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Abstract Effective object appearance model is one of the key issues for the success of visual
tracking. Since the appearance of a target and the environment changes dynamically, the
majority of existed visual tracking algorithms tend to drift away from targets. To address this
issue, we propose a robust tracking algorithm by integrating the generative and discriminative
model. The object appearance model is made up of generative target model and a discrimina-
tive classifier. For the generative target model, we adopt the weighted structural local sparse
appearance model combining patch based gray value and Histogram of Oriented Gradients
feature as the patch dictionary. By sampling positives and negatives, alignment-pooling
features are obtained based on the patch dictionary through local sparse coding, then we use
support vector machine to train the discriminative classifier. The proposed method is embed-
ded into a Bayesian inference framework for visual tracking. A combined matching method is
adopted to improve the proposal distribution of the particle filter. Moreover, in order to adapt
the situation change, the patch dictionary and discriminative classifier are updated by incre-
mental learning every five frames. Experimental results on some publicly available bench-
marks of video sequences demonstrate the accuracy and effectiveness of our tracker.

Keywords Visual tracking .Histogramoforientedgradients . Structural local sparse appearance
model . Delaunay triangulation

1 Introduction

Visual tracking is an important and active research topic in computer vision community
because of its wide range of applications, e.g., intelligent video surveillance, human computer
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interaction and robotics [43, 44]. The purpose of visual tracking is to estimate the state of the
tracked target in a video. It is usually formulated as a search task where an appearance model is
first used to represent the target and then a search strategy is utilized to infer the state of the
target in the current frame. Although it has been extensively studied in the last two decades, it
still remains to be a challenging problem due to many appearance variations caused by
occlusion, pose, illumination, background clutter, and so on.

Broadly speaking, a tracking algorithm mainly includes two fundamental components: (1) a
motion model (or called dynamic model), which relates the states of an object over time and
predicts its likely state by supplying the tracker with a number of candidate states (e.g.,
Kalman filter [26], particle filter [25]); (2) an observation model (or called appearance model)
[30], which represents the tracked object and verifies predictions by evaluating the likelihood
of each candidate state in the current frame.

According to the different observation models used in existing object tracking algorithms,
they can be categorized into methods based on template [1, 14], online classifiers [4, 28] and so
on. In the template-based algorithms, the tracked object is described by one single template [14]
or multiple templates. Then the tracking problem can be considered as searching for the regions
which are the most similar to the tracked object. The trackers based on online classifiers aim to
distinguish the tracked objects from its surrounding backgrounds by treating the tracking
problem as a binary classification problem. Thus, both classic and recent machine learning
algorithms could promote the progress of tracking algorithms or systems, including boosting
[20, 21], support vector machine [23, 39], naive bayes [45], random forest [38], multiple
instance learning [4], structured learning [22] and so on. Jia et al. [27] exploited both partial
information and spatial information of the target based on a novel alignment-pooling method
and proposed an efficient tracking algorithm based on structural local sparse appearance model
and adaptive template update strategy. This algorithm made good use of the appearance and
spatial structure information of the target and reduced the influence of the occluded target
template. But when the target underwent heavy occlusions (such as for long term tracking
videos when the target is disappeared or totally occluded), appearance changes, or interference
of similar object and background, the robustness needed further improvement. So effective
modeling of the object’s appearance is one of the key issues for the success of a visual tracker.

In this paper, we propose a robust tracking algorithm by integrating the generative and
discriminative model. The object appearance model is made up of generative target model and
a discriminative classifier. For the generative target model, we adopt the weighted structural
local sparse appearance model [27] combining patch based gray value and Histogram of
Oriented Gradients feature as the patch dictionary. By sampling positives and negatives,
alignment-pooling features are obtained based on the patch dictionary through local sparse
coding, then we use a support vector machine to train the discriminative classifier. A robust
inter-frame matching based on optical flow [24] and Delaunay triangulation [17, 18] accom-
panied with template matching is adopted to improve the proposal distribution of particle filter
to enhance the performance of tracking. The proposed method is embedded into a Bayesian
inference framework for visual tracking. Through alignment-pooling method across the local
patches within one candidate region to obtain the similarity measure, at the same time using the
trained discriminative classifier to get the classification score. The similarity measure and
classification score are multiplied to obtain the particle confidences. Moreover, in order to
adapt the situation change, the patch dictionary and discriminative classifier are updated by
incremental learning every five frames. Experimental results on some publicly available
benchmarks of video sequences demonstrate the accuracy and effectiveness of our tracker.
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The main contributions of this paper are as follows:

1) Integrating inter-frame matching into the framework of visual tracking, the two parts can
complement to another, thus improving the performance of tracking;

2) A Robust inter-frame matching based on Optical Flow and Delaunay Triangulation is
adopted to enhance the robustness and accuracy of matching;

3) Considering the spatial configuration of each local patch of the target, weighting the
structural local sparse appearance model;

4) Enhancing the object appearance model by integrating generative model and a discrim-
inative classifier.

