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Abstract The most essential advantage of applying linear algebra to construct visual
cryptography scheme (VCS) lies in that it only requires solving linear equations in the con-
struction of initial basis matrices, which are the basis matrices before removing the common
columns. In this paper, we give some new insight into linear algebraic technique to construct
VCS, where we can take more equations simultaneously. Then based on this knowledge, we
propose a construction of VCS for general access structure. The construction is efficient in
the sense that it gets the smallest initial pixel expansion compared with some well-known
constructions. At the same time, by using the technique of deleting common columns from
the initial basis matrices, the proposed construction achieves the optimal pixel expansions in
most cases according to our experimental results. However, finding exact number of com-
mon columns in the initial basis matrices is a challenging issue. Then we deal with this issue
and find out that the exact number of common columns is n − 2 for (2, n) threshold access
structures. Finally, we provide some future research directions in the algebraic aspect of
VCS.
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1 Introduction

A (k, n) visual cryptography scheme (VCS), where k ≤ n, for a set of n participants is a
method to split a secret image into n shadow images called shares, where each participant
receives one share. One can reconstruct the secret image with any k or more than k shares;
but, one cannot obtain any information of the secret image from fewer than k shares. The
attractiveness of VCS is the stacking-to-see property by which the reconstruction requires
neither knowledge of cryptography nor a computer. Any k or more than k participants may
photocopy their shares onto transparencies and stack them on an overhead projector to
visually decode the secret image through the human visual system.

In some circumstances where the cost of computations may be not affordable, the decod-
ing time should be instantly done in a constant time, or the recognition of the secret
shape/pattern is sensitive or meaningful only to the human perception, VCS becomes very
appropriate.

The first VCS was proposed by Naor and Shamir [14] and they gave a formal description
to (k, n)-VCS. Specifically, each pixel of the secret image is encoded into m subpixels,
referred to as pixel expansion, for each of the n shares by designing two collections C0 and
C1 of n×mBoolean matrices. To share a white pixel, the dealer randomly chooses one of the
matrices in C0, and to share a black pixel, the dealer randomly chooses one of the matrices
in C1. The chosen matrix defines the color of the m subpixels in each of the shares. If any
k or more shares are stacked together, our eyes can perceive the secret information due to
the darkness difference, referred to as contrast, between black pixels and white pixels in the
stacked result, while if fewer than k shares are superimposed it is impossible to perceive the
secret information.

Following Naor and Shamir’s work, many related problems of VCS, such as reducing
the pixel expansion [14, 16], improving the contrast [3, 4], sharing multiple secrets [15, 24],
cheating prevention [10, 12], sharing color image [5, 19], keeping aspect ratio invariant [11,
22], meaningful shares [17, 20], progress recovery [9], region incrementing [23], special
access structures [2, 8] and applications [21] were subsequently proposed. Also studies have
tried to sacrifice contrast to obtain less pixel expansion [6, 18]. Though VCS has a very rich
literature, a very few papers have been published for the construction of VCS for general
access structures, which is a specification of all qualified and forbidden sets of participants.

In 1996, Ateniese et al. [2] extended (k, n) threshold access structures to general access
structures. They also introduced basis matrices, which save memory requirements, to the
model of VCS and presented two techniques to construct basis matrices of VCS for general
access structures: cumulative arrays and smaller schemes.

Shyu and Chen [14] applied the skills of integer linear programming (ILP) into con-
structing basis matrices to acquire the optimal pixel expansion of VCS for threshold access
structures. Then they [16] generalized and extended the formulation of ILP to general access
structures, where the optimal pixel expansions are obtained. However, the proposed method
resorts to an exhaustive search strategy and takes exponential time in the worst case. There-
fore, whether there is an efficient construction of VCS with near optimal pixel expansions
is still a challenging topic.

Recently, Adhikari [1] proposed a linear algebraic technique to construct VCS for general
access structures. He first obtained the initial basis matrices, which are the basis matrices
before removing the common columns, by solving some systems of two linear equations.
Then he deleted the common columns from the initial basis matrices and obtained the
reduced basis matrices with less pixel expansion. This technique is more efficient than ILP
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[14, 16] since it mainly requires solving some linear systems. Yet the question of finding
exact number of common columns in the initial basis matrices was left open. Towards this
end, Dutta et al. [7] found a closed form of the exact number of common columns in the
initial basis matrices of (n − 1, n)-VCS. However, the above works focused on construct-
ing basis matrices by taking two equations at a time. As they pointed out, constructing basis
matrices by taking more equations simultaneously to obtain less pixel expansion is wor-
thy of study. Moreover, it is also a challenging problem that finding the exact number of
common columns in the initial basis matrices for other access structures.

In this paper, we deal with the above open issues. We first put forward an efficient con-
struction of VCS for general access structures using linear algebra, where we can take more
equations at a time. Then we find out the exact number of common columns in the initial
basis matrices of (2, n) threshold access structures. Our main contribution is that the pro-
posed construction, in an efficient way, gets the smallest initial pixel expansion compared
to some well-known constructions and achieves the optimal pixel expansions in most cases
after deleting the common columns from the initial basis matrices.

