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Abstract We propose in this paper a 3D mesh compression algorithm for 3D deforma-
tion objects to facilitate the transmission of deformed object to another. This algorithm
allows eliminating an object in the sequence of deformed objects and reducing the infor-
mation needed to represent the geometry of a mesh sequence. In our approach, we used
Multi Library Wavelet Neural Network architecture (MLWNN) to align features of mesh
and minimize distortion with fixed features. The introduced method minimizes the sum of
the distances between all the corresponding vertices. It computes deformed ROI (Region
Of Interest), updates and optimizes it to align the mesh features. First, our compression
was performed using spherical geometrical image obtained by our trust region spherical
parameterization. Geometrical images also facilitate compression and level-of-detail con-
trol. Second, the spherical wavelet transformation was used to decompose the geometrical
image into multi-resolution sub-images characterizing the underlying functions in a local
fashion in both spatial and frequency domains. Experimental results show that the progres-
sive compression algorithm yields efficient compression capabilities with minimal set of
features used to have good deformation scheme.

Keywords Deformations · Trust region spherical parameterization · Multi-layer
compression · Wavelet neural network · Remeshing

1 Introduction

3D deformed meshes are commonly used in computer games, computer generated movies, and
many scientific applications. In these applications, they are often complex and nonlinearly
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generated. Deformed objects contain large geometric datasets. Indeed, the deformations are
computed by a minimization method. We develop a new mesh deformation method applied
in the domain of ROI (region of interest) based on Multi Library Wavelet Neural Network
structure relying on several mother wavelets families (MLWNN) to optimize and align the
mesh features.

Actually, 3D deformed models require even larger memory and transmission bandwidth
since a sequence consists of a large number of frames and every frame is a large static
3D object. Therefore, it is important to develop compact representations that significantly
reduce the storage space of the deformed models and facilitate their transmission over
networks.

Our approach generated smaller encoded file size to encode the current frame and get
higher compression rates while maintaining reasonable quality. The main objective of com-
pression algorithms is to eliminate the redundancy present in the original data and to obtain
progressive representations targeting the best trade-off between data size and approximation
accuracy [18]. Moreover, these compression algorithms allow smaller compressed repre-
sentations guaranteeing good visual fidelity. For our 3D deformed mesh, we propose a
multi-layer compression method based on the geometric and connectivity data of the 3D
object applied in each layer of deformation process. This compression was applied to facil-
itate transmission of the vertex of a deformed object to another. It can eliminate the passage
of a deformed object since compression removes not important vertices when deformation
is not performed in the region of interest. The object becomes less complex, making easier
the whole deformation process.

Our compression was performed using the spherical geometrical image obtained by our
spherical parameterization based on trust region method [20]. A spherical projection method
was applied to transform meshes into geometrical image.

The best compression algorithms in literature generally use remeshing as the preliminary
step; since they are not applicable to irregular meshes. In these algorithms, much smaller
errors reside while making predictions on the vertices of these models. Thus, their compres-
sion bit rates are very low compared to those of algorithms that are compressing irregular
meshes. For this surface, mesh should be represented as a semi-regular one obtained by
regular 1:4 subdivision of a base mesh. A wavelet transform can be used to compress sur-
face connectivities based on adaptive wavelet transformation (WT) scheme that can be
embedded into a known image coder. The WT scheme is used in the coding of the image
objects.

2 Related work

Many existing compression schemes are restricted to animated and deformed meshes that do
not change the topological information from one frame to another in order to be compressed
once. In these schemes, only the vertex positions need to be compressed for the individual
frames. Here, we distinguish between four methods:

