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Abstract In the state-of-the-art methods for (large) image transmission, no user interaction
behaviors (e.g., user tapping) can be actively involved to affect the transmission performance
(e.g., higher image transmission efficiency with relatively poor image quality). So, to effectively
and efficiently reduce the large image transmission costs in resource-constraint mobile wireless
networks (MWN), we design a content-based and bandwidth-aware Interactive large Image
Transmissionmethod inMWN, called the IIT. To the best of our knowledge, this is the first study
on the interactive image transmission. The whole transmission processing of the IIT works as
follows: before transmission, a preprocessing step computes the optimal and initial image block
(IB) replicas based on the image content and the current network bandwidth at the sender node.
During transmission, in case of unsatisfied transmission efficiency, the user’s anxiety to preview
the image can be implicitly indicated by the frequency of tapping the screen. In response, the
transmission resolutions of the candidate IB replicas can be dynamically adjusted based on the
user anxiety degree (UAD). Finally, the candidate IB replicas are transmitted with different
priorities to the receiver for reconstruction and display. The experimental results show that the
performance of our approach is both efficient and effective, minimizing the response time by
decreasing the network transmission cost while improving user experiences.
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1 Introduction

In the state-of-the-art methods for (large) image transmission, in most cases, a user has to
passively wait till completed transmission to see the entire image, and no user interaction
behaviors (e.g., user tapping, etc.) are considered to affect the transmission performance (e.g.,
higher image transmission efficiency with relatively poor image quality). Image transmission in a
resource-constraint mobile wireless network (MWN) usually have three main characteristics: 1)
Mobility of users: most users using the MWN are constantly moving which means the spatial
position of each user varies with time; 2) Lower processing power: the processing and battery
capacities of most mobile client devices (e.g., cell phone, PDA, etc) are very limited, which
motivates us to devise an energy-efficient technique to support the image transmission with lower
costs; 3) Instability and heterogeneity of the MWN: the bandwidths in the MWN are often
unstable, that means, some nodes may be down or connected intermittently to the network. The
bandwidth between any two nodes in theMWNmay be different according to the variance of time.

For the transmission and browsing of large images inMWN, the network transmission cost of
such images will consume a large percentage of the overall interaction time [19]. So, the reduction
of the transmission cost, especially inMWN, is critical to the transmission performance improve-
ment. Since an image usually contains some salient objects with corresponding regions called
Region of Salient Objects (RSO), the total image data size can be effectively reduced if the pixel
resolutions of the non-RSO region can be moderately reduced based on the network bandwidth.
This will not affect the user experience in watching, but the total transmission cost can often be
decreased significantly (i.e., higher image transmission efficiency with inferior image quality in
unimportant regions). Moreover, in the state-of-the-art methods, no human interactions (e.g.,
tapping the receiver screen) are considered during large image transmission processing, which
may cause a user to wait for a long time if the current network bandwidth is limited and unstable,
especially inMWN environment. So the user experiences are bad in this case since he is anxious to
watch the image. If the pixel resolutions of non-RSO replicas can be interactively adjusted by the
receiver users during the transmission processing, not only the transmission performance is
improved, but also the user experiences can be significantly enhanced. Based on the above
motivations, we propose a content-based and bandwidth-aware Interactive Image Transmission
(IIT) scheme that not only considers the image content and the network bandwidth, but also user
interactions. For an active image transmission processing, exploring user interactions to optimize
the transmission processing and improve the user experiences is a new research topic, which has
received little attention so far.

The basic idea behind the transmission scheme is that given a transmission image IS, its
corresponding RSOs are first automatically detected by the approach of Girshick et al. [11]. As
the RSOs are main contents of the image, they are critically important to the IIT processing in
which their pixel resolutions are kept original. However, for the rest of the image (i.e., non-
RSO), both its pixel resolution and transmission priority are lower than that of the RSOs so
that the key part of the image can be transmitted and displayed first. Note that, the optimal
resolution of the non-RSOs can be derived based on factors such as current network band-
width, corresponding size, user interactions, etc. Then, the IIT processing of IS becomes an
active transmission of the image blocks (IB) in IS that has been partitioned in the preprocessing
step (ref. Section 3.2). The IB replicas with different resolutions and transmission priorities are
stored at the slave node level (NL). During the transmission processing, in case of unsatisfied
transmission efficiency, the user’s anxiety to watch the image can be implicitly indicated by the
frequency of tapping the receiver’s screen. Then, the IB replicas with lower pixel resolutions
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are chosen as candidate ones for transmission, reconstruction, and display at the receiver node.
For those IBs with lower resolutions, the user can also request new IB replicas with higher
resolutions by tapping the corresponding region on the screen.

The challenges of designing such an innovative high performance interactive image
transmission method include the five main aspects:

1) Applying user interaction (i.e., screen tapping) to image transmission: as user interac-
tion (i.e., tapping the screen) means the user hopes the image transmission can be
completed earlier, the problem is how to establish a relationship between the frequency
of screen tapping and the resolution of non-RSO part.

2) High computation cost in image transmission: most images are characterized by high
pixel resolution, high dimension, and large scale. So the transmission cost of such images
is very high.

3) Mobility of MWN users: as most users in the MWN are often moving which means the
spatial position of each user varies with time, how to perform an optimal data placement is
also a challenging issue.

4) Resource-Constraint MWN: the power capacities of the mobile devices are very limited.
The display resolutions of such mobile devices are often low. Furthermore, the bandwidth
in theMWN is limited, how to transmit such a large image in the resource-constraintMWN
is challenging.