The rest of the paper is organized as follows. In Section 2 we give some preliminaries
including the model of VCS for general access structures and some previous studies. In
Section 3 we provide a characterization of the set of access structures on a set of participants
where we can exploit the linear algebraic technique to take more equations simultaneously.
In Section 4 we give an efficient construction of VCS for general access structures based
on the characterization. What’s more, we find the exact number of common columns in the
initial basis matrices to be n − 2 for (2, n) threshold access structures. In Section 5, we
discuss some interesting examples, which will lead to future research directions. Lastly we
conclude the paper in Section 6.

2 Preliminaries

2.1 The model

The model that we describe here is based on basis matrices and similar to the model as
described in Ateniese et al. [2].

Let P = {1, 2, . . . , n} be a set of participants and 2P denote the set of all subsets of
P . Let �Qual ⊆ 2P and �Forb ⊆ 2P , where �Qual ∩ �Forb = ∅. Members of �Qual are
referred to as qualified sets and members of �Forb are referred to as forbidden sets. The
pair (�Qual, �Forb) is called an access structure on P . A participant p ∈ P is an essential
participant if there exists a set X ⊆ P such that X ∪ {p} ∈ �Qual but X �∈ �Qual . In fact, a
non-essential participant does not need to participate “actively” in the reconstruction of the
image, since the information he has is not needed during recovering the secret image.

In this paper, we mostly deal with strong access structures, which are defined as follows.

Definition 1 [2] The access structure (�Qual, �Forb) on P = {1, 2, . . . , n} is said to be
strong if the following conditions are satisfied:

1. �Qual is monotone increasing. Formally, for each Q ∈ �Qual and Q ⊆ Q′ ⊆ P , we
have Q′ ∈ �Qual .

2. �Forb is monotone decreasing. Formally, for each F ∈ �Forb and F ′ ⊆ F ⊆ P , we
have F ′ ∈ �Forb.

3. �Qual ∪ �Forb = 2P .
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Let �0 = {Q ∈ �Qual : Q′ /∈ �Qualf orallQ′ ⊂ Q} be the collection of all minimal
qualified sets and ZM = {F ∈ �Forb : F ∪ {i} ∈ �Qualf oralli ∈ P \ F } be the collec-
tion of all maximal forbidden sets. �0 is termed a basis, which completely determines its
corresponding strong access structure by �Qual = {Q′ ⊆ P : Q ⊆ Q′f orsomeQ ∈ �0}.

Let M be an n×m Boolean matrix and X ⊆ P . Then M[X] denotes the |X|×m subma-
trix obtained from M by considering its restriction to rows corresponding to the elements
in X. MX denotes the Boolean “OR” operation to the rows of M[X]. ω(MX) denotes the
Hamming weight of the row vector MX , which is the number of 1’s in the vector MX . For
a 1 × n Boolean row vector v = {v1, v2, . . . , vn}, let �v = {j |vj = 1, j = 1, 2, . . . , n}.
Given two Boolean row vectors v1 and v2, define �v1 ⊕ �v2 = �v1⊕v2 . Denote �odd

0 as
the “⊕”ed result of any odd number of elements of �0 and �even

0 as the “⊕”ed result of any
even number of elements of �0.

Definition 2 [2] Let (�Qual, �Forb) be an access structure on a set of n participants. Two
n × m basis matrices S0 and S1, which generate the two collections of n × m Boolean
matrices C0 and C1 by permuting the columns of the corresponding basis matrix (S0 for C0,
and S1 for C1) in all possible ways, constitute a (�Qual, �Forb,m)-VCS if the following
conditions are satisfied:

1. (Contrast) If X = {i1, i2, . . . , ip} ∈ �Qual , ω(S0
X) < ω(S1

X).
2. (Security) If X = {i1, i2, . . . , ip} ∈ �Forb, the p × m matrices obtained by restricting

S0 and S1 to rows i1, i2, . . . , ip are identical up to a column permutation.

Then, for constructing VCS by cumulative arrays, the following lemma is presented by
Ateniese et al. [2].

Lemma 1 [2] For a strong access structure (�Qual, �Forb) with ZM , there exists a VCS
with m = 2|ZM |−1.

Before giving the construction of VCS from smaller schemes, the following lemma is
described without a proof.

Lemma 2 [2] Let (�′
Qual, �

′
Forb) and (�′′

Qual, �
′′
Forb) be two access structures on a set P

of n participants. If a participant i ∈ P is non-essential for (�′
Qual, �

′
Forb), we assume that

i ∈ �′
Forb and that i receives a share completely “white”. Analogously for (�′′

Qual, �
′′
Forb).

Suppose there exist a (�′
Qual, �

′
Forb,m

′)-VCS and a (�′′
Qual, �

′′
Forb,m

′′)-VCS constructed
using basis matrices. Then there exists a (�′

Qual ∪ �′′
Qual, �

′
Forb ∩ �′′

Forb,m
′ + m′′)-VCS. If

the original access structures are both strong, then so is the resulted access structure.

Based on Lemma 2, the following lemma is presented immediately.

Lemma 3 [2] For a strong access structur (�Qual, �Forb) with �0, there exists a VCS with
m = ∑

X∈�0
2|X|−1.

Furthermore, we present the following lemma, illustrating why we can delete the com-
mon columns in the initial basis matrices. In other words, if there exist two initial basis
matrices having common columns, then we can delete the common columns and obtain two
reduced basis matrices with less pixel expansion, where the conditions of Definition 2 are
still hold.
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Lemma 4 [2] Let (�Qual, �Forb) be an access structure. Let S0 and S1 be the basis matri-
ces in a (�Qual, �Forb,m)-VCS and let D be any n × p Boolean matrix. The two matrices
S′0 = S0 ◦ D and S′1 = S1 ◦ D, where ◦ denotes the operator “concatenation” of two
matrices, comprise a (�Qual, �Forb,m + p)-VCS.