Predictive-based methods [10, 33], PCA-based representations [1, 12, 29], wavelet-based
techniques [7, 25] and and clustering-based approaches [15, 35]. Recently, research has
started to focus on animated meshes with fixed connectivity. Lengyel [15] introduced the
first work on animated geometry compression. He partitioned the mesh into sub-meshes and
described the motion of the sub-meshes by rigid body transformations.
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Jinghua et al. [35] used an octree to spatially cluster the vertices and represent their
motion from the previous frame to the current one with a very few number of motion
vectors. Their algorithm predicts the motion of the vertices enclosed in each cell by tri-linear
interpolation in the form of weighted sum of eight motion vectors associated with the cell
corners. The octree approach was later used by K. Mueller et al. [19] to cluster the differ-
ence vectors between the predicted position and the original one. Alexa et al. [1] applied
PCA to achieve a compact representation of animation sequences. Afterwards Karni and
Gotsman [12] improved this method by using second-order Linear Prediction Coding (LPC)
to the PCA coefficients such that the large temporal coherence present in the sequence
would be further exploited. Sattler et al. [29] introduced the clustered PCA. According
to this approach, mesh is segmented into meaningful clusters which are then compressed
independently using a few PCA components only. Prediction techniques can also be used
to efficiently compress animated meshes. Assuming that the connectivity of the meshes is
stable, the neighborhood in the current and previous frame(s) of the compressed vertex is
exploited to predict its location or its displacement [10, 33]. The residuals are compressed
up to a user-defined error. Guskov et al. [7] used wavelets for a multi-resolution analysis
and exploited the parametric coherence in animated sequences. The wavelet detail coeffi-
cients are progressively encoded. Payan et al. [25] developed the lifting scheme to exploit
the temporal coherence. The wavelet coefficients were thereby optimally quantized.

Kammoun et al. [11] proposed to optimize the prediction scheme of lifting-based wavelet
transforms (Butterfly and Loop). For each detail level, the best parameters of the predic-
tor were computed to minimize the set of detail coefficients. Experimental results show
that, compared to classic wavelet decomposition, the root mean square distortion is slightly
reduced (2 %) at similar rate. Chourou et al. [4] resorted to mesh segmentation in order to
optimize the wavelet operators for each of the generated clusters. The parameters of lift-
ing scheme prediction step were chosen to minimize the variance of the detail coefficients.
The compression scheme of Zhao et al. [36] based on matrix-valued Loop is subdivision for
better shape control. The encoder of Denis et al. [5] exploited the statistical dependencies
between the intraband and composite wavelet coefficients to determine the best quantizers.
Chen et al. [3] suggested compressing an input surface by regularly remeshing it with quads.
The quadrilateral subdivision splits each face into 4 new faces by inserting one vertex.
The wavelet decomposition was formulated through a lifting scheme. Zerotree coding was
also used to encode the coefficients. Other mesh methods using wavelet transforms focused
on mobile decompression [17] and the lossy transmission support [16]. The objectives of
this approach are to reduce the number of computations needed for the decompression and
to use error protection techniques to fit mobile computational capabilities and lossy net-
works. Nevertheless, in general, wavelet-based algorithms generally provide a significantly
better rate-distortion performance despite their lossless counterparts. Recently, Tang [31]
proposed 3D triangle mesh compression based on vector quantization with k-ring vector
prediction which optimally employs the correlation between the vertex to be encoded and
its adjacent encoded vertices. Rabab M. Ramadan and Rehab F. Abdel-Kader [27] devel-
oped 3D Face Compression and Recognition using Spherical Wavelet Parametrization. They
also introduced a fully automatic process for the preprocessing and the registration of facial
information in the 3D space. Next, the spherical wavelet features were extracted, which pro-
vided a compact descriptive biometric signature. Indeed, spherical representation of faces
permits effective dimensionality reduction through simultaneous approximations.
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3 Our proposed mesh deformation based on MLWNN architecture
and Multi-layer compression algorithm

3.1 Mesh deformation based on MLWNN architecture

Geometric modeling focuses particularly on the geometrical representation and spatial rela-
tionships between real objects. For mesh deformation, it is important to apply an effective
method to align the features between the original object and the target one to have good
deformation technique with low rate deformation of fixed features.
Wavelet neural networks, using wavelets as basic function, have various interesting proper-
ties including fast training and good generalization performance. In fact, various methods
have been proposed for structure selection and wavelet neural networks training.

