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Abstract Null space based linear discriminant analysis (NSLDA) is a well-known feature
extraction method, which can make use of the most discriminant information in the null space
of within-class scatter matrix. However, the conventional formulation of NSLDA is based on
L2-norm which makes NSLDA be sensitive to outlier. To address the problem of NSLDA, in
this paper, we propose a simple and robust NSLDA based on L1-norm (L1-NSLDA). An
iterative algorithm for solving L1-NSLDA is also proposed. Compared to NSLDA, L1-
NSLDA is more robust than NSLDA since it is more robust to outliers and noise. Experiment
results on some image databases confirm the effectiveness of the proposed L1-NSLDA.

Keywords Feature extraction . Dimensionality reduction . Null space linear discriminant
analysis . L1-norm based null space linear discriminant analysis

1 Introduction

Feature extraction is a critical issue in the field of pattern recognition [6]. A main goal of
feature extraction is to obtain a few low-dimensional representative features for the purpose of
discrimination or data visualization. In past decades, many feature extraction algorithms have
been proposed in the literatures [10]. The most famous feature extraction algorithms are
perhaps principal component analysis (PCA) [6, 7] and linear discriminant analysis (LDA)
[1, 6, 7].

PCA, which aims to find a set of orthogonal projection vectors to maximize the variance of
the training samples, is an unsupervised feature extraction algorithm. On the contrary, LDA,
which aims to find a set of projection vectors on which the training samples of the same class
are as near as possible to each other while the training samples of the different classes are as far
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as possible from each other, is a supervised technique. Generally, LDA is more suitable than
PCA for objection recognition problems.

The conventional LDA and PCA are both based on L2-norm, which is more sensitive to
outliers than L1-norm since the square operation of the L2-norm can magnify the effect of
outliers [12]. Then, to address the drawback of L2-norm based feature extraction methods,
researchers turned to develop the L1-norm based feature extraction techniques, e.g. robust
PCA [5, 11, 12, 18, 22] and robust LDA [15, 19, 20, 23, 25], in recent years. Compared with
L2-norm based feature extraction methods, the main advantage of L1-norm based feature
extraction methods is that they are less sensitive to effects of the outliers. The relationship
between L1-norm and its robustness is explained intuitively in Fig. 1, where the solid line and
the dot line correspond to L1-norm and L2-norm, respectively. From Fig. 1, we observe that
comparing to L1-norm distance, L2-norm will exaggerate the influence of large errors to some
extent, which are usually caused by outliers and noise.

By using maximum likelihood estimation, Ke et al. [11] proposed L1-PCA, which obtains
the optimal projection matrix by using convex programming techniques. R1-PCA [5], which is
rotational invariant, can combine the advantages of PCA and L1-PCA. However, L1-PCA and
R1-PCA are more computationally expensive than the conventional L2-PCA. Recently, Kwak
[12] proposed a rotational and robust L1-norm based PCA, i.e., PCA-L1, which can maximize
the variance based on L1-norm and learn the optimal projection vectors by using a greedy
iteration method. In contrast to L1-PCA and R1-PCA, PCA-L1 can obtain much lower
reconstruction error in the facial image reconstruction. In [17], Nie et al. proposed a non-
greedy strategy to solve PCA-L1 which can obtain much better projection matrix than that of
L1-PCA. By using matrix and tensor techniques, Li et al. [22] and Pang et al. [18], respec-
tively, generalizes L1-PCA to propose L1-norm based 2DPCA and tensor PCA.

For object recognition problems, it is more suitable to choose LDA rather than PCA since
LDA can obtain the optimal discriminative projection matrix. By combining maximum margin
criterion (WMMC) [13, 14] and R1-PCA, Li et al. proposed a new rotational invariant L1-
norm based MMC, called as R1-MMC. However, R1-MMC is computationally expensive
since its iterative algorithm to obtain the optimal projection matrix is based on eigenvalue
decomposition. Recently, in order to extract robust electroencephalography (EEG) feature,

Fig. 1 Illustration of the
exaggeration effect of the L2-norm
and comparison with that of the
L1-norm
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Wang et al. [19] used L1-norm to replace L2-norm and proposed a L1-norm based common
spatial patterns (L1-CSP), which can get better performance in the EEG classification exper-
iments. Similar ideas are also appeared in [21, 24, 25], all papers replace L2-norm with L1-
norm in the LDA objection function and propose L1-LDA. However, these methods use a
greedy strategy to obtain the optimal projection vectors one by one.