2.2 VCS and linear equations

Adhikari [1] introduced a construction procedure for the two n×m basis matrices S0 and S1

of (�Qual, �Forb,m)-VCS using linear algebraic technique. He started with the following
two associated systems of linear equations over the binary field,

Ax = 0 (1)

Ax = 1 (2)

where, A is an r × n known Boolean matrix of rank r , 0 < r < n; x is an n × 1 vector of
unknowns; 0 and 1 are r × 1 vectors of 0’s and 1’s respectively. Since A is full of row rank,
both the systems (1) and (2) are consistent. Let S0 (resp. S1) be an n×2n−r Boolean matrix
whose columns are all possible solutions of the system (1) (resp. (2)). Then, to show S0

and S1 can form the basis matrices of a (�Qual, �Forb, 2n−r )-VCS, he proved the following
lemma which plays an important role in our new insight into the linear algebraic technique
to construct visual cryptography schemes.

Lemma 5 [1] Let X = {i1, i2, . . . , ip} ⊆ P = {1, 2, . . . , n}. Then X ∈ �Qual (resp.
X ∈ �Forb) if and only if the system of equations

(
A

BX

)

x =
(
1
0

)

(3)

is inconsistent (resp. consistent), where BX is a column permutation of the p × n Boolean
matrix (Ip|0p×(n−p)) with unit vectors of the identity matrix Ip, which is of order p,
occupying columns indexed by i1, i2, . . . , ip in BX .

Then based on the above knowledge, Adhikari [1] proposed a construction of VCS
for any strong access structure by taking two equations simultaneously, where the pixel
expansion is less than that of Lemma 3. The following lemma presents the result.

Lemma 6 [1] For any given strong access structure (�Qual, �Forb) on a set P =
{1, 2, . . . , n} of n participants with �0 = {Q1,Q2, . . . , Qt } where Qi ⊆ P , ∀i =
1, 2, . . . , t and for any permutation σ ∈ SGt , the symmetric group of degree t , there exists
a strong (�Qual, �Forb)-VCS with mσ , where mσ is given as follows:

mσ =
{ ∑l

i=1 2
|Qσ(2i−1)∪Qσ(2i)|−2 if t = 2l, l ≥ 1

∑l
i=1 2

|Qσ(2i−1)∪Qσ(2i)|−2 + 2|Qσ(2l+1)|−1 if t = 2l + 1, l ≥ 0.
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3 New insight into linear algebraic technique to construct VCS

In this section, we give some new insight into the linear algebraic technique to construct
VCS, where we can take more equations simultaneously to reduce the pixel expansion. First,
we also start with the following two systems of linear equations over the binary field,

Ax = 0 (4)

Ax = 1 (5)

where, A is a t × n known Boolean matrix of rank r , 0 < r ≤ t < n; x is an n × 1 vector
of unknowns; 0 and 1 are t × 1 vectors of 0’s and 1’s respectively; both the systems (4) and
(5) are consistent. The difference from Adhikari’s systems [1] is the coefficient matrix A,
which does not have to be of full row rank.

Also, let S0 (resp. S1) be an n × 2n−r Boolean matrix whose columns are all possible
solutions of the system (4) (resp. (5)). Then, to prove S0 and S1 can form the basis matri-
ces of a (�Qual, �Forb, 2n−r )-VCS, the following lemma is immediate since the proof of
Lemma 5 also works for this lemma.

Lemma 7 Let X = {i1, i2, . . . , ip} ⊆ P = {1, 2, . . . , n}. Build a system of equations as
follows:

(
A

BX

)

x =
(
1
0

)

(6)

where BX is a column permutation of the p × n Boolean matrix (Ip|0p×(n−p)) with unit
vectors of the identity matrix Ip , which is of order p, occupying columns indexed by
i1, i2, . . . , ip in BX . Then, for an access structure (�Qual, �Forb), S0 and S1 form the basis
matrices of a (�Qual, �Forb, m = 2n−r )-OVCS if the following conditions are satisfied:

1. For X ∈ �Qual , the system (6) is inconsistent;
2. For X ∈ �Forb, the system (6) is consistent.

Next we are going to explore the conditions for consistency or inconsistency of the sys-
tem (6). Let rows of A1 (resp. A2) represent all possible sum of odd (resp. even) number of
rows in A. Then we have the following lemma.

Lemma 8 For an access structure (�Qual, �Forb), S0 and S1 form the basis matrices of a
(�Qual, �Forb, m = 2n−r )-OVCS if the following conditions are satisfied:

1. For X ∈ �Qual , any row vector of A1 belongs to the row space of BX.
2. For X ∈ �Forb, A and BX are independent, or, any row vector of A2 belongs to the

row space of BX .