The wavelet network structure with one output,f, can be expressed by the following
equation:

f (x) =
M∑

j=1

Nl∑

i=1

ω
j
i �

j
i (x) +

Ni∑

k=0

akxk + b (1)

x = [x1, x2, ..., xNi
]T is the input vector. Functions ω

j
i are dilated and translated versions of

the several mother wavelets �j . Nl is the selected wavelet number for the mother wavelet
family. The index l depends on the wavelet family and the choice of the mother wavelet.
The wavelet network architecture proposed in [2, 22, 23] can be viewed as a network with
an input vector of Ni components, a hidden layer that is constituted of NMw wavelets of M

mother wavelets; each belongs to a wavelet family of the size Ni and a linear output neuron.
Such a network is shown in Fig. 1.

Fig. 1 Multi-Mother Wavelet Network Structure
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We introduce, in this work, a new 3D deformed approach based on MLWNN structure.
It was realized in two steps:

– Network initialization: this step consists in developing a wavelet library made up of
translated, dilated and rotated versions of a mother wavelet.

– Optimization of network parameters: was performed by combining a selection method
OLS (Orthogonal Least Squares) and an optimization algorithm Levenberg-Marquardt.
This algorithm determines the linear parameters of the network and iteratively opti-
mizes the number and the parameters of wavelets by minimizing the rate deformation
between the two objects.

Figure 2 represents our proposed algorithm as follows:
We applied an effective spherical mapping algorithm using trust region optimization

scheme minimizing angle and area distortions. It generally guarantees a bijective spheri-
cal parameterization [20] as a common domain of the source and target objects. Spherical
parameterization, which consists in establishing a correspondence between the two source
and target meshes, is a mandatory and important step in the deformation process. In order to
define a geometric mesh object, we concentrated on the use of feature points. We assumed

Fig. 2 Deformation processes based spherical parametrization and MWNN
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Fig. 3 Overview of the feature-based MLWNN algorithm

that the shape of the object is defined by the locations of the predefined feature points on
the surface of the mesh. Moreover, the mesh deformation can be completely determined
by the movements of these feature points (alternatively referred as control points) from
their neutral positions either in absolute or in normalized units. We used a Wavelet network
approximation to optimize the align feature for mesh and minimize distortion with fixed
features.

The general process of our proposed mesh deformation based on Multi Library Wavelet
Neural Network architecture is presented in Fig. 3.

The objective of our algorithm is to achieve a feature alignment process that reduces
the distances between features without modifying the local vertex positions on the spheri-
cal maps. Indeed, our method is based on the Laplacian representation designed for large
rotations. Laplacian mesh editing allows deforming 3D objects while their surface details
are preserved because it allows the simulation of realistic deformations [21, 30]. This rep-
resentation permits direct detail-preserving reconstruction of the modified mesh by solving
a linear least squares system.

3.2 Progressive compression algorithm for MLWNN mesh deformation

Geometry image is an original method that compresses manifold meshes, and remesh an
arbitrary surface onto a semi regular structure . It can be encoded using traditional image
compression and decompression algorithms, such as wavelet-based coders. The mesh-based
spherical scheme is more natural for coding geometry. The sphere is a natural and seamless
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parametric domain for closed genus-0 surfaces. It provides good reconstruction of shape
details at very low bit budgets. The spherical wavelet transformation is used to decom-
pose the object into multi-resolution sub-images. Besides, the geometry of meshes is often
very dense (over-sampling) and their connectivity is arbitrary (irregular neighborhood of
vertices). It is often necessary to remesh them to reduce their complexity (simplifica-
tion), improve the quality of triangles products and optimize the sampling geometry or
connectivity as regular as possible.