Generally, the most discriminant information is contained in the null space of within-class
scatter matrix and the method, which uses the discriminant information of null space and is
originally proposed to address the small sample size (SSS) problem of LDA, is called null
space based LDA (NSLDA) [3, 4, 9, 16]. Motivated by null space based LDA and L1-LDA, in
this paper, we propose a L1-norm based null space linear discriminant analysis (L1-NSLDA).
By analyzing the objective function of NSLDA, we get the transformed version of its objective
function, which is formed using L2-norm. Similar to the other L1-norm based feature
extraction methods, it is also very difficult to directly find the global optimal projection matrix
of L1-NSLDA. To address the problem, we present a non-greedy iterative algorithm to obtain
a local solution of L1-NSLDA.

The remainder of the paper is organized as follows. In section 2, we review briefly the
related works on LDA and NSLDA algorithms. In Section 3, we propose the L1-NSLDA
method, including its objective function and algorithmic procedure. Section 4 is devoted to the
experiments. Finally, we conclude the paper in Section 5.

2 Outline of LDA and NSLDA

Given a data matrix X = {x1, x2, ⋯ , xn} = [X1, ⋯, Xc] ∈Rd × n , where xi ∈Rd, for i = 1 , 2 ,
⋯ , n, is the ith training sample in a d dimensional space, X i∈Rd�ni , for i = 1 , 2 , ⋯ , c, is a
collection of training samples from the ith class and ∑c

i¼1ni ¼ n. Let Ni be the set of column
indices that belongs to the ith class, i.e., xj, for j ∈Ni, belongs to the ith class. In LDA, the
within-class scatter matrix, between-class scatter matrix and total scatter matrix are defined,
respectively, as follows:

Sw ¼
Xc

i¼1

X
j∈Ni

x j−mi
� �

x j−mi
� �T ¼ HwHT

w ð1Þ

Sb ¼
Xc

i¼1

ni mi−mð Þ mi−mð ÞT ¼ HbHT
b ð2Þ

St ¼
Xn
i¼1

xi−mð Þ xi−mð ÞT ¼ HtHT
t ¼ Sb þ Sw ð3Þ

where mi is the mean of the ith class and is defined as mi ¼ 1
ni
X iei, where

ei ¼ 1; 1;⋯; 1ð ÞT∈Rni , m is the global mean and is defined asm ¼ 1
n Ae, where e = (1, 1,

⋯ , 1)T ∈Rn, Hb,Hw and Ht are defined, respectively, as

Hw ¼ X 1−m1eT1 ;⋯;X c−mceTc
� �

∈Rd�n

Hb ¼ ffiffiffiffiffi
n1

p
m1−mð Þ; :::; ffiffiffiffiffi

nc
p

mc−mð Þ½ �∈Rd�c

Ht ¼ X−meT ¼ x1−m; x2−m;⋯xn−mð Þ∈Rd�n
ð4Þ
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LDA aims to find an optimal projection matrix G that maximizes the following criterion:

G ¼ argmax
G

trace GTSwG
� �−1

GTSbG
� �� �

ð5Þ

where trace(⋅) denotes the trace operator. The projection matrix G can be obtained by
solving the following generalized eigenvalue problem:

Sbg ¼ λSwg; λ≠0 ð6Þ
whose eigenvectors corresponding to the c-1 largest eigenvalues form the columns of G.
When the small sample size problem occurs,Sw is singular and LDA cannot work [8].

NSLDA, which can make use of the discriminant information in the null space of Sw, has been
proposed to address the singularity of Sw. In particular, the optimization problem associated
with NSLDA [3, 4, 9, 16] is

G ¼ argmaxtrace GTSbG
� �

trace GTSwG
� � ¼ 0;GTG ¼ I

	
ð7Þ

where I is an identity matrix.

3 L1-norm based null space linear discriminant analysis

3.1 Problem formulation

In this subsection, we will present our proposed L1-norm based null space linear discriminant
analysis. We first reformulate the objective function of the conventional NSLDAmethod into a
L2-norm based equation and then reveal that NSLDA is based on L2-norm distance criterion.
It is well known that the L2-norm distance criterion is sensitive to outliers, which means that
atypical samples may affect the desired solution to NSLDA. In literature, L1-norm is usually
used as a robust alternative to L2-norm [19, 21, 24, 25]. Then motivated by this idea, we
replace L2-norm in NLDSAwith L1-norm and present the objective function of L1-NSLDA.

