phase

training data

codebooks
AQ compressing
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Fig. 1 The framework of Additive Quantization
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Equation (2) is often solved via iteratively optimizing b and C(M). In the codebook learning
stage, with the given code b∈B (where B is the set of codes for χ ), optimization of C(M) can be
simply solved as an unconstrained nonlinear optimization problem [1]. In the encoding
stage, C(M) is fixed and the best code b for each x is updated. However, the best
combination of codewords from each codebook is difficult to find in finite search
loops, and the encoding stage usually occupies most of the time consumption in
training phase. Therefore the key point of additive quantization is to find an efficient
search strategy for vector encoding. The approximation error of x is defined using
Euclidean distance

E bð Þ≜
������x−X

M

m¼1

cm bmð Þ
������2 ð3Þ

With the input x, the minimization of Eq. (3) is essentially a high-order Markov
random field problem where each bm in b is a discrete random variable, and the state
of node bm can be updated iteratively to find the minimal error. Many methods can be
used to solve this problem, such as alternative optimization technique [30] and Loopy
Belief Propagation [24].

Discussed in [1], these optimal methods may cost very large amount of time to find the best
combination even for small codebooks. AQ adopts the beam search [25] which constructs the
output codewords successively. Specifically, beam search takes M steps to choose the M
codewords instead of alternatively updating. With an input vector x, the available set of
codewords is initialized as C(M). In the first slice, the top T nearest neighbors (T-NN) for x
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are found in C(M) to be T candidates. In the next slice, for each candidate, an available set of
codewords is updated as C(M − 1) =C(M)∖Cm. Then the T-nearest neighbors for x − cm(bm) are
found in C(M − 1), therefore we obtain T2 tuples of codewords for the previous T candidates.
Then T unique tuples of codewords with less approximation (i.e., ||x − cm(bm)||2) are picked to
be the candidates for next step. After M slices, the T unique tuples of codewords are selected,
and one tuple with the smallest approximation error is returned as the code of x. An explicit
description can be summarized in Algorithm 1 for further discussion. The beam search needs
to seek all available set of codebooks, that means it searches the remaining M −m + 1
codebooks C(M −m + 1) in m th step, therefore the computational complexity referring to M
is O(M(M − 1)/2) = O(M2).

After the training phase, the beam search is used to compress the database with the
codebooks learned in the compressing phase. However, we think the time consump-
tion is still unacceptable in practical application, where the number of databases is
usually very large. There are two shortages in AQ that can be considered to improve
the efficiency of compressing phase. First, in the compressing phase the learned codes
of training data are useless. Second, the prior of the input data is not used to
contribute to encode the database after the training phase, therefore the compressing
phase of AQ is the same as the encoding stage in the training phase, which still needs
to search all possible set C(M −m + 1) in m th step.

In this paper, we propose two modifications to reduce the search range. First, we
to take advantages of the codes of training data to calculate a codebook selecting
order, in which we can search the nearest neighbors in one certain codebook Cm ∈
C(M) instead of all possible codebooks C(M −m + 1) in each step, and then the compu-
tational complexity can be reduced to O(M) instead of O(M2). Second, we re-train the
codebook where the codewords in Cm tends to be selected in the m -th slice. Thus the
search width can be narrowed. As the hierarchical codebooks are trained, the perfor-
mance can be similar or even better than beam search in AQ.

3 Fast additive quantization

In this section, a formulation of optimization problem is established to analyze beam
search which is the key method in the encoding phase in AQ. According to the
formulation, an optimal order of codebook selecting is calculated. Then we learn the
codebooks to obtain a hierarchical structure where we can reduce the search width in
compressing phase.