3.2.1 Trust region spherical parameterization

Trust region spherical parameterization algorithm [20] was integrated to obtain good geom-
etry images. Besides, a spherical parameterization method was applied to convert meshes
into geometrical image. Our approach reduced the computation distortion required for the
procedure of mesh parameterization in a sphere since all calculations were performed in the
sphere space to reduce the distortion angle and region at mapping each of the triangles.

We propose an effective optimization scheme to compute such parameterization and have
an algorithm exposing a property of global convergence, which is the case of Trust Region
Spherical Parameterization (TRSP) algorithm. Thus, faces will have the correct orientation,
creating a good 3D spherical geometrical image. Simulation results show that it is possible
to achieve a considerable correspondence between the angle and area perspective distor-
tion. Our method overcame the limitation of parameterization for shapes containing many
extremities. In fact, parameterization onto the sphere suffers from distortions which give
rise to rippling effects under lossy reconstruction.

The main objective of our trust region method is to transform the original optimization
problem by a series of sub-optimization problems easier to solve. In each sub-problem, the
objective function was transformed by a model function into a current iterate. A trust region
was inspired as the region within which trust was given to the model function about its qual-
ity to give a good approximation (low distortion) of the objective function. Consequently,
the rate of the inverted triangle was reduced. Obviously, our approach ensures effective and
bijective parameterization.

We started by creating a smoothing operator:

1. First load and display the mesh.
2. Compute the weights; the weights should be positive for the method to work.
3. Compute the normalized weight matrix such that its rows sums to 1.
4. Find a convergent sequence of points by iteratively solving the trust-region sub-

problems.
5. New vertex location: The final convergent point.
6. Spherical Relaxation was obtained by: Smoothing the positions of the mesh on the

sphere and projecting back on the sphere and check which faces have the correct
orientation.

To perform side-by-side comparisons, we implemented the harmonic spherical mapping
[6], curvilinear spherical parameterization [34], the progressive spherical parameterization
[26]. We obtained mapping results from the Spherical Parameterization using progressive
optimization [32]. We also parameterized various input models using our algorithm under
different weights. Our algorithm can be robustly applied on large geometric models with
complex geometry and overcame the limitation of parameterization for shapes containing
many extremities (Fig. 4).
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Fig. 4 Description of the Trust region method

3.2.2 Spherical geometry image

Using our spherical parameterization, mapping the surface on a sphere created a geometry
image. We notice that the faces had the correct orientation in comparison with the object
proposed by Hope et al. in [26]. These geometry images offer numerous advantages for
object compression. First, simple extension rules extended the square image domain to cover
the infinite plane. Then, providing a globally smooth surface parameterization. Geometrical
images also facilitate compression and level-of-detail control. The 2D grid structure permits
using ordinary image wavelets, including higher-order ones with polynomial precision. The
coarsest wavelets span the entire surface and thus encode the lowest frequencies of the
shape.

Geometrical image is an original method that compresses manifold meshes with a
wavelet image compression scheme. To resample the input mesh over a regular 2D grid, the
mesh was first cut in order to be homeomorphic to a disc. Then a parametrization function,
mapping the points of the cut mesh to the points of a unit square, allowed computing x y z
values for each pixel of the image. During the decompression, the geometry image pixels
were used to build a triangle mesh approximation of the original mesh. However, the lossy
compression led to cracks along the surface cuts. Hoppe and Praum [9] proposed to create
the geometry image applying a spherical approach. To describe the sphere on to geometry
image, they proposed a structure based on a regular octahedron domain and another scheme
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based on flattened octahedron domain. The geometry of these domains fits nicely with the
use of spherical wavelet, avoiding boundary reconstruction issues.

Indeed, geometry images are regularly-sampled 2D images that have three channels
encoding geometric information (x, y and z) and components of a vertex in �3. Each chan-
nel of the geometry image is treated as a separate image for the wavelet analysis. To be able
to construct spherical wavelets on an arbitrary mesh, this surface mesh, obtained by regular
1:4 subdivision of a base mesh, should be represented as a multi-resolution mesh.