The optimization problem associated with NSLDA, i.e., Eq.(7), can be reformulated as

G ¼ argmaxtrace GT 1

n

Xc

i¼1

ni mi−mð Þ mi−mð ÞT
 !

G

 !

s:t: GTG ¼ I ;GT 1

n

Xc

i¼1

X
j∈Ni

x j−mi
� �

x j−mi
� �T ! !

G ¼ 0

ð8Þ

By simply algebraic transformation, Eq.(7) can be rewritten as

G ¼ argmax
Xc

i¼1

ffiffiffiffi
ni

p
GT mi−mð Þ

 

2

2

s:t: GTG ¼ I ;
Xc

i¼1

X
j∈Ni

GT x j−mi
� �

 

2

2
¼ 0

ð9Þ

where ‖‖2denotes L2-norm. From Eq. (9), we can find that NSLDA is based on L2-norm
measurement, which is sensitive to the effect of outlier. Generally, we can replace L2-norm
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with L1-norm to obtain a more robust method. Then, the optimization problem associated with
L1-NSLDA is

G ¼ argmax
Xc

i¼1

ffiffiffiffi
ni

p
GT mi−mð Þ

 



1

s:t: GTG ¼ I ;
Xc

i¼1

X
j∈Ni

GT x j−mi
� �

 



1
¼ 0

ð10Þ

where ‖‖1denotes L1-norm. By using Eq. (4), Eq. (10) can be rewritten as

G ¼ argmax GTHb


 



1

s:t: GTG ¼ I ; GTHw


 



1
¼ 0

ð11Þ

Although it is easy to obtain the global optimal solution of the objection function of
conventional NSLDA, i.e., Eq. (7), it is very difficult to directly obtain the global optimal
solution to L1-NSLDA, i.e. Eq. (11) since the absolute value operation is nonconvex. In the
next subsection, we will propose an iterative algorithm to find a local optimal solution to
Eq. (11).

3.2 Algorithm of finding the projection G

In this subsection, we will present an iterative procedure for finding the optimal projection G
of L1-NSLDA.

Theorem 1 : Let Q be the matrix whose columns generate the null space of St, then we have
‖QTHb‖1 = 0 and ‖QTHw‖1 = 0.

Proof: Since Q be the null space of St, we have Q
TStQ = 0. Then we have QTSbQ = 0 and

QTSwQ = 0 since Sband Sw are both positive semi-definite matrices and St = Sb + Sw. From
Eq. (1) and Eq. (2), we have

QTHb ¼ 0; QTHw ¼ 0 ð12Þ

Then we can obtain

QTHb


 



1
¼ 0; QTHw



 


1
¼ 0 ð13Þ

From Theorem 1, we can know that we can first remove the null space of St without loss of
discriminant information.

Table 1 Computational complexity of each step in L1-NSLDA

No. of Step 1 2 3 4 5 6 7

L1-NSLDA O(dn) O(dn2) O(dn2) O(n3) O(n2c) O(tnc2) O(dnc)
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Let HB = (Q⊥)THb,HW = (Q⊥)THw and U be the solution of the following optimization
problem

U ¼ argmax UTHB


 



1

s:t: UTU ¼ I ; UTHW


 



1
¼ 0

ð14Þ

whereQ⊥ is a matrix whose columns form an orthogonal basis of St. Then we can obtain the
projection matrix G by G =Q⊥U. So solving the projection matrix G boils down to solving the
matrix U.

Theorem 2 : Let P be the null space of HW, then ‖PTHW‖1 = 0 and ‖PTHB‖1 ≠ 0.

Proof: Let ST = (Q⊥)TStQ
⊥, SB = (Q

⊥)TSbQ
⊥ and SW = (Q⊥)TSwQ

⊥, obviously we have

ST ¼ SB þ SW ð15Þ

Since P is the null space of HW, we have PTHW = 0, ‖PTHW‖1 = 0 and PTSTP = 0. From
Eq. (15) we can obtain

PTSBP≠0 ð16Þ
That is

PTHB≠0 ð17Þ

and

PTHB


 



1
≠0 ð18Þ

From Theorem 2 we can know that solving the projection matrix U boils down to solving
the matrix V, where V is the solution of the following optimization problem

V ¼ argmax VTHB




 



1

s:t: VTV ¼ I
ð19Þ

where HB ¼ PTHB and HW ¼ PTHW . Obviously we have U = PV.