5) Instability and heterogeneity of the MWN: the nodes in theMWN are often instable, that
means, some nodes may be down or connected intermittently to the network. The
bandwidth between any two nodes in the MWN varies with time. There is no guarantee
that the total response time of each transmission will be similar.

To address the above challenges, we propose two enabling techniques in the IIT, i.e., a
multi-resolution-based interactive RIB replica selection scheme and an optimal IB replica
placement scheme. We have implemented the IIT method and extensive experiments indicate
that our approach is specifically suitable for large image transmission in a relatively low
network bandwidth with much enhanced user interaction experiences. Our contributions can
be summarized as follows:

& We introduce a framework of an interactive image transmission scheme in the resource-
constraint mobile network (IIT).

& We propose an interactive user model to support the IIT processing.
& We present a multi-resolution-based interactive RIB replica selection scheme to adaptively

reduce the communication cost in the MWN environment and improve user experiences.
& We design an optimal IB replica placement scheme to adaptively reduce the storage cost.

The remainder of the paper is organized as follows. Section 2 reviews related techniques
and Section 3 presents preliminary definitions and preprocessing step. After that, to effectively
and efficiently facilitate the interactive image transmission processing, we present two en-
abling techniques, i.e., a multi-resolution-based interactive RIB replica selection scheme and
an optimal IB replicas placement scheme in Sections 4 and 5, respectively. In Section 6, we
propose an interactive image transmission scheme called the IIT. In Section 7, we perform
comprehensive experiments to evaluate the efficiency of our proposed approach before we
conclude the paper in Section 8.
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2 Related work

In this section, we review key related works on image data transmission techniques. Image data
transmission techniques have been studied for about 20 years [1, 8, 16, 18, 19, 21]. The state-of-the-
art methods can be mainly divided into two categories: 1) improvement design of transmission
protocol [8, 9, 16, 19, 21–23]; and 2) image data encoding and compression [3–7, 9, 17, 18, 22, 26].

Charles et al. [8] first proposed a wireless image data transmission method from end to end,
and provided experimental analysis. As images are usually transmitted across the Internet
using a lossless protocol such as TCP/IP, lossless protocols require retransmission of lost
packets, which substantially increases transmission time. John et al. [16] presented a fast lossy
Internet image transmission scheme (FLIIT) for compressed images which eliminates retrans-
mission delays by shielding important portions of the image with redundancy bits. They
described a joint source and channel coding algorithm for images which minimizes the
expected distortion of transmitted images. After that, Raman et al. [21] proposed an image
transmission protocol called ITP. Comparing with the traditional TCP protocol, the ITP is more
suitable for image data transmission. Gao et al. [9] presented a robust image transmission
scheme for wireless channels based on compressive sensing. Due to the high packet error rates
and the need for retransmission, Aziz et al. [23] has designed a novel architecture for energy
efficient image processing and communication over wireless sensor networks. Recently, Maani
et al. [19] introduced a parallelism to provide an efficient method of medical image transmis-
sion based on parallel TCP connection.

Since most image transmission methods use the same pixel interpolation scheme for the entire
picture, without considering the differences in different parts, Chang et al. [7] presented a
progressive image transmission (PIT) scheme which transmits the most significant part of a
picture, followed by less important parts. Lin et al. [18] presented a compound image compression
algorithm for real-time applications of computer screen image transmission called Shape Primitive
Extraction and Coding (SPEC). Ruiz et al. [22] designed an image compression algorithm to
support progressive image transmission. Available Pit mechanisms and systems can be catego-
rized into spatial domain [5], and pyramid-structured progressive transmission [17]. In the
transform domain, an image undergoes block compression and the transformed coefficients are
transmitted progressively in a relative importance order (e.g., Progressive JPEG). Alternatively, a
germinal and instinctive method for progressive image transmission in the spatial domain is the
Bit Plane Method (BPM) [4, 26]. In this method, the final transmitted image is the same as the
original. However, its high transmission bit rate is a major disadvantage of BPM.

Due to the drawback of BPM, lossy PIT techniques have received more attention. To
provide a fast PIT scheme, Chang et al. [6] improved the BPM method by color guessing
called the guessing by neighbors (GBN), which uses interleaved pixels for transmission. Fifty
percent of the pixels are transmitted while the other 50 % were Bguessed^. Sun et al. [24]
proposed a progressive image transmission system over wireless channels by combining joint
source-channel coding (JSCC), space-time coding, and orthogonal frequency division
multiplexing (OFDM). Based on the Reed-Solomon coding scheme, Boluk et al. [3] proposed
a robust image transmission over wireless sensor networks. Victor et al. [27] devised a 3-D
scalable image compression method with optimized volume of interest coding. Arslan et al. [2]
has proposed a generalized unequal error protection LT codes for progressive data transmis-
sion. Although Hu et al. [12] introduced an attention model based progressive image trans-
mission method in which the region of interest (ROI) in an image can be transmitted with high-
resolution in priority, the human interaction can not be allowed to affect the transmission
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efficiency. Wu and Abouzeid [28] devised a power aware image transmission in energy
constrained wireless networks. Gelogo and Kim [10] reviewed the compressed images
transmission issues and solutions. Zhuang et al. [30] have proposed a content-aware and
multi-resolution-based image transmission scheme in which only two factors, i.e., the image
content and the network bandwidth are considered to optimize the transmission processing.
Recently, Xua et al. [29] proposed an adaptive FEC coding and cooperative relayed wireless
image transmission.

Different from the above state-of-the-art methods, the paper proposes an interactive image
data transmission method in which the three factors, i.e., the receiver’s interaction behaviors,
the image content, and current network bandwidth are holistically analyzed to obtain an
optimal transmission pixel resolution. To the best of our knowledge, this is the first attempt
to improve the transmission performance from the perspectives of the user interactions and the
image contents.