3.2.3 semi-regular remeshing and wavelet transform

3D meshes are often dense and full of redundant vertices and irregular sampling. Thus,
to reduce the complexity, the mesh quality (connectivity regularity) must be ameliorated.
Geometry compression techniques proceeding by semi-regular remeshing are among the
best reported ones to date.
The main idea behind semi-regular remeshing methods [8, 13, 14, 24] is to consider a mesh
representation to have three components: geometry, connectivity and parameterization. It is
also necessary to assume that the last two components (connectivity and parameterization)
are not efficient for the geometrical representation. We computed a semi-regular mesh from
our trust region spherical geometry image (TRSGIM).

First, the 3D mesh was mapped to the spherical parameterization domain. Second, the
geometry image was obtained as a color image and a surface image. Third, the trust region
spherical-based wavelet coefficients were computed for efficient representation of the 3D
mesh. Two different approaches were used to obtain the wavelet coefficients. In the initial
approach, the geometry image was transformed to a semi-regular mesh where the spherical
wavelet transform was applied. Alternatively, the wavelet transform can be applied directly
to the geometry image. Connectivity-based adaptive wavelet transformation (WT) scheme
can be embedded into a known image coder and used in the image objects coding.

The spherical wavelet coefficients yield excellent compression capabilities with minimal
set of features because the spherical wavelet kernels have more localized support and there-
fore can be adapted more quickly to the fine details. The spherical domain is explained into
a square using a simple cut by elegant boundary symmetries. These boundary symmetries
permit the construction of a smooth polynomial surface; the spherical wavelets generally
offer better visual reconstruction as it is most evident on the skull model.

3.2.4 3D mesh deformation using compression algorithm

We implemented compression methods for our 3D mesh deformation based on spheri-
cal geometry image, and wavelet transform. Both approaches were applied directly on the
geometry images with no explicit mesh data structures. They use the boundary extension
rules, and show high-pass detail in local tangential frames estimated from the low-pass sur-
face. The main problem with this approach is the large distortion induced by the planar
mapping although multi-chart and spherical geometry images were introduced to overcome
this difficulty [9, 28].

The following scheme 5 represents the different steps of our compression algorithm
(Fig. 5):

Multi-layer Compression-deformed mesh consists in compressing each mesh in the
sequences of deformed geometric data. Therefore, efficient compression techniques were
applied to the 3D deformed sequence before distributing it over the network. Our deforma-
tion method works even better on meshes since in meshes vertex adjacency information is
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Fig. 5 Overview of the compression pipeline

provided a priori. We develop a compression method applied to our 3D deformed objects
with constant topology and geometry variable in order to facilitate the transformation of a
deformed object to another object. Consequently, we can eliminate a passing object until
the target object is obtained. This compression method is based on the transformed wavelet
and remeshing method using spherical geometry images compression.
The 3D geometry is resampled on a regular grid. It is compactly encoded as an RGB image.
It is mostly used to represent large scale features of the mesh (overall shape and deep
creases). The 3D wavelet transform is based on lifting scheme in the 3D encoder.

With less number of wavelet coefficients, our algorithm gave a good reconstructed object
compared to the works of hoppe [9] and recently that of Rabab.M [27] , which have some
limitations related to their proposed spherical parametrization approaches. For shapes con-
taining many extremities, the parametrization onto the sphere suffers from distortions. The
latter give rise to rippling effects under lossy reconstruction. In such cases, the compression
is much less effective than semi-regular remeshing.
Also in comparison with the method of Tang [27] when using 3D triangle mesh compres-
sion based on vector quantization with k-ring vector prediction our result demonstrates the
capabilities of the proposed compression algorithm mainly for high-resolution objects to
preserve geometric features and to have better rate-distortion performance.

4 Implementation and results

We have implemented compression method for our 3D deformed objects , based on trust
region spherical geometry image and wavelet transform. Both approaches work directly on
the geometry images, with no explicit mesh data structures. Both make use of the boundary
extension rules, and express high-pass detail in local tangential frames estimated from the
low-pass surface.