Table 2 Comparison of recognition rates for the different methods on ORL database without noise

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

4 89.8 ± 1.6 90.1 ± 1.3 92.0 ± 2.3 92.6 ± 2.1 94.2 ± 1.6 94.5 ± 1.3

5 93.1 ± 1.8 93.5 ± 1.6 93.0 ± 1.0 93.5 ± 1.9 96.3 ± 1.5 96.5 ± 1.4

Table 3 Computing times (S) of each algorithm on ORL database

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

4 0.236 35.097 0.279 8.728 0.848 1.034

5 0.288 46.221 0.297 9.476 1.057 1.167
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Now we consider how to solve V. Suppose αi ¼ sgn VT mi−mð Þ� �
, 1 ≤ i ≤ c, where

mi−m ¼ PT Q⊥ð ÞT ffiffiffiffi
ni

p
mi−mð Þ. Then Eq. (19) can be reformulated as

V ¼ argmax
VTV¼I

VTHB




 



1
¼ argmax

VTV¼I

Xc

i¼1

VT mi−m
� �


 




1

¼ argmax
VTV¼I

Xc

i¼1

αT
i V

T mi−m
� �

¼ argmax
VTV¼I

trace VTM
� � ð20Þ

whereM ¼ ∑
c

i¼1
mi−mð ÞαT

i . By using Lagrangemultiplier method, Eq. (20) can be rewritten as

f Vð Þ ¼ tr VTM
� �

−
1

2
tr L VTV−I

� �� � ð21Þ

where L is a symmetric Lagrange multiplier matrix. Setting the partial derivative of f(V)
with respect to V equal to zero, we obtain

M−VL ¼ 0 ð22Þ
That is

V ¼ ML−1 ð23Þ
Since VTV = I, we should have

L−1
� �T

MTML−1 ¼ I ð24Þ
Suppose the singular value decomposition (SVD) of M is M ¼ UMΛMVT

Mand

L−1 ¼ VMΛ
−1
M VT

M , we have

L−1
� �T

MTML−1 ¼¼ VMΛ
−1
M VT

M

� �T
UMΛMVT

M

� �T
UMΛMVT

M

� �
VMΛ

−1
M VT

M

� � ¼ I ð25Þ
Then we can obtain

V ¼ ML−1 ¼ UMΛMVMVMΛ
−1
M VT

M ¼ UMVT
M ð26Þ

Fig. 2 Some face images with/without occlusion in ORL database

Table 4 Comparison of recognition rates for the different methods on ORL database with noise

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

4 80.9 ± 2.7 82.4 ± 2.7 89.8 ± 2.4 90.5 ± 1.9 93.2 ± 1.9 95.1 ± 1.7

5 83.4 ± 2.0 84.7 ± 1.9 93.1 ± 2.0 94.0 ± 1.7 95.2 ± 1.4 97.3 ± 1.4
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Note that αi, 1 ≤ i ≤ c, is an unknown variable since it depends on V. We propose
an iterative procedure to solve (19) and prove that the iterative procedure converges
to a local solution. From the above analysis, the algorithm of solving (11) is described
in Algorithm 1.

In [2], Cevikalp et al. pointed out that all samples of the same class will be projected into
the same unique vector in NSLDA, which makes NSLDA overfit to data hence it is not stable
[4]. Then a small variation of the test samples in the range space of Sw will lead to
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misclassification errors. The L1-NSLDA method will inherit the weakness of NSLDA since it
is also a null space based method. However, L1-NSLDA finds the optimal projection matrix in
the null space of Sw by using a L1-norm based objective function whereas NSLDA finds the
optimal projection matrix in the null space of Sw by using a L2-norm based objective function.
Then the ultimate projection matrices obtained by L1-NSLDA and NSLDA, respectively, are
totally different and L1-NSLDA is not sensitive to the atypical samples. That is, L1-NSLDA
can alleviate the effects of the outliers and noise when there exist outliers and noise in the
training samples.

The following theorem 3 guarantees the convergence of the Step 6 of Algorithm 1.

Theorem 3 : The Step 6 of Algorithm 1 will monotonically increase the objective value of
Eq. (19) in each iteration.