3 Preliminaries and preprocessing

3.1 Preliminaries

The list of symbols to be used throughout the rest of this paper is summarized in Table 1.
Definition 1. A mobile wireless network (MWN) is a graph which is represented by a triplet:

MWN :¼< N ;E; T > ð1Þ
where N refers to the set of nodes, E refers to a set of edges representing the network
bandwidths for data transmission at time T.

In Fig. 1, due to the instability and heterogeneity of the MWN environment, the bandwidth
of any two nodes in MWN may be different and vary with time. In addition, the data
transmission distance in the mobile network is limited.

Table 1 Meaning of symbols used

Symbols Meaning

Ω A set of images

IS A transmission image and IS∈Ω
RSOi The i-th RSO in an image and i∈[1, |RSO|]
R The rest part of the image IS (i.e., non-RSO)

IF Image fragment (i.e., RSO and R)

IB Image block

DL , DU The lower and upper bound of the dots per inch

EL , EU The lower bound and upper bound of the network bandwidth

|RSO| The number of RSOs in an image

UR A receiver user
┌*┐ The integral part of *

δ Granularity value for the time threshold

Δ Granularity value both for network bandwidth and the image pixel resolution
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Definition 2. The nodes in the MWN can be logically divided into three categories: the
sender node (NS), the slave node (NL), and the receiver node (NR), formally denoted as
N = NS∪NL∪NR, where

– NS is responsible for obtaining an optimal IB transmission pixel resolution based on the
collection and analysis of the network bandwidth and user interaction behaviors;

– NL is responsible for: 1) storing the IB replicas with different pixel resolution and
transmission priorities, and 2) sending the IB replicas to the receiver;

– NR is responsible for: 1) receiving, reconstructing, and displaying the images; 2) sending
user interactions (e.g., tapping the screen) to NS.

For each image, in most cases, there exist some salient objects that users are interested in.
The regions of such salient objects are called region of salient objects (RSO).

Definition 3. A region of salient object (RSO) in an image can be modeled by a four-tuple:

RSOi :¼< i; S; pos; dpi > ð2Þ
where i is the ID number of the RSO, S is the area value of the RSO, pos is the coordinate
position of the RSO in the image, and dpi refers to the dots per inch(dpi) for the RSO.

Definition 4. A non-RSO part of an image, denoted as R, can be modeled by a two-tuple:

R :¼< S; dpi > ð3Þ
where S is the area value of the R, dpi refers to the dots per inch for the R.

Based on Definitions 3 and 4, in Fig. 2, there exists one RSO (e.g., RSO1) and one non-
RSO (e.g., R) in the image. The corresponding RSO area can be preliminarily detected by the
approach proposed by Girshick et al. [11] and drew by a black rectangle line.

As mentioned before, for an image, it can be equally partitioned into blocks called image
blocks.

Definition 5 (IMAGE BLOCK). Given an image block IBi, it can be modeled by a five-tuple:

IBi :¼< i; S; pos; TP; dpi > ð4Þ
where i refers to the ID number of the IB,S is the area value of the IB, pos is the coordinate
position of the IB in the image, TP refers to the transmission priority of the IB (TP∈[0,1]), and
dpi means the corresponding pixel resolution of the IB;

Receiver node

Mobile

phone

PDA

Slave nodeSender node

Tablet PC

Fig. 1 Three-layer architecture in
a MWN
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Note that, there are two kinds of IBs (i.e., SIB and RIB) in terms of their positions in the
image, which are defined below:

Definition 6 (SIB). A SIB is an image block which intersects with a RSO or is contained by
a RSO, formally represented as:

SIB ¼ IBijIBi∩RSOj≠∅
� � ð5Þ

where i∈[1,α + β] and j∈[1,|RSO|].
Definition 7 (RIB). A RIB is an image block contained by the non-RSO part(R) of an image,

formally denoted by:

RIB ¼ IBi IBi∩R ¼ IBijf g ð6Þ
where i∈[1,α + β].

Based on Definitions 6 and 7, also in Fig. 2, the RSO has 16(4 × 4) SIBs (i.e., IB23, IB24,
IB25, IB26, IB33, IB34, IB35, IB36, IB43, IB44, IB45, IB46, IB53, IB54, IB55 and IB56). The rest of the
IBs are RIBs.

Our proposed IIT method aims at transmitting a large image adaptively and efficiently in a
limited network bandwidth and a user-preferred time (Tθ) that is dynamically set through the
user interactions (e.g., tapping the receiver screen) during the transmission processing.

3.2 Preprocessing

As mentioned above, in the preprocessing step of the IIT, for each image Ii in Ω, it can be
physically and equally partitioned into several IBs. The corresponding SIBs and RIBs are
placed at the slave node level with different pixel resolutions and transmission priorities.
Algorithm 1 details the initial IB replicas placement processing.

Generally speaking, in most of the state-of-the-art image data transmission schemes, an image
is transferred as a whole object in which the transmission priorities of all IBs are equal. Thus, the
important RSOs in the image are often displayed later than the rest of the image. For images with
high pixel resolutions, suchmethods further leads to the increase of transmission failure rate. Once
transmission failure occurs, the image needs to be re-transmitted, resulting in an even higher
transmission overhead. To overcome this technical bottleneck, we propose a Transmission
Priority (TP) Assignment for IB replicas scheme called TPA to support the successive and robust
transmission of the large image data. The TP of each IB is defined in Eq. (7).
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IBi:TP ¼
1; if IBi∩RSOj ¼ IBi

0:5; if IBi∩RSOj≠ϕ
0; Otherwise

8<
: ð7Þ

According to the different TPs of the IBs, the IBs can be transmitted in terms of their
corresponding TPs in a descending order, which not only ensure the robustness of data
transmission but guarantee that the important information can be transmitted in advance.