Proof In light of the system (6), there are two possibilities: the coefficient matrix A and BX

are either linearly independent or linearly dependent.
If they are independent, since the system (5) is consistent and BXx = 0 is consistent (BX

is of full row rank), the system (6) is consistent.
If they are linearly dependent, then there exists a vector u = (u1,u2) �= 0, where u1 and

u2 are 1 × t and 1 × p vectors respectively, such that u
(

A

BX

)

= 0 ⇔ u1A + u2BX = 0.
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Note that u1 is nonzero, otherwise this will imply linear dependence of the rows ofBX. Now
u1A+u2BX = 0⇔ u1A ∈ the row space of BX. Also note that if u1 has an odd (resp. even)
number of 1’s then u1A will be a row of A1 (resp. A2). Then we have that any row of A1 or

A2 belongs to the row space of BX . On the right of the system (6), u
(
1
0

)

= u11. If u1 has

an odd (resp. even) number of 1’s then the system (6) is inconsistent (resp. consistent).
Based on the above discussions and Lemma 7, this lemma is proved.

Until now, we have seen that given a suitable binary matrix A and a suitable access
structure (�Qual, �Forb), which satisfy the conditions of Lemma 8, we can construct a VCS
by solving the two systems (4) and (5). In other words, we have concluded the sufficient
conditions for constructing VCS by using linear equations. Then, we are now in a position
to give a concrete structure of the coefficient matrix A. Towards this end, we prove the
following lemma.

Lemma 9 For an access structure (�Qual, �Forb) with �0 = {Q1,Q2, . . . , Qt }, let A =
(v1, v2, . . . , vt )

T of rank r and�vi = Qi , i = 1, 2, . . . , t . S0 and S1 form the basis matrices
of a (�Qual, �Forb, m = 2n−r )-OVCS if the following conditions are satisfied:

1. For any row v of A1, �v ∈ �Qual;
2. For any row v of A2, �v = ∅ or �v �⊆ Q ∈ �0.

Proof For X ∈ �Qual , because �v ∈ �Qual for any row v of A1, v obviously belongs to the
row space of BX.

For X ∈ �Forb, there are three cases to be considered:

Case 1 For any row v of A1, �v ∈ �Qual ; for any row v of A2, �v = ∅.
In this case, any row vector of A2 belongs to the row space of BX immediately.

Case 2 For any row v of A1, �v ∈ �Qual ; for any row v of A2, �v �⊂ Q ∈ �0 and
�v ∈ �Forb.

In this case, any row vector of A2 also belongs to the row space of BX immediately.

Case 3 For any row v of A1, �v ∈ �Qual ; for any row v of A2, �v /∈ �0 and �v ∈ �Qual .

In this case, no row vector of A1 and A2 belongs to the row space of BX , namely, A and
BX are independent.

It should be noted that the sum operation “+” over the binary field is actually the Boolean
XOR operation “⊕”. Therefore, the sum of a number of row vectors, say v1, · · · , vi , of
the coefficient matrix A equals to v1 ⊕ · · · ⊕ vi . Since Qi = �vi

, we have �v1⊕···⊕vi
=

Q1 ⊕ · · · ⊕ Qi . So, for clarity, we restate Lemma 9 as follows, and hence omit its proof.

Theorem 1 For an access structure (�Qual, �Forb) with �0 = {Q1,Q2, . . . , Qt }, if �0
satisfies the following two conditions:

1. The “⊕”ed result of any odd number of elements of �0 is an element of �Qual . Formally,
�odd
0 ∈ �Qual .

2. The “⊕”ed result of any even number of elements of �0 is an empty set, or not a subset
of any element of �0. Formally, �even

0 = ∅ or �even
0 �⊆ Q ∈ �0.
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Then the basis matrices S0 and S1 of a (�Qual, �Forb, m = 2n−r )-OVCS are composed of
all possible solutions of the systems (4) and (5) respectively, where A = (v1, v2, . . . , vt )

T

of rank r and �vi = Qi , i = 1, 2, . . . , t .

Remark 1 Theorem 1 helps us to prove Lemma 3 on the existence of a VCS for any given
strong access structure with the basis �0, since we can construct a VCS by taking one
equation at a time regarding each element, satisfying the conditions of Theorem 1 obviously,
of �0. Analogously for Lemma 6 since we can construct a VCS by taking two equation at a
time regarding any two elements, satisfying the conditions of Theorem 1 obviously, of �0.
Therefore, our Theorem 1 is a generalization of Lemma 3 and Lemma 6.

Let us try to illustrate the above theory through the following example.

Example 1 Consider the following strong access structure (�Qual, �Forb) on a set of four
participants having �0 = {{1, 2}, {1, 3}, {1, 4}}. Obviously, this access structure satisfies the
conditions of Theorem 1. Then we can construct a (�Qual, �Forb)-VCS with basis matrices
S0 and S1, which are obtained by solving the following two systems of three linear equations
over the binary field:

⎧
⎨

⎩

x1 + x2 = 0
x1 + x3 = 0
x1 + x4 = 0

(7)

and ⎧
⎨

⎩

x1 + x2 = 1
x1 + x3 = 1
x1 + x4 = 1

(8)

Let S0 and S1 be the Boolean matrices whose columns are just all possible solutions of

(7) and (8), respectively. Thus, S0 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 1

⎤

⎥
⎥
⎦ and S1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
1 0

⎤

⎥
⎥
⎦. Clearly, S0 and S1 satisfy

the properties of basis matrices for the strong access structure (�Qual, �Forb) determined by
�0. It gives pixel expansion 2, which is less than pixel expansion 4 obtained by taking two
equations simultaneously as proposed by Theorem 4.2 of [1] (described in Appendix A).

4 On construction of VCS for general access structures

In this section, we give a construction of VCS for any strong access structure to obtain less
pixel expansion. To begin with, the following definition is presented.