Proof: Obviously, we have

trace Vtþ1
� �T Xc

i¼1

mi−m
� �

αt
i

� �T ! !
¼ trace Vtþ1

� �T
Mt

� �

≥ trace Vtð ÞTMt
� �

¼ trace Vtð ÞT
Xc

i¼1

mi−m
� �

αt
i

� �T ! ! ð27Þ

Since αt
i ¼ sgn Vtð ÞT mi−mð Þ

� �
for each i, we have

Vtþ1
� �T

mi−m
� �


 




1
¼ αtþ1

i V tþ1
� �T

mi−m
� �

≥αt
i V tþ1
� �T

mi−m
� �

ð28Þ

From Eq. (20) and Eq. (28), we have

trace Vtþ1
� �T

Mtþ1
� �

¼
Xc

i¼1

αtþ1
i

� �T
Vtþ1
� �T

mi−m
� �

≥
Xc

i¼1

αt
i

� �T Vtþ1
� �T

mi−m
� �

¼ trace Vtþ1
� �T

Mt
� �

ð29Þ

Table 5 Comparison of recognition rates for the different methods on Yale database without noise

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

4 85.1 ± 1.9 85.3 ± 2.0 97.6 ± 1.3 97.7 ± 1.2 98.1 ± 1.2 98.2 ± 1.2

5 85.4 ± 1.7 85.5 ± 1.9 98.3 ± 1.0 98.3 ± 0.8 99.3 ± 1.0 99.4 ± 1.2

Table 6 Computing times (S) of each algorithm on Yale database

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

4 0.038 1.773 0.043 0.982 0.154 0.179

5 0.064 2.992 0.074 1.512 0.243 0.256
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By combining Eq. (27) and Eq. (29), we have

trace Vtþ1
� �T

Mtþ1
� �

≥ trace Vtð ÞTMt
� �

ð30Þ

Then the Step 6 of Algorithm 1 will monotonically increase the objective value of Eq. (19)
in each iteration.

3.3 Computational complexity analysis

In this subsection, we will discuss the computational complexity of the proposed L1-NSLDA
method. In Table 1, we list the computational complexity of each step in L1-NSLDA. Note
that in Step 6 t denotes the iterative number. Generally, we have d ≫ n ≫ c when the SSS
problem occurs. Then from Table 1 we can know the total computational complexity of L1-
NSLDA is in the order of O(dn2 + dnc + n3 + n2c).

4 Experiments and results

In this section, we will compare our proposed L1-NSLDAwith PCA [7], L1-PCA [12], LDA [1],
L1-LDA [20, 25] and NSLDA [3, 4, 9, 16] on ORL and Yale face databases. In order to overcome
the small sample size (SSS) problem of LDA, we firstly use conventional PCA as a processing
method. In the PCA phase we keep nearly 98 % image energy. For L1-LDA, the updating
parameter β is set to 0.08. In the experiments we use the Euclidean distance based nearest neighbor
classifier (1-NN) for classification and the recognition rate is computed by the following formula

recognition rate ¼ rec
tot

ð31Þ

where rec denotes the number of samples in the test set that is corrected labeled as being a
given class and tot denotes the total number of samples in the test set. The experiments are
implemented on a Mobile DualCore Intel Pentium (1.8GMHz) processor Acer Computer with
4GB RAM and the programming environment is MATLAB 2008.

Fig. 3 Some face images with/without occlusion in Yale database

Table 7 Comparison of recognition rates for the different methods on Yale database with noise

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

4 76.8 ± 3.1 77.9 ± 3.0 93.5 ± 2.0 94.1 ± 2.3 94.9 ± 1.7 96.3 ± 1.8

5 79.2 ± 4.1 80.3 ± 3.9 94.8 ± 1.8 95.6 ± 2.0 96.4 ± 2.3 97.9 ± 1.9
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4.1 Experiments on ORL face database

The ORL face database consists of a total of 400 face images, of a total of 40 people (10
samples per person). For some subjects, the images were taken at different times, varying the
lighting, facial expressions (open/closed eyes, smiling/not smiling) and facial details (glassed/
no glassed). All the images were taken against a dark homogeneous background with the
subjects in an upright, front position (with tolerance for some side movement). In our
experiments, the size of each image in ORL database is 112 × 92.

Firstly, we test the performances of L1-NSLDA and the other methods on ORL database
without added noise. In the experiments, we randomly choose i (i = 4,5) samples of each
person for training, and the remaining ones are used for testing. The procedure is repeated 20
times and the average recognition rates as well as the standard deviation are reported in
Table 2. We also reported the computing times of each algorithm in Table 3.