4 Multi-resolution-based interactive RIB replica selection scheme

As mentioned before, high pixel resolutions of digital images usually lead to a large data size
accordingly. It is non-trivial to transmit an image of such a big size to the receiver nodes
directly, especially in a resource-constraint mobile network environment in which the network
bandwidth is limited and unstable.

Based on the above analysis, in this section, we propose a Multi-resolution-based Interac-
tive image data Replica selection scheme (MIR) by uniformly analyzing the relationship of the
image content, network bandwidth, and human interactions.

4.1 Modeling user interaction behaviors

To facilitate the interactive image transmission processing, it is critical to modeling the user’s
interactive behaviors. Specifically, for a receiver user UR, his anxiety can be modeled by the
times of tapping the screen during a certain short time interval (ΔT). So in this subsection, we
first give a definition of the user anxiety degree (UAD).

Definition 8 (USER TAPPING). A user tapping (UT) can be modeled by a triple-tuple:

UTi :¼< i;UID; T > ð8Þ
where UID means the user ID and T refers to the time when the tapping is performed.

Definition 9 (USER ANXIETY DEGREE). For a user Ui, his UAD can be defined as the
times for tapping on the screen during a short time interval (i.e., ΔT), formally
represented as:

RSO Image Block

1 2 3 4 5 6

1

2

3

4

5R

RSO1

7

SIB

Fig. 2 One RSO in an image
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UADi ¼
X

UTi:T∈ΔT

1 ð9Þ

where UTi.T means the time when the i-th user tapping is performed and ΔT ≤TMax
θ .1

Based on Definition 9, the larger the UAD is, more anxious the user is. Next, we
establish the relationship between a transmission deadline (Tθ) and the UAD. Sup-
pose that the image transmission processing can be finished in Tθ that is dynami-
cally adjusted based on the users tapping the screen, so for Tθ, it can be represented
below:

T θ ¼ TMin
θ þ TMax

θ −TMin
θ

δ
:k ð10Þ

where T θ∈ TMin
θ ; TMax

θ

� �
(see Fig. 3), TMin

θ is a minimal time threshold (i.e., TMin
θ ¼ T0 þ∑ RSOj j

i¼1 RSOi:S⋅RSOi:dpi2
� �

⋅Bit⋅CR
E j⋅TR ),

TMax
θ is a maximal one (i.e., TMax

θ ¼ T 0 þ ∑ RSOj j
i¼1 RSOi:S⋅RSOi:dpi2

� �þ R:S⋅R:dpi2Þ⋅Bit⋅CR
E j ⋅TR ). δ is a granularity value

that can be tuned by users and k ∈ [1, δ].
Based on Eq.(10), more anxious the user is, the smaller Tθ is. Since the user

anxiety can be measured by the UAD defined in Definition 9. Moreover, k is
proportional to Tθ in Eq.(10). Therefore, the larger the user’s UAD is, the smaller k
is. Based on this observation, the relationship between k and UAD can be approxi-
mately represented in Fig. 4.

With the increase of the UAD, k is decreasing gradually. k and UAD can be approximately
modeled by Eq.(11):

k ¼ δ
UADþ 1

� 	
ð11Þ

Based on Eqs. (10–11), Tθ can be derived in Eq. (12):

T θ ¼ TMin
θ þ TMax

θ −TMin
θ

δ
⋅

δ
UADþ 1

� 	

≈TMin
θ þ TMax

θ −TMin
θ

UADþ 1

ð12Þ

1 TMax
θ is a maximal transmission time which is defined in Eq.(10).

T
Min

 T
Max


Time0

Screen tappingFig. 3 Selection of ΔT
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4.2 Optimal ID of RIB replica

Thebasic idea of theMIRmethod is that for a certain image, its transmission pixel resolutionneeds to
be adjusted based on the variance of the network bandwidth. Specifically, with higher network
bandwidth, a higher-resolution image can be transferred in a reasonable short period of time (Tθ) (ref.
Eq.(12)), where Tθ can be adjusted by a user interactively during the transmission processing. On the
contrary, in order to get a shorter response time, a lower-resolution version of the same image can be
sent to the receiver node with lower network bandwidth.

Although reducing the pixel resolution of thewhole image can reduce the transmission overhead,
some salient objects (i.e., RSO), however, cannot be clearly viewed. Therefore, we adjust the
resolutions of the non-RSO part in the image just moderately based on the network bandwidth and
the user interactions. Compared with the non-RSO part(R) of the image, the RSOs is best displayed
with the original pixel resolution. For the non-RSO area, as shown in Fig. 5a, it can be equally
partitioned into some RIBs by yellow dash lines.

Based on the above analysis, the objective of our method is to get a trade-off between the quality
of image and the transmission cost under different resolutions and available network bandwidth.