The remainder of this paper is organized as follows: in Section 2 we summarize the
previous works most related to our work. The proposed robust tracking method ASLA_DW
(adaptive structural local sparse appearance model with discriminative weighted) is described
in Section 3, respectively. Experiments and results are provided and analyzed in Section 4.
Finally, our work is summarized and conclusions are drawn in Section 5.

2 Related work

Many promising approaches have been proposed to tackle object tracking. These methods can
be roughly classified into two categories: generative methods and discriminative methods.

Generative methods represent objects with appearance models, and track targets by
searching for the image region most similar to the models. Reference templates can be learned
with a set of training data. Black et al. [8] learned a subspace model offline to represent targets
and used parametric optical flow estimation simultaneously. Aside from static appearance
models, online appearance models which are updated as the appearance of the target changes
have also been presented. Wang et al. [40] constructed a dynamic multi-cue integration model
for particle filter framework. Ross et al. [37] proposed a tracking framework based on the
incremental image-as-vector subspace learning method with a sample mean update. Li et al.
[29] modeled target appearance changes by incremental image-as-matrix subspace learning
method through adaptively updating the sample mean and eigenbasis. Recently, sparse
representation [12] has been successfully applied to visual tracking [32, 33]. In this case, the
tracker represents each target candidate as a sparse linear combination of dictionary templates
that can be dynamically updated to maintain an up-to-date target appearance model. This
representation has been shown to be robust against partial occlusions, which leads to improved
tracking performance. However, sparse coding based trackers perform computationally ex-
pensive l1 minimization at each frame.

Unlike generative methods, discriminative methods regard objects tracking as a binary
classification problem to distinguish the target from background. These methods exploit the
information of both the target and background. Avidan [3] combined optical flow representa-
tion with a support vector machine (SVM) classifier for objects tracking. Ozuysal et al. [36]
proposed a random forest classifier which learned binary features of the target. These methods
use a predefined and fixed feature sets for classifier learning. In addition, there are many other
approaches that can select good object features online. Collins et al. [13] presented a two-class
variance ratio to select best discriminate features online. Zhong et al. [46] proposed a weakly
supervised online training data selection method for visual tracking. However, these methods
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may introduce an error from self-updating which can cause tracking drifting. Aiming at this
problem, Babenko et al. [5] proposed an online multiple instance learning (MIL) method for
object tracking. In [47], Zhou et al. improved the MIL by selecting the support instances
adaptively and update the support instances by taking image data obtained previously and
recently into account. However, in order to achieve accurate and robust tracking, most of the
discriminative methods do not update their classifiers in which models are far away from the
initial setting, as a result, drift occurs when the target appearance changes heavily.

In recent years, deep convolutional neural networks have improved state-of-the-art perfor-
mance in many computer vision applications. Existing methods have also explored the usage
of CNNs in online tracking. In [41], a three-layer CNN is trained on-line. Without pre-training
and with limited training samples obtained online, CNN fails to capture object semantics and is
not robust to deformation. In order to improve the proposal distribution of particle filter, we
estimate the translation of the target by optical flow tracker and Delaunay triangulation through
matching detected corners. This can be similar as the problem of image search. Nie L, WangM
et al. [34] proposed a content-based approach to automatically predict the search performance
of image search. By fully exploring the information from simple visual concepts, Nie L, Yan S
et al. [35] presented a scheme to enhance web image reranking for complex queries.

3 Proposed method

The flowchart of our proposed method is shown in Fig.1. It consists of three components: 1)
sampling candidate; 2) similarity calculation; 3) MAP estimation. Given the current frame in
timet, based on the patch dictionary and support vector machine classifier constructed in the
first frame, we obtain the sample candidates combining particle sampling and predicted
samples with optical flow tracker and surf matching and solve the local sparse coding by
sparse representation to get the aligned pooling features. Then we use the discriminative
classifier to calculate the classification score, at the same time spatially weight the aligned
pooling features to get the particle similarity. Thirdly, we obtain the final confidence by
multiplying classification score and particle similarity. The particle with the max confidence
is chosen as the tracking result (shown as a red color rectangle).
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Fig. 1 Flowchart of the proposed method
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The novelty of our proposed method is listed as below:

1) A robust appearancemodel made up of generative target model and a discriminative classifier.
2) Integrating the inter-frame matching into the framework of visual tracking.
3) 3) Improving the proposal distribution of particle filter based on image matching.

3.1 Object appearance model

Our observation appearance model is shown in Fig.2. It based on generative and discriminative
model. The generative model is made up of a patch dictionary and discriminative model with a
svm (support vector machine) classifier. Given the initial target region in the first frame, we
divide the target region into N patches. For each patch, the gray vector and HOG features are
extracted and combined to form the patch dictionary. Through sampling positives and nega-
tives, extracting features vectors (combined gray vector and Hog features), solving local sparse
coding with the patch dictionary to get the aligned positive and negative pooling features, we
use support vector machine to train the input training data to obtain the discriminative classifier.
In the following subsections, we will describe each part of our appearance model in detail.