To test the robustness of the proposed L1-NSLDA against outliers, in the following we
randomly choose 40%of the training samples to be contaminated by rectangle noise. The rectangle
noise takes white or black dots, its location in face image is random and its size is 50 × 50. Some
face images with or without rectangle noise are shown in Fig. 2. The procedure is repeated 20 times
and the average recognition rates as well as the standard deviation are reported in Table 4.

4.2 Experiments on Yale face database

The Yale face database contains 165 Gy scale images of 15 individuals, each individual has 11
images. The images demonstrate variations in lighting condition, facial expression (normal,
happy, sad, sleepy, surprised, and wink). In our experiments, each image in Yale database was
manually cropped and resized to 100 × 80.

Firstly, we test the performances of L1-NSLDA and the other methods on Yale database
without added noise. In the experiments, we randomly choose i (i = 4,5) samples of each
person for training, and the remaining ones are used for testing. The procedure is repeated 20
times and the average recognition rates as well as the standard deviation are reported in
Table 5. We also reported the computing times of each algorithm in Table 6.

To test the robustness of the proposed L1-NSLDA against outliers, in the following we
randomly choose 40%of the training samples to be contaminated by rectangle noise. The rectangle
noise takes white or black dots, its location in face image is random and its size is 50 × 50. Some
face images with or without rectangle noise are shown in Fig. 3. The procedure is repeated 20 times
and the average recognition rates as well as the standard deviation are reported in Table 7.

Table 8 Comparison of recognition rates for the different methods on FERET database without noise

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

3 62.6 ± 1.4 63.1 ± 1.5 72.1 ± 0.9 72.6 ± 1.9 85.0 ± 1.6 85.8 ± 1.3

Table 9 Computing times (S) of each algorithm on FERET database

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

3 1.857 260.2 1.957 67.434 4.307 5.818

Multimed Tools Appl (2017) 76:15801–15816 15811



4.3 Experiments on FERET face database

The FERET face database contains 14,126 images from 1199 individuals. In our
experiments, we select a subset which contains 1400 images of 200 individuals (each
individual has seven images). The subset involves variations in facial expression, illumination
and pose. In our experiments, each image in FERET database was manually cropped and
resized to 80 × 80.

Firstly, we test the performances of L1-NSLDA and the other methods on FERET database
without added noise. In the experiments, we randomly choose i (i = 3) samples of each person
for training, and the remaining ones are used for testing. The procedure is repeated 20 times
and the average recognition rates as well as the standard deviation are reported in Table 8. We
also reported the computing times of each algorithm in Table 9.

To test the robustness of the proposed L1-NSLDA against outliers, in the following we
randomly choose 40 % of the training samples to be contaminated by rectangle noise. The
rectangle noise takes white or black dots, its location in face image is random and its size is
50 × 50. Some face images with or without rectangle noise are shown in Fig. 4. The
procedure is repeated 20 times and the average recognition rates as well as the standard
deviation are reported in Table 10.

4.4 Discussions

From the experiment results we can make the following conclusions:

(1) From Table 2-10, we can find that the recognition rates of the unsupervised methods, e.g.
PCA and L1-PCA, are generally lower than those of the supervised methods, e.g. LDA,
L1-LDA, NSLDA and L1-NSLDA. This shows that the information of class label is
critical to the recognition problems.

(2) The L1-norm based methods can get higher recognition rates than their L2-norm-based
counterparts. This shows that L1-norm is helpful for suppressing the negative effects of
outliers indeed.

(3) Generally, the L1-norm based methods spend more computing times to obtain the
projection vectors than their L2-norm-based counterparts.

Fig. 4 Some face images with/without occlusion in FERET database

Table 10 Comparison of recognition rates for the different methods on FERET database with noise

Sample size PCA L1-PCA LDA L1-LDA NSLDA L1-NSLDA

3 51.8 ± 1.4 52.9 ± 1.9 63.4 ± 2.1 63.8 ± 1.7 66.8 ± 1.7 67.2 ± 1.3
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(4) Our proposed L1-NSLDA achieves the highest recognition rates in our experiments. This
is attributed to the uses of discriminant information in the null space of within-class
scatter matrix and L1-norm.

5 Conclusions

In this paper, a new feature extraction method, called L1-norm based null space linear
discriminant analysis (L1-NSLDA), has been proposed. Since L1-norm can suppress the
effects of outliers, L1-NSLDA is more robust to outliers than the conventional L2-norm based
feature extraction methods. The experiment results on some image databases show the
effectiveness of the proposed L1-NSLDA. In the future, we will investigate nonlinear feature
extraction methods based on L1-norm.
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