Suppose that the image transmission processing can be finished in Tθ set by user, so we have:

TT ¼ TO þ Size I ið Þ
BWidth E j

� � ≤T θ ð13Þ

where

– Size(IS) is the data size of IS, represented as: Size ISð Þ ¼ ∑ RSOj j
i¼1 RSOi:S⋅RSOi:dpi2

� �þ R:S⋅R:dpi2

 �

⋅Bit⋅CR,

where Bit means color bit, and Bit can be 8, 16, or 24, CR is an image compression ratio
and CR∈[0,1];

– T0 is the start-up transmission time;

k

UAD

Fig. 4 k and UAD

(a) Before (b) After

Fig. 5 Comparison of the pixel resolutions of a same image
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– BWidth(Ej) is a real network bandwidth, denoted as BWidth(Ej) =Ej ⋅ TR, where Ej is a
theoretical network bandwidth, TRmeans a attenuation rate of the bandwidth, and TR∈[0,1];

– Tθ is a time threshold and T θ∈ TMin
θ ; TMax

θ

� �
, where the definitions of TMin

θ and TMax
θ are the

same to Eq.(10).

Based on Eq.(12), Eq. (13) can be rewritten as follows:

TO þ

X RSOj j
i¼1

RSOi:S⋅RSOi:dpi2
� �þ R:S⋅R:dpi2

� 

⋅Bit⋅CR

E j⋅TR
≤TMin

θ þ TMax
θ −TMin

θ

δ
⋅

δ

UADþ 1

� 	
ð14Þ

Solving Eq. (14), it can be derived below:

R:dpi≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMin
θ þ TMax

θ −TMin
θ

δ
⋅

δ

UADþ 1

� 	
−TO

� 

⋅E j⋅TR

Bit⋅CR
−
XRSOj j

i¼1

RSOi:S⋅RSOi:dpi2
� �

R:S

vuuuuut
ð15Þ

To obtain a relatively high resolution of the non-RSO part, its pixel resolution can be
approximately represented in Eq. (16).

R:dpi≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMin
θ þ TMax

θ −TMin
θ

δ
⋅

δ
UADþ 1

� 	
−TO

� 

⋅E j⋅TR

Bit⋅CR
−
XRSOj j

i¼1

RSOi:S⋅RSOi:dpi2
� �

R:S

vuuuuut
ð16Þ

Next, we study how to choose an optimal ID of each IB replica among its Δ replicas. For
the non-RSO part of the image, as the lower and upper bound of the dpi (i.e., DL, DU), the ID
number(i) of the non-RSO(R) replica, and the granularity (Δ) are met in Eq.(17).

Δ EUð Þ ¼ DU−DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θT−T0ð Þ⋅EU ⋅TR

Bit⋅CR⋅
X Ωj j

i¼1

X αi

j¼1
SIBi j:S þ R:S

� 
 −DU

vuuut

2
66666666666

3
77777777777

Δ ELð Þ ¼ DU−DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θT−T0ð Þ⋅EL⋅TR

Bit⋅CR⋅
X Ωj j

i¼1

X αi

j¼1
SIBi j:S þ R:S

� 
 −DL

vuuut

2
66666666666

3
77777777777

ð17Þ

where Δ is a granularity value.
As i is an integer, solving Eq.(17), we have:

i ¼ R:dpi−DLð Þ⋅Δ
DU−DL

� 	
ð18Þ
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Combing Eq. (18) with Eq. (16), the replica ID for the non-RSO part can be derived as:

i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMin
θ þ TMax

θ −TMin
θ

δ
⋅

δ

UADþ 1

� 	
−TO

� 

⋅E j⋅TR

Bit⋅CR
−
XRSOj j

i¼1

RSOi:S⋅RSOi:dpi2
� �

R:S

vuuuuut
−DL

0
BBBBBBBB@

1
CCCCCCCCA
⋅

Δ

DU−DL

2
666666666666

3
777777777777
ð19Þ

Algorithm 2 summarizes a dynamic optimal RIB replica selection process in which two
cases are considered, i.e., with user tapping (lines 7–10) and without user tapping (lines 2–5).

4.3 Optimal Δ

Since the value of Δ can affect the storage and maintenance costs for the replicas to some
extent. To obtain an optimal Δ, in this subsection, we proceed to derive an optimal Δ.

Specifically, let us first denote the average resolution of the image IS as dpi ∈ [DL,DU],
where DL and DU denote the lower and upper bound dpi of IS, respectively. For description
simplicity, we use image fragment (IF) to represent the RSOs and R in the image. Since the IFs
are composed of some IBs, so the pixel resolution of the IB replicas can be obtained by that of
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the IFs. Therefore, the data sizes of the IFs and their corresponding pixel resolutions can be
approximately met in Eq.(20):

X RSOj j
i¼1

RSOi:S⋅RSOi:dpi2
� �þ R:S⋅R:dpi2 ¼

X RSOj j
i¼1

RSOi:S þ R:S
� 


⋅dpi2 ð20Þ

where R.S means the area of the non-RSO region.
Solving Eq.(20), the average dpi of the whole image can be derived in Eq. (21):

dpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX RSOj j
i¼1

RSOi:S⋅RSOi:dpi2
� �þ R:S⋅R:dpi2X RSOj j

i¼1
RSOi:S þ R:S

vuuuut ð21Þ

In addition, the bandwidth of the j-th edge is defined as: Ej ∈ [EL,EU], where EL and EU are the
lower and upper bound of the bandwidth of the j-th edge, respectively. Note that, the above
bandwidth is a theoretical value that is larger than the actual one. For the current network bandwidth

Ej, we have E j∈ EL þ i−1ð Þ⋅ EU−ELð Þ
Δ ;EL þ i⋅ EU−ELð Þ

Δ

h i
. Since i is an integer, so i ¼ E j−ELð Þ⋅Δ

EU−EL
þ 1

� 	
.