3.1.1 Histogram of oriented gradients (HOG)

The HOG representation is inspired by the SIFT descriptor proposed by Lowe [31]. It can be
constructed by dividing the tracking regions into non-overlapping grids, and then computing
the orientation histograms of the image gradient of each grid (Fig. 3).
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Fig. 2 Our Observation Appearance Model

Multimed Tools Appl (2017) 76:15839–15866 15843



Letθ(x, y)andm(x, y)be the orientation and magnitude of the intensity gradient at image
pixel(x, y). The image gradients can be computed via a finite difference mask [−1 0 1] and its
transpose. The gradient orientation at each pixel is discretized into one of p values by a contrast
insensitive definition as follows:

B x; yð Þ ¼ round
p:θ x; yð Þ

π

� �
modp ð1Þ

Letb ∈ {0, ... , p − 1}ranges over orientation bins. The feature vector at(x, y)is:

F x; yð Þb ¼
m x; yð Þ if b ¼ B x; yð Þ

0 otherwise

�
ð2Þ

LetFbe a pixel-level feature map for anw × himage and k > 0be a parameter indicates the
side length of a square image region. A dense grid of rectangular Bcells^ [16] is defined and
pixel-level features are aggregated to obtain a cell-based feature mapC, with feature
vectorsC(i, j)for 0 ≤ i ≤ [(w − 1)/k]and0 ≤ j ≤ [(h − 1)/k]. This aggregation can reduce the size
of a feature map. After a bilinear interpolation to aggregate features, each feature can be
normalized. The resulting feature vector is the HOG descriptor of the image region. Normally
the parameters of HOG descriptor are set to be p = 9andk = 8, the size of the Bcell^ is2 × 2. This
leads to a 36-dimensional feature vector.

3.1.2 Structural local sparse representation

The structural local sparse appearance model has been proposed in [27]. In this section, we
review it briefly and draw out the spatial weight of candidate target used in our method. In
[27], Jia et al. sampled a set of overlapping local image patches inside the target region with a
spatial layout and used these local patches as the dictionary to encode the local image patches
inside the candidate regions, ie. M = [m1, m2, ... , mN, mN + 1, ... , mN × n] ∈ Rd × (N × n), where dis
the dimension of the local image patch vector, n is the number of target templatesT = [T1,
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Fig. 3 Region of Interest and corresponding hog feature
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T2, ... , Tn], Nis the number of local patches sampled within one target region. Each column
inMis obtained by l2normalization on the vectorized local image patches. For a target
candidate, the local image patches within it can be denoted by Y = [y1, y2, ... , yN] ∈ Rd ×N.
For the purpose of saving computing time, we adopt 8-bit gray scale image for analysis.

During tracking, the local patches within the target candidate region can be sparsely
represented as a linear combination of the local patches dictionary by solving

min
bi

������yi−Mbi
������22 þ λ

������bi
������1; s:t:bi≥0 ð3Þ

where || • ||2 and || • ||1denote thel2and l1normalization respectively, λis the regularization
parameter,bi ∈ R(N × n) × 1 is the sparse code vector of the i-th local image patch, and bi ≥ 0
means all the elements of biare nonnegative. Note that B = [b1, b2, ... , bN]represents the sparse
coefficients of the local patches within one target candidate region. According to the target
templates, the sparse coefficients of each local patch are divided into n(the number of target

templates) segments, ie.bTi ¼ b 1ð ÞT
i ; b 2ð ÞT

i ; :::; b nð ÞT
i

h i
, where

b kð ÞT
i ¼ b k−1ð Þ�Nþ1; b k−1ð Þ�Nþ2; :::; b k−1ð Þ�NþN

� �
∈R1�N ð4Þ

denotes the k-th segment ofbi. These coefficients are weighted to obtainvifor the i-th patch,

vi ¼ 1

C

Xn

k¼1

b kð Þ
i ¼ 1

C

vi1
vi2
:::
viN

2
664

3
775; i ¼ 1; 2; :::;N ð5Þ

wherevi ∈ RN × 1 is the sparse coefficients of the i-th local patch and Cis a normalization
term,C = vi1 + vi2 + . . . + viN. Since one candidate target contains Nlocal image patches, all
the vectors vican form a square matrixV,V = [v1, v2, ... , vN]. According to the spatial layout of
the target, the local patch can be best described by the block at the same positions of the
template (i.e., using the sparse coefficients with the aligned positions). Therefore, we take the
diagonal elements of the square matrix V as the final sparse coefficients of the local patches
within the candidate region, ie.

f ∈ diag Vð Þ ¼
f 1
f 2
:::
f N

2
664

3
775 ð6Þ

where f is the sparse coefficients vector of all the local patches, i.e.,f1 means the sparse code
of the first patch and f2 means the sparse code of the second patch.

3.1.3 Sampling positives and negatives

To initialize the classifier in the first frame, we draw positive and negative samples around the
labeled target location. Suppose the location of the target object in the first frame is denoted by
l1(x1, y1), we use a Gaussian perturbation to draw positive samples in a circular area which
satisfies ||lpos − l1|| < γ, and draw negative samples in an annular area specified byγ < ||lneg − l1||
< η, whereγand are η thresholds defining the circle and annular areas, respectively. The sets,
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lpos and lneg, denote the locations of positive and negative candidates, respectively. Without
loss of generality, we set the scales of the positive and negative candidates the same as our
labeled target object. We then crop the images specified by the set of samples lpos and lneg and
compute the sparse code of each image patch to form the training data.