3.1 Formulation of beam search

We first formulate the beam search as an optimization problem of codebook selecting
order which is called the path in following discussion. Without loss of generality, we
let the beam search width T equal to 1 to obtain a concise expression. Then according
to the Algorithm 1, we define the path m as the M -tuple [m(1), ⋯ ,m(M)] where the i
-th component m(i) ∈ {1,M} represents the i th selected codebook, we also denote r(i)

as the residual of the vector x subtracting the assigned i codewords in codebook
Cm 1ð Þ ;…;Cm ið Þ . The algorithm shows that all codewords in C(M −m + 1) are searched
with the calculated residual r(i − 1) in i -th iteration (r(0) = x), then the nearest codeword
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bm ið Þ and the number of codebooks m(i) is returned, which can be formulated as

m ið Þ; bm ið Þ

h i
¼ argmin

m
min
b
j r i−1ð Þ−cm bð Þ�� ��2� �

s:t: i ¼ 1;⋯;M
b ¼ 1;⋯;K

m∉ m jð Þ
n oi−1

j¼1

ð4Þ

According to our formulation, the beam search in i -th step can be decomposed
into two minimization problems: one is the minimization with respect to m, which is
called the path optimization because it needs to find a proper order for codebook
selection. The other is the minimization with respect to codeword b, which is called
inner optimization since it searches the nearest neighbor of r(i − 1) within one
codebook.

For the i -th step, we could obtain the i -th codeword cm ið Þ bm ið Þð Þ. Then r(i) is updated with all
the obtained codewords cm 1ð Þ bm 1ð Þð Þ;…; cm ið Þ bm ið Þð Þ as follows

r ið Þ ¼ x−
Xm ið Þ

m¼m 1ð Þ
cm bmð Þ ð5Þ

After M steps, each component of the best code b is obtained iteratively. Eq. (4)
shows that the beam search uses the enumeration method to solve the two-variable
optimization problem in each step, which takes large time consumption. We de-
compose Eq. (4) to two individual optimization problems to approximate the
exhaustive search. Specifically, the set of best codes B for χ is obtained after
training phase, therefore we can fix the codes and solve the order optimization
problem to calculate the best path m. Then for a large-scale database, we only need
to solve the inner optimization problem under the best path in the compressing
phase, which has lower computational complexity compared to the original compressing phase
in AQ.

3.2 Optimal order of codebook selecting

After beam search, the best assignments B of training data can be obtained while the current
codebooks C. Then we calculate the best path as the prior information using the best
assignments. As b = [b1, ⋯ , bM] is fixed, the inner optimization of Eq. (4) is eliminated,
and then it can be simplified as

m ið Þ ¼ argmin
m

��� r i−1ð Þ−cm bmð Þ�� �����2
s:t: i ¼ 1;⋯;M

m∉ m jð Þ
n oi−1

j¼1

ð6Þ

This optimization problem can be easily solved by exhaustively searching all
codebooks, which takes little time compared to the beam search. The Eq. (6) shows
that the best path achieves the minimal residual value in each step comparing to other
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paths. When we search the nearest neighbor in codebooks in this order, the approx-
imation error is exactly the same as the result of beam search. It is distinct that one
fixed path is not unified for all input data, therefore, we consider the residual value to be a
random variable and then define the optimal path with minimal expectation of residual value in

each step. Specifically, each component m ið Þ
o for the optimal path mo can be defined as

m ið Þ
o ≜ argmin

m
E jjr i−1ð Þ−cm bmð Þ2
� �

s:t: i ¼ 1;⋯;M

m∉ p jð Þ
o

n oi−1

j¼1

ð7Þ

And the residual r(i) for each input x can be calculated as

r ið Þ ¼ x−
Xm ið Þ

o

m¼m 1ð Þ
o

cm bmð Þ

s:t: i ¼ 1;⋯;M

ð8Þ

We calculate mo by alternatively optimizing Eq. (7) and (8) after the training phase.
Compared to other path, the optimal path has the smallest expectation of residual value in
each step, which is defined as

�R ið Þ ¼ E jjx−
Xm ið Þ

o

m¼m 1ð Þ
o

cm bmð Þ
20

B@
1
CA ¼ E jjr ið Þ2

� �
ð9Þ

If the vectors in the database follow the same distribution of the training set, we thinkmo is
also the optimal path for the database because of its similar statistical characteristic. And the
optimal path mo, which will lead to find smaller final approximation error than other paths,
tends to achieve smaller mean residual value in each step than other fixed path, with the
conclusion verified by the experimental result.