As illustrated in Fig. 6, based on an assumption that given a transmission time deadline Tθ,
when the mobile network can’t provide enough bandwidth, the image transmission processing
may not be efficiently and successfully completed in Tθ. On the contrary, when the network
bandwidth is sufficient enough, the average dpi of an image is proportional to the network
bandwidth (Ej), the corresponding dpi of IS under the current network bandwidth (Ej) can be
derived as follows:

dpi ¼ DL þ i⋅ DU−DLð Þ
Δ

ð22Þ

dpi ¼ DL þ
E j−EL
� �

⋅Δ
EU−EL

þ 1

� 	
⋅
DU−DL

Δ
ð23Þ

where i∈[1, Δ].
In Eq. (23), a whole image is regarded as an object to be processed. The pixel resolution of

the whole image can be adjusted according to the variance of the network bandwidth. This
method, however, may decrease the pixel resolution of the RSOs so much that the user cannot
clearly view it. Therefore, in the preprocessing step, as shown in Fig. 5a, the RSOs in the

0

Fig. 6 Relationship between Ej
and dpi

Multimed Tools Appl (2017) 76:23539–23565 23551



image are firstly identified by the red solid line rectangles automatically [11], i.e., RSO1.
Figure 5b shows that the resolutions of the RSO in Fig. 5a and b are fixed, and the resolution
of the rest part (R) in Fig. 5b, however, is decreased significantly.

Combing Eqs. (20) and (23), we have,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX RSOj j

i¼1
RSOi:S⋅RSOi:dpi2
� �þ R:S⋅R:dpi2X RSOj j

i¼1
RSOi:S þ R:S

vuuuut ¼ DL þ
E j−EL
� �

⋅Δ
EU−EL

þ 1

� 	
⋅
DU−DL

Δ
ð24Þ

Δ can be approximately derived by solving Eq.(24):

Δ ¼ DU−DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX RSOj j
i¼1

RSOi:S⋅RSOi:dpi2
� �þ R:S⋅R:dpi2X RSOj j

i¼1
RSOi:S þ R:S

vuuuut −DL−
E j−EL
� �

⋅ DU−DLð Þ
EU−EL

� 	

2
6666666666666

3
7777777777777

ð25Þ

To obtain an optimal Δ, Δ should be minimized such that the storage cost of IB replicas is
minimal. So, let RSOi.dpi = R.dpi = dpi, we have:

Δopt ¼ DU−DL

dpi−DL−
E j−EL
� �

⋅ DU−DLð Þ
EU−EL

� 	
2
666666

3
777777

ð26Þ

From a theoretical perspective, the network bandwidth (i.e., Ej) varies in all bandwidth (i.e.,
[EL, EU]) ranging from EL = 10 MB/S to EU = 100 MB/S. In most real-life applications,

however, Ej is relatively stable (i.e., varies in a small range E
0

L;E
0

U

h i
, where E

0

L≥EL and

E
0

U ≤EU ). Then,

Δopt∈
DU−DL

dpi−DL−
EL−ELð Þ⋅ DU−DLð Þ

EU−EL

� 	
2
66666

3
77777
;

DU−DL

dpi−DL−
EU−ELð Þ⋅ DU−DLð Þ

EU−EL

� 	
2
66666

3
77777

2
664

3
775 ð27Þ

Based on Eq.(27), the optimal Δ can be approximately represented as:

Δopt≈
DU−DL

dpi−DL−
EU−ELð Þ⋅ DU−DLð Þ

EU−EL

� 	
2
66666

3
77777

ð28Þ

5 Optimal IB replicas placement scheme

As data placement and storage is critically important for the data transmission, so in this
section, to better facilitate the IIT processing, we propose an optimal IB replicas placement
scheme based on the available network bandwidth.
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For example, in Fig. 7, assume that there are three RSOs (e.g., RSO1, RSO2,
and RSO3) represented by the blue rectangles in an image. The image is first
equally partitioned into 56 IBs in which the 9 IBs, 9 IBs, 6 IBs and 32 IBs belong
to the RSO1, RSO2, RSO3, and R, respectively. The SIBs are stored with the
original resolution and the RIBs are stored with different pixel resolutions based
on Δ.

Based on Eq.(25), different network bandwidths (i.e., Ej ∈ [EL, EU]) correspond
to different granularities. The initial granularity (Δini) can be represented by
Eq.(29):

Δini ¼ argmax Δ ELð Þ;Δ EUð Þf g ð29Þ

where Δ EUð Þ ¼ DU¼DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θT −TOð Þ⋅EU ⋅TR

Bit⋅CR⋅ ∑ Ωj j
i¼1∑

αi
j¼1SIBij:S þ R:S


 �s
−DU

2
6666666

3
7777777
, and Δ ELð Þ ¼ DU¼DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θT −TOð Þ⋅EU ⋅TR

Bit⋅CR⋅ ∑ Ωj j
i¼1∑

αi
j¼1SIBij:S þ R:S


 �s
−DL

2
6666666

3
7777777
.

Since the pixel resolutions of the SIBs are fixed, next we focus on the study of
the optimal granularity value for the RIB replicas. In Algorithm 1, the initial
granularity value of the RIB replicas (Δini) is designed for all bandwidth which
ranges from EL = 10 MB/S to EU = 100 MB/S. The increase of Δini, however,
leads to a larger storage cost of the IB replicas. In most real-life applications, the
network bandwidth (i.e., Ej) is relatively stable (i.e., varies in a small range) and
the RSOs in the images are identified previously, which motivate us to investigate
an optimal RIB replicas storage scheme based on the available network bandwidth.
Therefore, to further reduce the storage cost of the RIB replicas, we propose a
batch updating algorithm for the optimal RIB replicas storage.