3.1.4 One-class support vector machine

Support vector machines (SVMs) are a family of classification algorithms, developed
under the statistical learning theory, originally formulated for binary classification [11,
15]. SVMs offer a solution to optimizing the generalization performance of a decision
function, inferred from a given set of training data. Given training data and its corresponding
labels:

xn; ynð Þ; n ¼ 1; 2; :::;N ; xn∈RD; yn∈ −1;þ1f g ð7Þ

SVMs learning consists of the following constrained optimization:

min
w;ξn

¼ 1

2
wTwþ C

XN
n¼1

ξn

s:t: wTxnyn≥1−ξn∀n
ξn≥0∀n

ð8Þ

ξn(n = 1, 2, ... ,N)are slack variables which penalize data points which violate the margin
requirements. Note that we can include the bias by augment all data vectors xn with a scalar
value of 1. The corresponding unconstrained optimization problem is the following:

min
w;ξn

¼ 1

2
wTwþ C

XN
n¼1

max
�
1−wTxnyn; 0

	
ð9Þ

The objective of Eq.(8) is known as the primal form problem of L1-SVM, with the standard
hinge loss. This optimization problem can be formed by a Lagrange multiplier, and solved by
applying quadratic programming to its dual form.

3.2 Predicted sample candidates

In order to improve the proposal distribution of the particle filter and at the same time when the
tracked target is totally lost or disappeared and reappeared after a while, we predict the target
location respectively by optical flow tracker, template matching and SURF Keypoints
Matching to obtain the extra candidates samples. Based on this operation, we can recapture
the target and track it robustly. This operation is shown in Fig. 4. In the following subsections,
we describe each part in detail.

3.2.1 Translation obtained by optical flow tracker and Delaunay triangulation

1) Optical Flow Tracker

Optical flow or optic flow [10] is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer (an eye or a camera)
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and the scene. It is the displacement field for each of the pixels in an image sequence. It is the
distribution of the apparent velocities of objects in an image. By estimating optical flow
between video frames, one can measure the velocities of objects in the video. In general,
moving objects that are closer to the camera will display more apparent motion than distant
objects that are moving at the same speed. Optical flow estimation is used in computer vision
to characterize and quantify the motion of objects in a video stream, often for motion-based
object detection and tracking systems.

The experimental brightness of any object point is constant over time. Close to points in the
image plane move in a similar manner (the velocity smoothness constraint). Suppose we have
a continuous image, f(x, y, t) refers to the gray-level of (x, y) at time t. Representing a dynamic
image as a function of position and time permits it to be expressed.

• Assume each pixel moves but does not change intensity.
• Pixel at location(x, y)in frame t − 1 is pixel at (x +Δx, y +Δy)in frame t.
• Optic flow associates displacement vector with each pixel.
The optical flow describes the direction and time pixels in a time sequence of two

consequent dimensional velocity vectors, carrying direction and the velocity of
motion is assigned to each pixel in a given place of the picture. For making
computation simpler and quicker we transfer the real world three dimensional (3-
D + time) objects to a (2-D + time) case. Then we can describe the image by of the
2-D dynamic brightness function of I(x, y, t). Provided that in the neighborhood of
pixel, change of brightness intensity does not generate motion field, we can use the
following expression

I x; y; tð Þ ¼ I xþ δx; yþ δy; t þ δtð Þ ð10Þ
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Using Taylor series for the right hand part of Eq. (10), we obtain

I xþ δx; yþ δy; t þ δtð Þ ¼ I x; y; tð Þ þ ∂I
∂x

δxþ ∂I
∂y

δyþ ∂I
∂t

δt þ H :O:T ð11Þ

From Eq. (10, 11), with neglecting higher order terms (H.O.T.) and after modifications we
get

I xv
x
xþxIyv

y
yþyI tv

t
t¼t0 ð12Þ

or in formal vector representation

∇I � v!¼ −I t ð13Þ
where ∇I is so-called the spatial gradient of brightness intensity and v! is the optical flow

(velocity vector) of the image pixel and It is the time derivative of the brightness intensity [6].
Thus optical flow can give significant information about the spatial arrangement of the objects
viewed and the rate of change of this arrangement.

2) Fine Matching Based On Delaunay Triangulation [17, 18]

There may be some wrong matches in the initial surf matches. In order to filter out the
wrong matches, we adopt the Delaunay triangulation to refine the matches. The Delaunay
triangulation has many remarkable properties that make it the most widely-used triangulation.

Let P = {p1, ⋅ ⋅ ⋅, pn} be a set of points in Rd. The Voronoi cell associated to a point pi,
denoted by V(pi), is the region of space that is closer from pi than from other points inP [9]:

V pið Þ ¼ p∈Rd : ∀ j≠i; p−pik k≤ p−pj



 

n o
ð14Þ

V(pi)is the intersection of n − 1half-spaces bounded by the bisector planes of segments
[pipj] , j ≠ i.V(pi)is therefore a convex polytype, possibly unbounded. The Voronoi diagram of
P, denoted by Vor(P), is the partition of space induced by the Voronoi cells V(pi).