Definition 3 A strong access structure (�Qual, �Forb) is called feasible if it satisfies the
conditions of Theorem 1. The �0 obtained from the feasible (�Qual, �Forb) is called a
feasible basis.

Obviously, for any given strong access structure, the conditions of Theorem 1 are not
always satisfied. A comprehensive idea to construct a VCS for any given strong access
structure is to group the access structure into some feasible access structures, and then to
realize a VCS by Lemma 2. We are now in a position to describe such a grouping algorithm.
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Then, we need to give a sorting method for a basis �0. For a 1×n Boolean row vector vi ,
define Decvi

as the decimal number corresponding to vi , then a sorting method for a basis
�0 is defined as follows.

Definition 4 A basis �0 is sorted such that for any two different elements Qi, Qi′ ∈ �0, if
i < i′, then Decvi

< Decvi′ , where �vi
= Qi and �vi′ = Qi′ .

Then, we describe a grouping algorithm for any strong access structure in Algorithm 1.
Note that Steps 2–8 guarantee that each of �1

0, �
2
0, . . . , �

d
0 is feasible since the conditions

of Theorem 1 are satisfied.

For any given strong access structure, we can apply Algorithm 1 to group the access struc-
ture and construct a VCS for each feasible access structure based on Theorem 1, and then
realize a final VCS by Lemma 2. Let us try to illustrate the proposed algorithm through the
following example.

Example 2 Consider the following strong access structure (�Qual, �Forb) on a set of
four participants having �0 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}}. Obviously, this access struc-
ture is not feasible. By Algorithm 1, we can obtain the following two feasible bases
�1
0 = {{1, 2}, {1, 3}, {1, 4}} and �2

0 = {{2, 3}}. For �1
0, consider the following two systems

of three linear equations over the binary field:
⎧
⎨

⎩

x1 + x2 = 0
x1 + x3 = 0
x1 + x4 = 0

(9)

and ⎧
⎨

⎩

x1 + x2 = 1
x1 + x3 = 1
x1 + x4 = 1

(10)
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Let S0
1 and S1

1 be the Boolean matrices whose columns are just all possible solutions of the

above two systems (9) and (10), respectively. Thus, S0
1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 1

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
1 0

⎤

⎥
⎥
⎦.

For �2
0, let us consider the two following systems of one linear equation over the binary

field:

x2 + x3 = 0 (11)

and

x2 + x3 = 1 (12)

Let S0
2 and S1

2 be the Boolean matrices whose columns are just all possible solutions of

the above two linear systems (11) and (12), respectively. Thus, S0
2 =

⎡

⎢
⎢
⎣

0 0
0 1
0 1
0 0

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

0 0
0 1
1 0
0 0

⎤

⎥
⎥
⎦. Note that the first and fourth participants are non-essential for the strong access

structure determined by �2
0, so we assign both of them the values (00) for the two Boolean

matrices.
Finally, by Lemma 2 we construct a (�Qual, �Forb)-VCS on a set of four participants

having �0 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}}, where the basis matrices S0 =

⎡

⎢
⎢
⎣

0 1 0 0
0 1 0 1
0 1 0 1
0 1 0 0

⎤

⎥
⎥
⎦ and

S1 =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 1
1 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦.

Remark 2 Based on Theorem 1, Algorithm 1 groups any given strong access structure
so that we can take more than two equations simultaneously to obtain the basis matrices.
In Example 2, we obtain the pixel expansion 4, which is less than the pixel expansion 5
obtained by taking �1

0 = {{1, 2}, {1, 3}} and �2
0 = {{2, 3}, {1, 4}} according to Lemma 6

(described in Appendix B). Moreover, in Lemma 6, the role of σ is very important for
the reduction of pixel expansion. Different σ may give rise to different pixel expansion.
For example, if we take �1

0 = {{1, 2}, {2, 3}} and �2
0 = {{1, 3}, {1, 4}} (described in

Appendix C), then the pixel expansion will be 4, which is the same as ours. Therefore, our
construction is more efficient than Lemma 6.
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4.1 Finding common columns of (2, n)-VCS

Though there are many dedicated nice constructions available for the (2, n)-VCS which
even achieve the optimal pixel expansion, in this subsection we are going to pro-
vide an efficient construction of (2, n)-VCS, which comes as a direct consequence of
Algorithm 1, by finding the exact number of common columns in the initial basis
matrices.

Let us apply Algorithm 1 to (2, n) threshold access structure, then Algorithm 1 is reduced
to a simple grouping algorithm for (2, n) threshold access structure, which is illustrated
in Algorithm 2. Note that, for any basis �l

0 of Algorithm 2, l = 1, 2, . . . , n − 1, there
are a total of n − l elements and they have a common participant l. The “⊕”ed result of
any odd number of elements of �l

0 consists a common participant l and an odd number of
participants of {l + 1, l + 2, . . . , n}, so the first condition of Theorem 1 is met. The “⊕”ed
result of any even number of elements of �l

0 is an even number of participants of {l +
1, l + 2, . . . , n}, so the second condition of Theorem 1 is met. Then, we have the following
lemma.

Lemma 10 For (2, n)-VCS on a set P = {1, 2, . . . , n} of n participants with �0 = {X ⊆
P : |X| = 2}, there exists a strong (2, n)-VCS with mini = 2(n − 1).