3.3 Hierarchical codebook updating

Given the optimal path mo, we retrain the codebooks which have the hierarchical structure for
the input. Specifically, Cm ið Þ

o
are updated to minimize the quantization distortion of r(i − 1). A

two-step process is proposed to adjust the codewords in codebooks for the residuals in M
slices.

3.3.1 Codewords exchanging

As the beam search is used to find the combination of codewords from each codebooks, the
optimal path for each input x can be calculated at the same time. To let the codewords in Cm ið Þ

o

can reduce the quantization distortion of r(i − 1) at the most extent, we exchange the top K
codewords which are selected most frequently in step m ið Þ

o into the codebook Cm ið Þ
o
. Then the

path for each input tends to be the same as mo.
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3.3.2 Codewords updating

After the frequently selected codewords are exchanged to proper codebooks, we can fast re-
quantize the input data using the residual quantization strategy [2] via the optimal path mo.
With the code b calculated by the residual quantier, the codebook Cm ið Þ

o
is optimized as

C* ¼ argmin
C

E jjr i−1ð Þ−C bm ið Þ
o

� �2
� �

ð10Þ

Equation (10) can be solved using the least-quadratic problem, which is same as the codebook
learning step in AQ [1]. Since the code bm ið Þ

o
may change if we firstly update the (i − 1)th

codebook Cm i−1ð Þ
o

, we update the codebooks with the inverted order [m Mð Þ
o , m M−1ð Þ

o ,…, m 1ð Þ
o ].

3.3.3 Adaptive codebook learning

We propose an adaptive learning strategy to construct the hierarchical codebooks using the
two-step process. In the first iteration, the 1-width beam search (T = 1) is implemented to
calculate the code and path from the M codebooks for each input and mo is calculated by
Eq. (7) and (8). Second, the most frequently indexed codewords in 1-st step are moved

into Cm 1ð Þ
o
, and then he input x is quantized by the new codebook C*

m 1ð Þ
o
, where bm 1ð Þ

o
is the

code indexing the nearest codeword. In the next m − 1 iteration, we repeat the above steps with
the remaining M −m + 1 codebooks for the residual r(m − 1). After the M iterations, the
codewords are exchanged to the proper codebooks and new codes are calculated. Then we
solve the Eq. (10) to update the each codebook. The Algorithm 2 summarizes the codebook
learning process.
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We implement the codebook learning step several loops to train the hierarchical codebooks.
The computational complexity for each loop is O(M3KDT) while that for AQ is O(M2KDT).
However, since we iteratively train the ordered codebooks, our method can only search a local
optimal combination of codewords in once iteration. Therefore we let the width of beam search
T = 1 which can significantly reduce the cost in the beam search in training phase (AQ let T = 1
6 for codebook learning). In practical, the number of codebooksM is not large (generally equal
to 4 in AQ), therefore the total cost of codebook learning is much less in our method than AQ.

3.4 Fast AQ compression

After we obtain the best pathmo and train the hierarchical codebooks, we can quantize the input
with the fixed order of codebooks and a small search width T. The complexity of encoding a
vector is O(MKDT) instead of O(M2KDT) in AQ encoding phase. Moreover, as we exchange
the most frequently indexed codewords into the proper codebooks, the search width T does not
required to be very large to find the global minimal combination of codewords. In experiments,
we find that the performance when T = 4 is similar to that of AQ. Compare to the AQwhere T =
64 in compression phase, our method is dozen of times faster than AQ. Figure 2 illustrates the
framework of our approach, where the highlights show the differences from AQ.

4 Experimental results

In this section, we present two experiments that validate the effectiveness of FAQ. The first is
the comparison of the approximation error between the proposed approach and three baselines.
The second experiment is comparison of the performance of nearest neighbor search. As our
main propose is to reduce the computational complexity of AQ, we evaluate the time
consumption of compressing phase in FAQ and AQ to show our improvement of computation
when encoding large testing dataset.

The experimental settings and standard datasets are introduced in Section 4.1 while
experimental results are shown in Section 4.2 and Section 4.3 respectively.