Triangulation is a process that takes a region of space and divides it into sub-regions. The
space may be of any dimension, however, a 2D space is considered here since we are dealing
with 2D points. In this case, the sub-regions are simply triangles. Euler formula of Triangu-
lation is:

f −eþ v ¼ 1 ð15Þ
where f is the number of facet; e is the number of edges, v is the number of vertex. The

complexity of n points P constructed triangulation has Ntri triangles and Nedge edges. In this
case, e =Nedge.

Ntri ¼ 2n−2−k ð16Þ

N edge ¼ 3n−3−k ð17Þ

where k is the number of points P in on the convex hull of P.
The Delaunay triangulation Del(P) of P is defined as the geometric dual of the Voronoi

diagram: there is an edge between two points pi and pj in the Delaunay triangulation if and
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only if their Voronoi cells V(pi)andV(pj) have a non-empty intersection. It yields a triangulation
of P, that is to say a partition of the convex hull of P into d-dimensional vertexes (i . e. into
triangles in 2D, into tetrahedra in 3D, and so on). The formula of Del(P) is Eq. (18). Figure 5a
displays an example of a Voronoi diagram and its associated Delaunay triangulation in the
plane.

Del pð Þ ¼
n
T pi; pj; pk
� 	���pi∈P; p j∈P; pk∈P

C pi; pj; pk
� 	

∩Pn pi; pj; pk
� 	

¼ ϕ
o ð18Þ

where C(pi, pj, pk) is the circle circumscribed by three vertices pi , pj , pk, which form a
Delaunay Triangle T(pi, pj, pk).

The algorithmic complexity of the Delaunay triangulation of n points is O(n log
n)in 2D [2]. Figure 5b and c Show the created Delaunay Triangulations using 20 discrete
points.

3.2.2 Gravity Center of Corners

After inter frame matching by optical flow with corners, Delaunay Triangulation is
adopted to refine the matching corners (to remove outliers). Based on the refined
corners in the current frame, the gravity of these corners is used as a predicted sample
candidate.

3.2.3 Predicted location by template matching

A normalized cross correlation based template matching technique has been used as the
measurement scheme. The object’s template and the rectangular window in the image centered

(b) (c) 

 (a) 

Fig. 5 a The Voronoi diagram
(gray edges) of a set of 2D
points(red dots) and its associated
Delaunay triangulation (black
edges). bThe Delaunay
Triangulation Discrete Points(20).
c Triangulated Meshes
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at the predicted position form the two inputs to the correlation system. The equations for
normalized cross correlation are as follows.

Rccoeff x; yð Þ ¼
X

x0

X
y0

h
T

0
x
0
; y

0
� 	

*I
0
xþ x

0
; yþ y

0� �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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where, T: Template of the object to be matched; T': Zero mean Template; I: Search Window
in the image; I': Zero mean Search window R : Resultant Matrix.

The position of the maximum of the correlation output Rccoeff is taken as the position of the
object. The search window is a rectangular window centered at the predicted position of the
object. Its dimensions are taken as twice the dimensions of the object to make a trade-off
between the computational cost and the probability of correct measurement. Figure 6 shows
the template image and matching result of template matching.result.

3.2.4 Predicted location by SURF matching

SURF, also known as approximate SIFT, employs integral images and efficient scale space
construction to generate keypoints and descriptors very efficiently. SURF uses two stages
namely keypoint detection and keypoint description [7]. In the first stage, rather than using
DoGs as in SIFT, integral images allow the fast computation of approximate Laplacian of
Gaussian images using a box filter. The computational cost of applying the box filter is
independent of the size of the filter because of the integral image representation. Determinants
of the Hessian matrix are then used to detect the keypoints. So SURF builds its scale space by
keeping the image size the same and varies the filter size only.

The first stage results in invariance to scale and location. In the final stage, each detected
keypoint is first assigned a reproducible orientation. For orientation, Haar wavelet responses

(a) Template Image (b) Template Matching Result 

Fig. 6 Template Matching
Example. a Template Image; b
Template Matching Result
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and directions are calculated for a set of pixels within a radius of where refers to the detected
keypoint scale. The SURF descriptor is then computed by constructing a square window
centered around the keypoint and oriented along the orientation obtained before. This window
is divided into regular sub-regions and Haar wavelets of size are calculated within each sub-
region. Each sub-region contributes 4 values thus resulting in 64D descriptor vectors which are
then normalized to unit length. The resulting SURF descriptor is invariant to rotation, scale,
contrast and partially invariant to other transformations. Shorter SURF descriptors can also be
computed however best results are reported with 64D SURF descriptors [7]. The result of
SURF matching is illustrated in Fig.7, while Fig.8 denotes all the candidate samples obtained
by the method above, different predictions with different colors.