First, suppose that the small range of the network bandwidth is denoted as E′
L;E

′
U

� �
,

combining with Eqs.(23) and (25), the optimal ID is derived below:
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R R R R
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Fig. 7 IB replicas placement at the slave node level
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iopt≈
RIB:dpi−DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θT−T 0ð Þ⋅E j⋅TR

Bit⋅CR⋅
X Ωj j

i¼1

X αi

j¼1
SIBi j:S þ R:S

� 
 −DL−
E j−EL
� �

⋅ DU−DLð Þ
EU−EL

vuuut

2
66666666666

3
77777777777

ð30Þ

where E
0
L≥EL and E

0
U ≤EU .

Based on Eq.(30), the optimal replica IDs for the RIBs range from iopt E
0
L

� �
; iopt E

0
U

� �� �
,

if iopt E
0
L

� �
≤ iopt E

0
U

� �
; otherwise, iopt E

0
U

� �
; iopt E

0
L

� �� �
. That means the replicas having

granularity IDs not in the above ranges can be removed. Algorithm 3 summarizes a
batch updating method for the optimal storage of the RIB replicas.

6 The IIT algorithm

With the support of the above enabling techniques, an image can be efficiently and interac-
tively transferred in theMWN. Before introducing the IIT algorithm, we first provide a system
overview of the transmission method.

6.1 System overview

Figure 8 shows the system overview of the IIT processing. Given an image IS, the RSOs
detection processing is first conducted by the approach of Girshick et al. [11]. Then, the image
is physically and equally partitioned into several IBs that include two types: SIB and RIB. For
the SIB replicas, they can be transmitted to the receiver with their original resolutions at top
priorities. For the RIB replicas, their pixel resolutions and transmission priority are lower than

Adaptive IB replica

selection scheme

Robust IB replica

transmission

RSOs

detection

User Tapping

Network Bandwidth

Transmission
image

Receiver
user

IB partition

Fig. 8 System overview of the IIT processing
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that of the SIBs, so that the key part of the image can be transmitted and displayed in priority.
Once the preprocessing step is completed, the next step is to perform the IIT processing.
Specifically, when an image IS is prepared to transmit, the information such as current network
bandwidth and the receiver user interaction behaviors need to be collected and analyzed
uniformly to derive the optimal pixel resolutions of the RIB replicas. Finally, based on their
transmission priorities, the candidate IBs are transmitted to the receiver node (NR) where the
IBs are reconstructed and displayed.

6.2 The algorithm

Algorithm 4 summarizes the detailed steps of our proposed IIT algorithm. First of all, a userUR

sends an image transmission request (i.e., the ID number of IS) to the sender node level NS (line
1), then the RSOs in the image are first identified (line 2). After that, the interactive
transmission processing starts (line 3). In line 4, SIB replicas are first sent to the sender node
with their original resolution. After that, for the RIB replicas transmission, we perform the
dynamic optimal RIB replica selection processing to obtain the optimal ID of RIB replica (line
5), then sent to the sender node (line 6).

7 Experimental evaluation

To demonstrate the efficiency and reliability of our proposed IIT method, we conduct
simulation experiments to demonstrate the transmission performance.

7.1 Experiment setup

The prototype image receiver client is implemented on Android platform [25] in the Java
language. The user interactions (i.e., tapping the screen) are randomly simulated by the users.
Each node has a 2.7GHz Xeon processor, 2.0GB memory and 1 TB hard disk. The nodes in
the local area network are connected via 1Gbps network links. The number of nodes in our
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system varies from 10 to 100. All experiments are performed in a 4G cellular network
in which the average and maximum data communication rates are 10 bps and
30Mbps, respectively. In the slave nodes, the IB replicas with different pixel resolu-
tions are stored in a file system and some information is recorded in a MySQL [20]
database.

& Datasets. To objectively and extensively evaluate the IIT method, we adopt two image
datasets that are obtained from two ways: 1) Real dataset: 100,000 images are downloaded
from Internet in which the image data size ranges from 0.2 to 1 MB; 2) Synthetic dataset:
To evaluate the effect of data size on the image transmission performances, we have
synthesized five groups of image data in which the data size of each image are 1 MB,
5 MB, 10 MB, 50 MB and 100 MB, respectively.

& Competitors. There are two competitors in our experiments. The first one is a baseline -
traditional transmission method (i.e., transmitting the whole image without partitioning);
the second one is the CBMR scheme [30].

7.2 A prototype transmission system

We have implemented a prototype transmission system for images as illustrated in
Fig. 9. Figure 9a shows an example of the backend interface of the offline image
processing. One RSO in this figure has been identified by a blue rectangle. Figure 9b
demonstrates the receiver client interface in which the IBs in the two IFs (e.g., one
RSO represented by the blue-line rectangle and the rest part R) have been recon-
structed and displayed. Moreover, the pixel resolution of the RSO is higher than that
of the rest part.

(a) A backend interface (b) A client end interface

Fig. 9 An interactive image transmission system
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7.3 Effect of image size

In the first experiment, we study the effect of the image size on the performance of the IIT
processing by using two kinds of image data as mentioned above. Method 1 uses traditional
transmission method (i.e., transmitting the whole image without partitioning), method 2 adopts
the CBMR scheme [30], while method 3 adopts the IIT. In Fig. 10a and b, when the bandwidth
(e.g., 100 MB/Sec) is relatively stable, the total transmission time using the IIT is better than
that of other two ones. Meanwhile, with the increase of the image data size, the performance
gap of the two approaches increases with the image size. This is because compared with the
IIT, the corresponding data size of the images to be transmitted with the traditional approach is
increasing so rapidly that the images cannot be sent to the destination nodes quickly. Our
hybrid pixel resolution approach can effectively reduce the transmitted image data, especially
for a large image.