Proof By Algorithm 2, we can group (2, n) threshold access structures into n − 1 feasible
bases �1

0, �
2
0, . . . , �

n−1
0 . The number of elements of �l

0 is n − l, l = 1, 2, . . . , n − 1. For
any �l

0, its set of participants is {l, l + 1, . . . , n}, and then there exists a VCS on it with
m = 2n−l+1−(n−l) = 2 by Theorem 1. Since there are n − 1 feasible bases, there exists a
strong (2, n)-VCS with mini = 2(n − 1) by Lemma 2.

In Lemma 10, mini denotes the initial pixel expansion obtained without deleting the
common columns in the initial basis matrices of (2, n)-VCS. Hence, we need to find the
exact number of common columns and obtain the reduced basis matrices with less pixel
expansion. We are now going to determine the exact number of common columns occurring
in the initial basis matrices for different feasible bases and find the exact value of the reduced
pixel expansion of the scheme. Towards finding the results, let us explore the structure of
initial basis matrices of the (2, n)-VCS constructed by our linear algebraic method.
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For any feasible basis �l
0 output by Algorithm 2, l = 1, 2, . . . , n − 1, let us consider the

following two systems of n − l linear equations over the binary field:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xl + xl+1 = 0
xl + xl+2 = 0
...

xl + xn−1 = 0
xl + xn = 0

(13)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xl + xl+1 = 1
xl + xl+2 = 1
...

xl + xn−1 = 1
xl + xn = 1

(14)

Let S0
l and S1

l be the Boolean matrices whose columns are just all possible solutions of
the above two systems (13) and (14) respectively. Thus,

S0
l =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
...

0 0
0 1
0 1
...

0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x1
...

xl−1
xl

xl+1
...

xn

and S1
l =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
...

0 0
0 1
1 0
...

1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x1
...

xl−1
xl

xl+1
...

xn

.

Note that the participants {1, 2, . . . , l − 1} is non-essential for the strong access structure
determined by �l

0, so we assign all of them the values (00).
Finally, by Lemma 2 we construct (2, n)-VCS with the initial basis matrices S0 = S0

1 ◦
S0
2 ◦ · · · ◦ S0

n−1 and S1 = S1
1 ◦ S1

2 ◦ · · · ◦ S1
n−1. Obviously, there exists one common column

(0 · · · 0 0 1 · · · 1)T
x1 · · · x1−1 x1 x1+1 · · · xn

in the two matrices S1
l and S0

l+1. As a result, there exist n−2

common columns in the initial basis matrices S0 and S1.
So, based on the above discussions and Lemma 10, the following theorem is given

immediately to obtain the reduced pixel expansion mred .

Theorem 2 For (2, n)-VCS on a set P = {1, 2, . . . , n} of n participants with �0 = {X ⊆
P : |X| = 2}, there exists a strong (2, n)-VCS with mred = n.

4.2 Comparison of pixel expansion between our construction and some
well-known constructions

We deal with any strong access structures by taking more equations at a time. In [1] the
author pointed out [Remark 4, Sect. 3] that one may take more than two equations at a time
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to reduce pixel expansion. In this subsection we will show that our construction, where more
equations are taken at a time, can get the smallest initial pixel expansion compared to some
well-known constructions. At the same time, by using the technique of deleting the common
columns from the initial basis matrices, it can also achieve the optimal pixel expansions in
most cases according to our experimental results.

Tables 1 and 2 summarize the comparisons of pixel expansion, including initial pixel
expansion and reduced pixel expansion, between our construction and some well-known
constructions for different access structures with up to four participants. In Table 1, mini

stands for the initial pixel expansion of our construction,mA
ini denotes the initial pixel expan-

sion obtained by taking two equations simultaneously of [1], mCA
ini denotes the initial pixel

expansion obtained by cumulative arrays of [2], mSS
ini denotes the initial pixel expansion

obtained by smaller schemes of [2]. In Table 2, mred stands for the reduced pixel expansion
of our construction, mA

red denotes the reduced pixel expansion obtained by taking two equa-
tions simultaneously of [1], mCA

red denotes the reduced pixel expansion by cumulative arrays
of [2], mSS

red denotes the reduced pixel expansion by smaller schemes of [2], mILP denotes
the optimal pixel expansion by ILP of [14, 16]. Table 3 lists the reduced pixel expansions of
our (k, n)-VCS for 2 ≤ k ≤ n ≤ 8, where the optimal pixel expansions by ILP of [14, 16]
are given in parentheses.

From Table 1, it is easy to see that our construction gets the smallest initial pixel expan-
sion compared to some well-known constructions. From Tables 2 and 3, we conclude that
the proposed construction achieves the optimal pixel expansions in most cases after deleting
the common columns from the initial basis matrices.

5 Open problems

In Table 2, our proposed construction for four access structures (�0 = {{1, 2}, {1, 3},
{2, 3}, {1, 4}}, �0 = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}, �0 = {{1, 2}, {1, 3}, {2, 4}}, �0 =
{{1, 2}, {1, 3, 4}, {2, 3, 4}}) does not achieve the optimal pixel expansion. In this section,
based on Theorem 1 we are going to present constructions case by case and finally achieve
the optimal pixel expansions for the above four access structures.