3.3 Motion model

Particle filter [25] is a Bayesian sequential importance sampling technique that aims to
estimate the posterior distribution of state variables for a given dynamic system. It uses a set
of weighted particles to approximate the probability distribution of the state regardless of the
underlying distribution, which is very effective for dealing with nonlinear and non-Gaussian
systems. As a typical dynamic state inference problem, online visual tracking can be modeled
by particle filter.

There exist two fundamental steps in the particle filter method: 1) prediction and 2) update.
Let xt denote the state variable describing the affine motion parameters of an object and yt
denote its corresponding observation vector (the subscript t indicates the frame index). The two
steps recursively estimate the posterior probability based on the following two rules:

p xtjy1:t−1ð Þ ¼
Z

p xtjxt−1ð Þp xt−1jy1:t−1ð Þdxt−1 ð22Þ

p xtjy1:tð Þ ¼ p ytjxtð Þp xtjy1:t−1ð Þ
p ytjy1:t−1ð Þ ð23Þ

wherex1 : t = {x1, x2, ... , xt}stand for all available state vectors up to time tand y1 : t = {y1,
y2, ... , yt}denote their corresponding observations. p(xt| xt − 1)is called the motion model that
describes the state transition between consecutive frames, and p(yt| xt)denotes the observation
model that evaluates the likelihood of an observed image patch belonging to the object class.

Fig. 7 Matching result By SURF
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In the particle filter framework, the posterior p(xt| y1 : t)is approximated byNweighted
particles xit;w

i
t

� �
i¼1;2;:::;N , which are drawn from an importance distributionq(xt| x1 : t − 1, y1 : t),

and the weights of the particles are updated as

wi
t ¼ wi

t−1
p ytjxit
� �

p xitjxit−1
� �

q xtjx1:t−1; y1:tð Þ ð24Þ

Predicted Samples

Translation Obtained By
Optical Flow Tracker

Gravity Center Of Corners On
the Frame t

Predicted Location By
Template Matching

Predicted Location By SURF
Matching

Fig. 8 All the Candidate Samples Obtained by the method above. For the Optical Tracker, the predicted location
in the current frame is denoted as red rectangle; Gravity Centers of Corners as green rectangle; Template
Matching as blue rectangle; Surf Matching as Magenta rectangle

Fig. 9 Examples from the dataset: girl, faceocc1, jogging
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In this paper, we adoptq(xt| x1 : t − 1, y1 : t) = p(xt| xt − 1), which is assumed as a Gaussian
distribution similar to [37]. In detail, six parameters of the affine transform are used (i.e.,
xt = {xt, yt, θt, st,αt, ϕt}, wherext , yt , θt , st ,αt , ϕtdenotex , ytranslations, rotation angle, scale,
aspect ratio, and skew, respectively). The state transition is formulated by random walk, i.e.,
p(xt| xt − 1) =ℕ(xt;xt − 1, ψ), whereψ is a diagonal covariance matrix. Finally, the statextis

estimated asxt ¼ ∑N
i¼1w

i
tx

i
t. We note that the key of designing a practical tracking algorithm

is to develop an effective and efficient observation likelihoodp(yt| xt).

4 Experiment and results

4.1 Datasets and baselines

The VOT2013 dataset [42] includes various real-life visual phenomena, while containing a small
number of sequences to keep the time for performing the experiments reasonably low. The
VOT2013 challenge consists of 16 color image sequences with 172 to 770 frames: bicycle, bolt,
car, cup, david, diving, face, gymnastics, hand, iceskater, juice, jump, singer, sunshade, torus, and
woman. The sequences have been selected tomake the tracking a challenging task: objects change
aspect or are articulated, the scale and orientation vary, illumination changes and occlusions occur.

Some example frames are shown in Fig.9. The attributes of testing sequences used in our
paper are shown in Table 1.

In addition, given the tracking result RTand the ground truthRG, we use the detection
criterion in the PASCAL VOC [19] challenge, i.e., Eq. (25) to evaluate the success rate.

score ¼ area RT∩RGð Þ
area RT∪RGð Þ ð25Þ

4.2 Implementation details

The proposed method has been implemented in Matlab and tested on a 1.73 GHz PC with
2 GB memory. The number of particle samples processed in the experiments is 100. During

Table 1 Tracking sequences used in our experiments

Sequences Main Challenging Factors

Girl Scale Variation, Occlusion, In-Plane Rotation, Out-of-Plane Rotation

FaceOcc1 Occlusion

Seq_sb Scale Variation, Occlusion, In-Plane Rotation, Out-of-Plane Rotation

Deer Motion Blur, Fast Motion, In-Plane Rotation, Background Clutters, Low Resolution

Jogging Occlusion, non-rigid object deformation, Out-of-Plane Rotation

Skating2 Scale Variation, Occlusion, non-rigid object deformation, Fast Motion, Out-of-Plane Rotation

Table 2 Time Complexity of Compared Methods (fps)

Method OAB L1 IVT MIL ASLA FCNT ASLA_DW

fps 6.042 13.904 16.818 0.176 5.945 3 1.108
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tracking, the pixel’s values of each frame are normalized into [0, 1]. Each particle is associated
with an image patch. After image scaling, the image patch is normalized toN1 ×N2 pixels. In
the experiments, the parameters (N1, N2) are chosen as (32, 32). Due to the multiple sub
process used in our model, the time complexity of our proposed method is about 1 fps. The
time complexity of different methods is shown in Table 2. In our experiments, we have
compared the tracking results of our proposed method with those of state-of-the-art methods,
such as OAB [20], L1 [29], MIL [4], IVT [37], ASLA [27], FCNT [41]. We implemented
these trackers using publicly available source codes or binaries provided by the authors. They
were initialized using their default parameters.