7.4 Effect of network bandwidth

Next, we investigate the effect of the network bandwidth on the performance of the IIT
processing by using the two kinds of images. The three methods we compared with are the
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same to the ones in Section 7.3. Figure 11 shows when the image data sizes (e.g., 0.5 MB for
real data and 50 MB for the synthetic data) are fixed, the total response time using our
proposed IIT method is superior to that of other two methods. Meanwhile, with the condition
that the bandwidth is increasing, the response time decreases gradually and the performance
gap becomes larger especially for the large synthetic image data. This is because in the IIT
method, the original image data size has been significantly reduced based on the three factors,
i.e., network bandwidth, the image contents, and user interaction.

7.5 Effect of Δ

In this experiment, we proceed to test the effect ofΔ on the transmission cost, storage cost, and
the mean opinion score(MOS) defined in Eq.(31), respectively.

MOS ¼
X

i∈ 1; Uij j½ �Ui:OS

Uij j ð31Þ

where Ui.OS means the opinion score(OS) for the user Ui (ref. Table 2) and |Ui| is the total
number of the users.

According to Eq.(31), 100 volunteers are randomly selected and involved to decide whether
the image replica is clear to view by answering ‘excellent’, ‘good’ , ‘fair’ , ‘poor’ ,or ‘bad’.
The synthetic image data set is used to perform the experiment.

In Fig. 12a, with the increase of Δ, the transmission cost is gradually decreasingly. This is
because when Δ is small, it is hard to find the suitable IB replicas since the gap between the
data sizes of the current IB replicas and the optimal ones becomes larger, leading to a higher
transmission cost. Similarly, as illustrated in Fig. 12b, the storage cost increases rapidly as Δ
increases since the total number of the IB replicas is increasing whenΔ becomes larger, which
leads to a larger storage cost of the IB replicas. Finally, we study the effect of Δ on MOS. In
Fig. 12c, when Δ is larger than 20, theMOS is increased no more. This is because when Δ is
too small, the image quality of the image reconstruction becomes relatively low which results
in a poor user experience. So to obtain a tradeoff between transmission cost, storage cost and
image quality, an optimal number of Δ is found to be 20.
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Table 2 The description of the opinion scores

OS 1 2 3 4 5

Quality Bad Poor Fair Good Excellent
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7.6 Back end vs. client end

In this experiment, we compare the overheads of the backend and the client end of our
transmission method and the CBMR [30] in which 50 transmission requests are randomly
generated and conducted to obtain the average consuming times for the above two ends
respectively. We adopt the synthetic data as the experimental one. Figure 13 illustrates that
when the image data size is from 20 MB to 100 MB, the transmission time of the IIT is
gradually increasing and smaller than that of the CBMR. Additionally, the overheads of the
backend and client end for the CBMR method are slightly larger than the IIT. This is because for
the CBMR, its computational costs for the image compression in the back end are larger than the
IIT. The decoding costs for the CBMR in the client end are also larger than the IIT.

7.7 Effect of optimized storage scheme

This experiment evaluates the effect of storage scheme by adopting the real data as
the experimental one. Figure 14 shows that when the number of images increases,
the storage cost of the traditional approach is much larger than that of the opti-
mized one. This is because for the optimized storage scheme, the data size of the
image replicas is significantly reduced when the network bandwidth varies in a
small range.

7.8 Effect of the TPA

In the last experiment, we first test the efficiency of the two transmission schemes: 1) Our
proposed TPA method and 2) the CBMR approach [30] by using the synthetic dataset. In
Fig. 15a, when the image data size is from 20 MB to 100 MB, the transmission time of TPA is
gradually increasing and better than that of the CBMR. This is because the data compression
rate of the TPA method is higher than the CBMR one. The data size to be transferred by the
CBMR is larger than that of the TPA.

Fig. 13 Back end vs. client end
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To evaluate the effect of image size on the transmission robustness, we then used the
synthetic image dataset in which the images have been divided into five groups in terms of the
data size such as 5 MB, 10 MB, 20 MB, 50 MB and 100 MB. The transmission reliability (TR)
can be defined in Eq.(32).

TR ¼ Number of successful data transmissions
Total number of data transmissions

ð32Þ

As shown in Fig. 15b, with the increase of data size, the successful data transmission ratio is
100 % by using our image blocking technique. For the data transmission without adopting the
TPA method, when the transmission data size is less than 10 MB, the successful transmission
ratio is 100 %, however, if the data size is 20 MB, the average TR is decreased to 87 %. And if
the data size is larger than 50 MB, the average TR is zero since it is hard to transmit such a
large image successfully in a MWN. Based on the experimental result, to guarantee a high
successful data transmission ratio, it is possible to transfer a large image only through the
image blocking method in a limited network bandwidth.
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8 Conclusions and future work

In this paper, we have presented an interactive large image transmission scheme (IIT) in the
resource-constraintMWN, which allows the users to actively affect the transmission processing
through tapping the receiver’s screen. Two enabling techniques, i.e., multi-resolution-based IB
replica selection scheme and optimal IB replicas placement scheme are proposed to optimize
the image transmission. Our experiments demonstrate that our proposed IIT method is more
suitable for the large image transmission in minimizing the network communication cost as
well as maximizing the rate of successful image transmission and user satisfaction.

In the future, to further enhance the transmission efficiency of the multiple images in a
transmission-intensive environment, we plan to study a batch image transmission scheme
based on the IIT approach. For real-life applications, we are planning to apply our application
into of the traffic anomaly detection [14] and energy-efficient multicast routing [13, 15].
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