Example 3 Let us start with the strong access structure (�Qual, �Forb) with �0 =
{{1, 2}, {1, 3}, {2, 3}, {1, 4}}. Apply Algorithm 1 to group the collection �0 into two col-
lections, namely �1

0 = {{1, 2}, {1, 3}, {1, 4}} and �2
0 = {{2, 3}}. After this grouping

operation, we construct the initial basis matrices for �1
0 just like Example 2, and hence

S0
1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 1

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
1 0

⎤

⎥
⎥
⎦. For �2

0, the first and fourth participants are non-essential.

Different from Example 2, we assign the first participant the values (11) and the fourth

participant the values (00). Thus, S0
2 =

⎡

⎢
⎢
⎣

1 1
0 1
0 1
0 0

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

1 1
0 1
1 0
0 0

⎤

⎥
⎥
⎦. Finally, by con-

catenating the initial basis matrices respectively, we construct a (�Qual, �Forb)-VCS with
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Table 1 Comparison of initial pixel expansion between our construction and some well-known constructions
for different access structures having four participants at most

n �0 ZM mini mA
ini mCA

ini mSS
ini

3 {{1, 2}, {1, 3}} {{1}, {2, 3}} 2 2 2 4

{{1, 2}, {1, 3}, {2, 3}} {{1}, {2}, {3}} 4 4 4 6

{{1, 2, 3}} {{1, 2}, {1, 3}, {2, 3}} 4 4 4 4

4 {{1, 2}, {1, 3}, {2, 3}, {{1}, {2, 4}, {3, 4}} 4 6 4 8

{1, 4}}
{{1, 2}, {1, 3}, {2, 3}, {{1}, {2}, {3, 4}} 4 8 4 10

{1, 4}, {2, 4}}
{{1, 2}, {1, 3}, {2, 3}, {{1}, {2}, {3}, {4}} 6 8 8 12

{1, 4}, {2, 4}, {3, 4}}
{{1, 2}, {1, 3}, {1, 4}} {{1}, {2, 3, 4}} 2 4 2 6

{{1, 2}, {1, 3}, {1, 4}, {{1}, {2, 3}, {2, 4}, 6 6 8 10

{2, 3, 4}} {3, 4}}
{{1, 2}, {1, 3}, {2, 4}} {{2, 3}, {1, 4}, {3, 4}} 4 4 4 6

{{1, 2}, {1, 3}, {2, 4}, {{2, 3}, {1, 4}} 2 4 2 8

{3, 4}}
{{1, 2}, {1, 3}, {{2, 3}, {1, 4}, {2, 4}, 6 6 8 8

{2, 3, 4}} {3, 4}}
{{1, 2}, {3, 4}} {{1, 3}, {2, 3}, {1, 4}, 4 4 8 4

{2, 4}}
{{1, 2}, {1, 3, 4}} {{1, 3}, {1, 4}, 4 4 4 6

{2, 3, 4}}
{{1, 2}, {1, 3, 4}, {{1, 3}, {2, 3}, {1, 4}, 8 8 16 10

{2, 3, 4}} {2, 4}, {3, 4}}
{{1, 2, 3}, {1, 2, 4}} {{1, 2}, {1, 3, 4}, 4 4 4 8

{2, 3, 4}}
{{1, 2, 3}, {1, 2, 4}, {{1, 2}, {1, 3}, {1, 4}, 8 8 8 12

{1, 3, 4}} {2, 3, 4}}
{{1, 2, 3}, {1, 2, 4}, {{1, 2}, {1, 3}, {2, 3}, 8 8 32 16

{1, 3, 4}, {2, 3, 4}} {1, 4}, {2, 4}, {3, 4}}
{{1, 2, 3, 4}} {{1, 2, 3}, {1, 2, 4}, 8 8 8 8

{1, 3, 4}, {2, 3, 4}}

�0 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}}, where the basis matrices are S0 =

⎡

⎢
⎢
⎣

0 1 1 1
0 1 0 1
0 1 0 1
0 1 0 0

⎤

⎥
⎥
⎦ and

S1 =

⎡

⎢
⎢
⎣

0 1 1 1
1 0 0 1
1 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦. By deleting the common column (1000)T from the initial basis matrices

S0 and S1, we obtain the optimal pixel expansion 3.



Multimed Tools Appl (2017) 76:14511–14533 14525

Table 2 Comparison of reduced pixel expansion between our construction and some well-known construc-
tions for different access structures having four participants at most