4.3 Qualitative comparisons

The first test sequence is BGirl^. We show some representative frames of the tracking results of
five different trackers in Fig.10. The six representative frame indices are 32, 104, 292, 396,
429, and 494. The man’s face is passing in front of the woman’s face. From the tracking
results, we can see that MIL tracker loses the target from frame 292, and finally causes a big

Fig. 10 The tracking results of Gril sequence

Table 3 Center Location Errors of Testing Sequences

Sequence OAB L1 IVT MIL ASLA FCNT ASLA_DW

Girl 57.5996 11.3976 27.3029 20.9609 18.2574 7.0670 5.1502

FaceOcc1 32.1380 15.0316 17.5749 43.2920 34.3677 21.8209 12.3887

Seq_sb 75.6947 51.1431 16.7259 18.5635 68.6419 15.5634 12.5541

Deer 52.1110 221.1957 226.5850 28.8649 120.6866 7.8316 4.7234

Jogging 15.1373 95.5248 83.2741 113.6823 102.8373 5.8445 4.8853

Skating2 352.5803 169.2047 152.2267 79.6480 49.7983 32.0768 25.0924
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drift, the same as IVT tracker. The OAB tracker fails to track the target in frames 104, 429 due
to large pose changes and occlusion of another man. For the l1 tracker, it can not track the
target in frames 292, 396, 429, and 494. Compared with other trackers, although ASLA tracker
can track the target, however, the location accuracy is lower than our proposed tracker
(ASLA_DW) which can obtain good tracking results and improve location accuracy. The
location errors and the overlap metric of six comparison methods on video sequence BGirl^ are
respectively shown in Table 3 and Table 4. Figure 16 is the location error curve of tracking
results on Girl sequence for the compared methods, while Fig.17 is the overlap metric results.

The second test sequence is BFaceOcc1^. We show some representative frames of the
tracking results of five different trackers in Fig.11. The six representative frame indices are 60,
196, 356, 418, 558, and 774. The woman’s face is partially occluded by a book from left part
of face to the right part of the face. From the tracking results, we can see that the tracking
accuracy of MIL tracker is lower than other trackers. For the OAB、L1、 IVT and our
proposed tracker, the target can be well tracked, although the location accuracy of l1 tracker is
slightly lower. Compared with other trackers, ASLA tracker can not obtain good tracking

Table 4 Overlap Metric of Testing Sequences

Sequence OAB L1 IVT MIL ASLA FCNT ASLA_DW

Girl 0.2032 0.2839 0.1606 0.3009 0.3954 0.5416 0.5557

FaceOcc1 0.7132 0.7512 0.7462 0.4681 0.5869 0.6490 0.7946

Seq_sb 0.0611 0.0394 0.2462 0.3918 0.0480 0.2365 0.6000

Deer 0.5426 0.0442 0.0314 0.5100 0.0449 0.7052 0.7631

Jogging 0.7067 0.1671 0.1490 0.1668 0.1661 0.7175 0.7538

Skating2 0.0449 0.0297 0.0454 0.2326 0.2866 0.2836 0.4993

Fig. 11 The tracking results of FaceOcc1 sequence
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results in frames 356,418,558,774, whereas our proposed tracker can track the woman’ face
robustly and improve the tracking location accuracy better. The location errors and the overlap
metric of six comparison methods on video sequence BFaceOcc1^ are respectively shown in
Table 3 and Table 4. Figure 16 is the location error curve of tracking results on FaceOcc1
sequence for the compared methods, while Fig.17 is the overlap metric results.

The third test sequence is Bseq_sb^. We show some representative frames of the tracking
results of five different trackers in Fig.12. The six representative frame indices are 15, 172, 295,
372, 412, and 480. Theman’s face is totally occluded by a book with out of plane rotation. From
the tracking results, we can see that MIL tracker loses the target from frame 295, and finally
causes a big drift, the same as IVT,OAB,L1, ASLA tracker. Compared with other trackers, our

Fig. 12 The tracking results of seq_sb sequence

Fig. 13 The tracking results of Deer sequence
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proposed tracker can still obtain good tracking results under such big challenging video. The
location errors and the overlap metric of six comparison methods on video sequence Bseq_sb^
are respectively shown in Table 3 and Table 4. Figure 16 is the location error curve of tracking
results on seq_sb sequence for the comparedmethods, while Fig.17 is the overlap metric results.