4.1 Dataset and baseline

SIFT-1 M [7]: this dataset is a collection of 128-dimensional SIFT descriptors [18]. It contains
one million base vectors, 100,000 training vectors and 10,000 queries with known true
Euclidean nearest. GIST-1 M [7]: GIST descriptors are 960-demensional global features
extracted from images [22]. This dataset consists of one million base vectors, 500,000 training
vectors and 1000 queries.

training data

codes

training phase

hierarchical

codebooks

codes of

training data

FAQ compressing

phase

database

order

optimization
best order

codebook

learning

encoding

Fig. 2 The framework of Fast Additive Quantization
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Several methods achieving state-of-the-art performance are used as the baselines. The first
category of methods is based on addition quantization framework, including RVQ [2] and AQ
[1]. For RVQ, the K-means method is used to train the codebooks where the number of
iteration is 100. For AQ, the width T is set to 16 in encoding stage of the training phase and 64
for the compressing phase.

The second category is product quantization framework, which includes PQ [15], TC [4]
and OPQ [8]. For PQ, we use the code written by Hervé Jégou [14] and the number of iteration
is set to 100. For TC, which is a special case of PQ, we allocate and bits and implement the
matrix transform, and then use [14] to train scalar quantizer for each dimension. For OPQ, we
use the code published by Kaiming He [13]. The codebooks are initialized by 100 iterations
PQ, and the non-parametric OPQ is used in 50 iterations to train the final codebooks and
rotation matrix.

As our approach is modified based on AQ, we use 20-iteration RVQ to initial the
codebooks. Then we apply fast AQ to encode the training data where search width is set to
be 1. We find 10 iterations with training phase are enough to train the hierarchical codebooks.
In compressing phase, the performance is similar to AQ when search width T = 4.

We also compare our method with some hashing methods. Since the most existing
quantization methods are for unsupervised, we choose two well-known unsupervised hashing
methods, LSH [9] and ITQ [10]. Specifically, we use training data to learn the hashing
function, and then find the nearest neighbors of queries from the base vectors. Moreover,
different from quantization methods, hashing methods aim to compress data only for search
without data reconstruction, thus we only compare the hashing methods in the search
performance without quantization distortion.

All measurements are taken on a machine with i7–4790 CPU, with 3.60GHz processor and
4 cores.

4.2 Data representation

The main measurement for vector quantization is the approximation error which reflects the
loss of information. Figure 3 shows performance and the time consumption of our approach
with different codebook size for SIFT-1 M dataset. Since the size of codebooks for TC is
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Fig. 3 Comparisons of approaches on dataset SIFT-1 M with various codebook sizes (M = 4): a approximation
error; b time consumption
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adaptive, we only compare FAQ with other four baselines in this experiment. Figure 3a
presents that the error of FAQ is nearly the same as AQ, which much smaller than PQ and
OPQ. In details, the error of PQ and OPQ ranges from 7 × 104 and 6 × 104 to 3.9 × 104 and
3.6 × 104 respectively, which is about 40 % and 23 % larger than the error of AQ. The
performance of RVQ and FAQ are better than the product methods. However, the average
performance gap between RVQ and AQ is about 6 %, which may not be ignored in many
cases. On contrast, FAQ is about 1 % larger than AQ, which is smaller enough to be ignored.
The comparison of time consumption is shown in Fig. 3b. Since PQ and RVQ can compress
batches of vectors at the same time, their speed is much faster than AQ. As the proposed
method aims to improve the efficiency of AQ, FAQ is about 30 times faster than the AQ for
compressing vectors. Therefore FAQ can be implemented in applications instead of AQ since
the little performance losses.

For further discussion, two other paths are used to show the improvement of
hierarchical structure in codebooks. First is a random order, which randomly selects
each codebook to search the nearest neighbor. Second is the largest path that achieves
maximum residuals in each step. Figure 4 presents the approximation errors of the
different three paths, in which the AQ is used as the baseline to reveal the perfor-
mance gaps. The result shows that the performance gap between AQ and FAQ using
optimal path is smaller than 2 %, while the gap of other two paths are quite large.
Specifically, the distortion of the largest order is about 20 % to 150 % larger than
AQ, and that of random order is 8 % to 65 %. The comparison verifies that the
codebooks are hierarchical for different level of residual. That means the best com-
bination tends to be the same as the solution of residual quantization via the optimal
path. Moreover, we find the approximate error is positively correlates with the residual
value in each step, and the theoretical analysis of their relationship will be researched as a future
work.