First, the 3Dmesh was mapped to the spherical parameterization domain to have bijective
parameterizations with lowly area and region distortion. Then, the geometry image was
obtained as a color image and a surface image. Finally, the trust region spherical based
wavelet coefficients were computed for efficient representation of the 3D mesh.
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This compression will be used to facilitate transmission of the vertex of a deformed object
to another in order to make easier the passage of a deformed object to another one. Thus, we
can eliminate a passing object until the target object is obtained, have an efficient rendering
operations and consequently minimize the Mean Square Error (MSE) value. This error
presents the deviation of the reconstructed positions from the original one.

MSE =
N∑

i=1

∥∥∥vi − v
′
i

∥∥∥
2

(2)

To evaluate the effectiveness of the proposed approach,, we used Face, Bunny and Rabbit
meshes to test the PSNR performance at the fixed bit rate. Here, PSNR was computed
between the quantized mesh M

′
and the original mesh M as follows:

PSNR = 10.log10
N

∑N
i=1 ‖vi − v

′
i‖2

(3)

Where N is the number of vertices of M , vi and v
′
i represent the positions of the i-th vertex

of M and M
′
, respectively.

4.1 Comparison in term of compression

Robust feature representation is very important to the whole system as it ensures the align-
ment of the feature points. It is expected that these features are invariant to rotation, scale,
and illumination.

Scheme 6 presents the different steps of our algorithm for Face object (Fig. 6):

Fig. 6 Steps of 3D Face compression
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Table 1 The variation of MSE and PSNR of Bunny, Rabbit and Face objects

Original Object Vertex Faces Our MSE PSNR by KRPVQ (dB) Our PSNR(dB)

Bunny 29299 69473 1.0602e-007 40.83 69.74

Rabbit 16760 33518 2.0121e-008 48.25 76.93

Face 58895 57836 5.0642e-007 50.36 81.5

The variation of MSE and PSNR at the same bit rate is shown in Table 1:
In comparison with the method of Tang [31] when using 3D triangle mesh compression

based on vector quantization with k-ring vector prediction(KRPVQ), at the same bit rate
with different meshes our result demonstrates the capabilities of the proposed compression
algorithm mainly for high-resolution objects to preserve geometric features and to have
better rate-distortion performance.

From the above-illustrated experimental results, we can clearly see that the proposed
technique can obtain much better rate-distortion performance. The spherical wavelet
coefficients show excellent compression abilities with minimal set of features.

In other hand compared to the work proposed in [27], entitled 3D Face Compression and
Recognition using Spherical Wavelet Parametrization, we notice that the error rate in our
work is very low. For example, the error of the Face object using our algorithm is equal to
5.0642e-007 compared to 0.14 in [27].

Figure 7 presents a 3D face compression algorithm proposed in [27] using different
percentages of wavelet coefficients.

Figure 8 shows the reconstructed versions of our 3D Face compression algorithm using
different percentages of wavelet coefficients.

Visually, we see that our objects are well reconstituted and very similar to the original
object compared to the objects in [27].

Using less number of wavelet coefficients, our compression algorithm provides a good
reconstructed object compared to the works of hoppe [9] and recently that of Rabab. M [27],

Fig. 7 Wavelet approximation of face image. a using 2 % of wavelet coefficients b using 5 % of wavelet
coefficients c using 10 % of wavelet coefficients d using 20 % of wavelet coefficients e Using all
coefficients [27]
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Fig. 8 Wavelet approximation of face image. a using 2 % of wavelet coefficients b using 5 % of wavelet
coefficients c using 10 % of wavelet coefficients d using 20 % of wavelet coefficients e Using all coefficients

which have some limitations related to their proposed spherical parametrization approaches
for shapes containing many extremities, their parametrization onto the sphere suffers from
distortions. The latter give rise to rippling effects under lossy reconstruction.