The fourth test sequence is BDeer .̂We show some representative frames of the tracking results
of five different trackers in Fig.13. The six representative frame indices are 10, 20, 36, 45, 60, and
71. The challenging factors are motion blur, fast motion, in-plane rotation, background clutters,
low-resolution. From the tracking results, we can see that MIL tracker can track the target in
frames 20, 36, 45, 60, and 71, while the location accuracy is lower than OAB Tracker. For the l1,
IVT, ASLA tracker, they totally lose the target in the whole video sequence. Compared with other

Fig. 14 The tracking results of Jogging sequence

Fig. 15 The tracking results of Skating2 sequence
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(a) girl

(b) Faceocc1

(c) seq_sb
Fig. 16 The tracking error for each test sequence. The error is measured the same as in Table 3
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(d) Deer

(e) Jogging

(f) Skating2

Fig. 16 (continued)

Multimed Tools Appl (2017) 76:15839–15866 15859



(a) girl

(b) Faceocc1

(c) seq_sb
Fig. 17 The Overlap metric for each test sequence. The overlap metric is measured the same as in Table 4
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(d) Deer

(e) Jogging

(f) Skating2

Fig. 17 (continued)
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trackers, OAB tracker and our proposed tracker can obtain good tracking results. The location
errors and the overlap metric of six comparison methods on video sequence BDeer^ are
respectively shown in Table 3 and Table 4. Figure 16 is the location error curve of tracking
results on Deer sequence for the compared methods, while Fig.17 is the overlap metric results.

The fifth test sequence is BJogging^. We show some representative frames of the tracking
results of five different trackers in Fig.14. The six representative frame indices are 40, 80, 132,
196, 264, and 302. The jogging woman is occluded by a tree. From the tracking results, we can
see that MIL, L1, IVT, ASLA tracker lose the target in frames 80, 132, 196, 264, and 302 due
to the jogging woman totally occluded by the tree. For the OAB tracker, it loses the target in
frame 80, whereas it can track the target in the remaining frames. Compared with OAB
Tracker, our proposed tracker can obtain good tracking results in spite of the target totally
occluded by the tree. The location errors and the overlap metric of six comparison methods on
video sequence BJogging^ are respectively shown in Table 3 and Table 4. Figure 16 is the
location error curve of tracking results on Jogging sequence for the compared methods, while
Fig.17 is the overlap metric results (Table 4).

The six test sequence is BSkating2^. We show some representative frames of the tracking
results of five different trackers in Fig.15. The six representative frame indices are 50, 120, 181,
240, 333, and 440. This video sequence undergoes fast motion, occlusion and deformation. From
the tracking results, we can see thatMIL tracker loses the target in frame 120, and finally causes a
big drift in frames 181,240,333. However, it tracks the target rightly in frame 440. The L1 tracker
loses the target in the representative frames, the same as OAB, IVT tracker. The IVT tracker can
not track the target because of its incapable of dealing with occlusion. The tracking accuracy of
ASLA tracker is not good than our proposed tracker. The location errors and the overlap metric
of six comparison methods on video sequence BSkating2^ are respectively shown in Table 3 and
Table 4. Figure 16 is the location error curve of tracking results on Skating2 sequence for the
compared methods, while Fig.17 is the overlap metric results. From Tables 3 and 4, we can see
that the overall performance for different methods of is shown in Table 5.

Table 5 Overall performance for different methods

Method OAB L1 IVT MIL ASLA FCNT ASLA_DW

Ranking 7 6 4 5 3 2 1

(a) Different Template size vs Tracking errors (b) Different Template size vs Tracking Overlap metric

Fig. 18 The sensitivity of the two normal sizes to the overall results
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4.4 Parameters selection

Since there are many parameters are involved in the formulations, in fact, each parameter may
influence the overall results. The difference is that the importance of each parameter. We only
show the primary parameters. We settle the optimal parameters based on our experiments. We
first set one parameter change, the rest of parameters are not changing, through this we get the
optimal one parameter; then get the second optimal parameters one by one. For the normal
sizeN1 ×N2of image patch, letN1 =N2, and range of N1 = [16 20 24 28 32], we verify the
sensitivity of the two parameters to the overall results. The results are shown in Fig. 18.

4.5 Analysis of the proposed method

Since for the problem of visual tracking, it is in fact a combination of approaches. Each method
can have some effect on the result of visual tracking approach, such as for different motionmodels
and different appearance models. Our method is designed to improve the appearance and model
models, so we have integrated some methods. Experimental results on some publicly available
benchmarks of video sequences demonstrate the accuracy and effectiveness of our tracker.

5 Conclusion

In this paper, we propose a robust tracking algorithm by integrating the generative and
discriminative model. The object appearance model is composed of generative target model
and a discriminative classifier. For the generative target model, we adopt the weighted
structural local sparse appearance model combining patch based gray value and Histogram
of Oriented Gradients feature as the patch dictionary. By sampling positives and negatives,
alignment-pooling features are obtained based on the patch dictionary through local sparse
coding, then use a support vector machine to train the discriminative classifier. A robust inter-
frame matching based on optical flow and Delaunay triangulation accompanied with template
matching is adopted to improve the proposal distribution of particle filter to enhance the
performance of tracking. Our approach is shown to effectively improve the tracking perfor-
mance on challenging scenarios.
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