Then we discuss the influence of different code lengths (L =Mlog2K), where all four
baselines are compared. To compare the performance of AQ, the Fast Additive Product
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paths on 10,000 SIFT descriptors
with various codebook sizes.
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Quantization (FAPQ), which combines the FAQ and OPQ, is used for 64(128) bits code length
to compare with the Additive Product Quantization (APQ). In more details, the vector is
decomposed to M1 = 8(16) orthogonal components as OPQ first, and each component is
encoded by FAQ with M2 = 4 codebooks. Figure 5 shows that the FAQ achieves the similar
performance and has advantage of time consumption in different code length. Figure 5a
presents that the performance gap between AQ and FAQ is quite small compared to other
baselines. When compressing millions vectors such SIFT descriptors, the time consumption
for FAQ is about several minutes while AQ require hours. Thus our fast approach has
advantage after considering the representational power and time consumption synthetically.

4.3 Nearest neighbor search

Approximate nearest neighbor (ANN) search is a widely used technology in image processing
and computer vision. In this experiment, the datasets are encoded using the four methods for
ANN search while the true Euclidean nearest neighbor given by dataset is regarded as the
ground truth.

The asymmetric distance computation (ADC) strategy [15] is used for PQ and OPQ to
approximate the Euclidean distance. Specifically, the database is encoded off-line first, then the
Euclidean distance between query and each codeword is computed, which are further stored in
a table, finally the approximate distance between query and database are computed by looking
up the table, where the code are used for indexing the Euclidean distance of respective
codewords. Different from ADC strategy, our approach use the summation of the module
value of query and scalar product to approximate the Euclidean distance between query and
database, what’s more, the scalar product between codewords can be precomputed and stored
in tables. The details are shown in [1].

Figure 6 shows the Recall@R measures for the query [15] as the search accuracy,
which is a generally used measure that calculates the accuracy of the top R nearest
neighbors compared to the ground truth. For the SIFT dataset, the Recall@R has
similar accuracy between AQ and FAQ, which are better than PQ, TC, OPQ and
RVQ. For GIST dataset, the performance of FAQ is similar to or even better than AQ,
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Fig. 5 Comparisons of approaches on SIFT-1 M dataset with different code length: a approximation error; b
time consumption. AQ is used for 32 bits while hybrid algorithm (APQ) is used for 64(128) bits, so does our
approach
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OPQ and RVQ, which are much better than PQ and TC. Considering the structure of
two dataset, we think the methods perform differently in two dataset for following
reason. The SIFT descriptors have symmetric structure which contains 8 directions in
128 dimension and it tends to be independent when product quantization is used
directly, therefore, performance between PQ and OPQ are similar. When it comes to
GIST descriptor which has asymmetric structure, the independence assumption in PQ
may cause more problems, therefore the AQ, RVQ, FAQ and OPQ have large
improvement compared to PQ. Moreover, [15] mentioned that when input vector is
divided into shorter subvectors, the quantization distortion using same bits becomes
larger, therefore the TC which splits the vector into scalars achieves the worst
performance. In fact, the performance of TC will improve significantly when the
coding length rises. What’s more, the results show that the search performance of
quantization is much better than the hashing method, which is agreed with the
discussion in the introduction.

5 Conclusion

In this paper we present the fast additive quantization (FAQ) approach, which trains
the hierarchical codebooks via the optimal path to reduce the search range. To find
the best search order, we first formulate the beam search as an order optimization
problem of codebook selection, which contains the path optimization and inner
optimization problem. Then we update the codebooks to minimize the quantization
distortion of the residual of each quantization level. After the codebooks contain the
hierarchical structure, the search width can be significantly reduced. In compressing
phase, we search the nearest codewords in optimal order of codebooks with small
width. The experimental results show that our method has the similar performance of
vector quantization as AQ while the time consumption is considerable reduced in the
vector encoding phase.

For future works, we will analyze the correlation between the approximation error and the
expectation of residual values in each step theoretically.
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b GIST-1 M dataset
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