Scheme 9 presents the different phases of our algorithm for Bunny object (Fig. 9):
Figure 10 shows the reconstructed versions of the Bunny object using different percent-

ages of wavelet coefficients used in our compression algorithm.

Fig. 9 Steps of 3D Bunny compression
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Fig. 10 Compression based spherical geometry image: a using 2 % of wavelet coefficients b using 4 % of
wavelet coefficients c using 6 % of wavelet coefficients d using 10 % of wavelet coefficients

4.2 Multi-layer compression algorithm for 3d deformed mesh

3D deformed objects require even larger memory and transmission bandwidth since a
sequence consists of a large number of frames. For this reason, we used the result of our
compression algorithm.

The compressed object must be deformed using our deformation algorithm based on the
Laplacian coordinated and multi library wavelet neural networks architecture as an approx-
imation tools to align the vertex and minimize the distortion of the fixed vertex while
minimizing the rate of this deformation vertex.
The absolute vertex positions were reconstructed from their relative coordinates by solving
a sparse linear system. Based on the elementary operation of moving a single vertex, more
advanced editing operations can be easily built. Constraining curves and handle regions can
be done by appropriately grouping handle vertices. Then, the correspondence between the
two objects was established and a 3D alignment of vertex, based on that matching, was
performed. For each feature region in the original object, a feature region in target object
should be found using the similarity measure and a correspondence between the source and
target meshes should be carried out. Such matching cannot be directly defined because of
the complexity of the involved topological and geometric information. Instead, the corre-
spondence was achieved in an indirect manner with the help of parameterization techniques,
which consists in establishing a bijective mapping between the source mesh surface and the
target meshes. We used our compressed object in order to facilitate the transformation of a
deformed object to another object. As a result, we can eliminate a passing object until the
target object is obtained.

To evaluate the performance of the wavelet networks structure, in terms of a 3D deformed
object capacity, we used a wavelet network in which the library is made up of six mother
wavelets (MexicanHat, Slog1, Polywog 1, Beta1, Beta 2 and Beta 3). To estimate the basis

Table 2 The number of wavelets
used for Bunny deformation Wavelets name Nbre

lenrecind mexhat 1

lenrecind slog1 4

lenrecind polywog1 3

lb1 2

lb2 3

lb3 2
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Fig. 11 3dBunnydeformation schemewithout compression algorithm (a) andused compressionmethod in (b)

of the wavelet number in the hidden layer, we applied this approach using a wavelet network
with 15 wavelets. The 3D deformed object complexity was directly related to the selected
wavelet number and to the training iteration number to construct the network.
The number of wavelets in the hidden layer used for Bunny object is presented in Table 2.

The figure below 11 show a comparison of our deformation processes without compression
(a) and our algorithm with compression (b) when the alignment is easier for Bunny Object.
The first deformation sequence of the object Bunny in Fig. 11(a) presents our deforma-
tion method based on MLWNN. The second sequence of deformation(b) shows our method
using the compression algorithm. When working with a compressed object the number of
vertices was reduced. Hence, the alignment of the vertex of an object to deformed object
became easier because the search space was reduced. Consequently, we can eliminate one
passing object until reaching the target object.
Our scheme needs low computation complexity. It is also compatible with the existing
connectivity compression schemes.

5 Conclusion

We proposed a multi-layer compression algorithm for 3D mesh deformation based on
wavelet neural network architecture. Our framework compressed models in each layer of
deformation sequence using geometry image obtained by trust region spherical parameteri-
zation .We applied an effective compression technique for vertex geometry data to facilitates
the alignment of vertex from an object to another in deformation processes. Our compres-
sion was performed by using both the spherical geometrical image obtained by our trust
region spherical parameterization and the spherical-based wavelet coefficients for efficient
representation of the 3D object. The spherical wavelet transformation was applied to decom-
pose the geometry image into multi-resolution sub-images characterizing the underlying
functions in a local fashion in both spatial and frequency domains. Experimental results
show that the progressive compression algorithm has an efficient compression abilities with
minimal set of features used to design good deformation scheme.
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