n �0 ZM mred mA
red mCA

red mSS
red mILP

3 {{1, 2}, {1, 3}} {{1}, {2, 3}} 2 2 2 4 2

{{1, 2}, {1, 3}, {2, 3}} {{1}, {2}, {3}} 3 3 3 6 3

{{1, 2, 3}} {{1, 2}, {1, 3}, {2, 3}} 4 4 4 4 4

4 {1, 2}, {1, 3}, {2, 3}, {{1}, {2, 4}, {3, 4}} 4 5 3 8 3

{1, 4}
{1, 2}, {1, 3}, {2, 3}, {{1}, {2}, {3, 4}} 3 6 3 10 3

{1, 4}, {2, 4}
{1, 2}, {1, 3}, {2, 3}, {{1}, {2}, {3}, {4}} 4 7 4 12 4

{1, 4}, {2, 4}, {3, 4}
{{1, 2}, {1, 3}, {1, 4}} {{1}, {2, 3, 4}} 2 4 2 6 2

{1, 2}, {1, 3}, {1, 4}, {1}, {2, 3}, {2, 4}, 6 5 4 10 4

{2, 3, 4} {3, 4}
{{1, 2}, {1, 3}, {2, 4}} {{2, 3}, {1, 4}, {3, 4}} 4 4 3 6 3

{1, 2}, {1, 3}, {2, 4}, {{2,3},{1,4}} 2 4 2 8 2

{3, 4}
{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, 5 5 5 8 5

{2, 3, 4} {3, 4}
{{1, 2}, {3, 4}} {1, 3}, {2, 3}, {1, 4}, 4 4 5 4 4

{2, 4}
{{1, 2}, {1, 3, 4}} {1, 3}, {1, 4}, 4 4 4 6 4

{2, 3, 4}
{1, 2}, {1, 3, 4}, {1, 3}, {2, 3}, {1, 4}, 6 6 7 10 5

{2, 3, 4} {2, 4}, {3, 4}
{{1, 2, 3}, {1, 2, 4}} {1, 2}, {1, 3, 4}, 4 4 4 8 4

{2, 3, 4}
{1, 2, 3}, {1, 2, 4}, {1, 2}, {1, 3}, {1, 4}, 6 6 6 12 6

{1, 3, 4} {2, 3, 4}
{1, 2, 3}, {1, 2, 4}, {1, 2}, {1, 3}, {2, 3}, 6 6 9 16 6

{1, 3, 4}, {2, 3, 4} {1, 4}, {2, 4}, {3, 4}
{{1, 2, 3, 4}} {1, 2, 3}, {1, 2, 4}, 8 8 8 8 8

{1, 3, 4}, {2, 3, 4}

Example 4 For the strong access structure (�Qual, �Forb) with �0 = {{1, 2}, {1, 3},
{1, 4}, {2, 3, 4}}, apply Algorithm 1 to group the collection �0 into two collections, namely
�1
0 = {{1, 2}, {1, 3}, {1, 4}} and �2

0 = {{2, 3, 4}}. We can construct the initial basis matri-

ces for �1
0 like Example 2, and hence S0

1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 1

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
1 0

⎤

⎥
⎥
⎦. For �2

0, the first

participant is non-essential. We assign the first participant the values (11). Thus, S0
2 =
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Table 3 Reduced pixel expansions of our (k, n)-VCS

k\n 2 3 4 5 6 7 8

2 2(2) 3(3) 4(4) 5(4) 6(4) 7(5) 8(5)

3 4(4) 6(6) 8(8) 10(10) 12(12) 14(14)

4 8(8) 15(15) 24(23) 35(28) 48(32)

5 16(16) 30(30) 48(48) 70(70)

6 32(32) 70(70) 128(120)

7 64(64) 140(140)

8 128(128)

⎡

⎢
⎢
⎣

1 1 1 1
0 0 1 1
0 1 0 1
0 1 1 0

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

1 1 1 1
0 0 1 1
0 1 0 1
1 0 0 1

⎤

⎥
⎥
⎦. Finally, by concatenating the initial basis matrices

respectively, we construct a (�Qual, �Forb)-VCS with �0 = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}},

where the basis matrices are S0 =

⎡

⎢
⎢
⎣

0 1 1 1 1 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0

⎤

⎥
⎥
⎦ and S1 =

⎡

⎢
⎢
⎣

0 1 1 1 1 1
1 0 0 0 1 1
1 0 0 1 0 1
1 0 1 0 0 1

⎤

⎥
⎥
⎦. By delet-

ing the common columns (1111)T and (1000)T from the initial basis matrices S0 and S1,
we obtain the optimal pixel expansion 4.

Example 5 For the strong access structure (�Qual, �Forb) with �0 = {{1, 2}, {1, 3},
{2, 4}}, apply Algorithm 1 to group the collection �0 into two collections, namely �1

0 =
{{1, 2}, {1, 3}} and �2

0 = {{2, 4}}. For �1
0, the fourth participant is non-essential. We assign

the fourth participant the values (00). Thus, we have S0
1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 0

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
0 0

⎤

⎥
⎥
⎦.

For �2
0, the first and third participants are non-essential. We assign the first participant

the values (11) and the third participant the values (00). Thus, S0
2 =

⎡

⎢
⎢
⎣

1 1
0 1
0 0
0 1

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

1 1
0 1
0 0
1 0

⎤

⎥
⎥
⎦. Finally, by concatenating the initial basis matrices respectively, we construct a

(�Qual, �Forb)-VCS with �0 = {{1, 2}, {1, 3}, {2, 4}}, where the basis matrices are S0 =⎡

⎢
⎢
⎣

0 1 1 1
0 1 0 1
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ and S1 =

⎡

⎢
⎢
⎣

0 1 1 1
1 0 0 1
1 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦. By deleting the common column (1000)T from the

initial basis matrices S0 and S1, we obtain the optimal pixel expansion 4.
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Example 6 For the strong access structure (�Qual, �Forb) with �0 = {{1, 2}, {1, 3, 4},
{2, 3, 4}}, apply Algorithm 1 to group the collection �0 into two collections, namely
�1
0 = {{1, 2}, {1, 3, 4}} and �2

0 = {{2, 3, 4}}. For �1
0, we construct the initial basis matrices

by solving the corresponding linear equations, and we have S0
1 =

⎡

⎢
⎢
⎣

0 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 0 1 1
1 1 0 0
0 1 0 1
1 0 0 1

⎤

⎥
⎥
⎦. For �2

0, the first participant is non-essential and we construct the initial basis

matrices by assigning the first participant the values (0100) for S0
2 and (0001) for S1

2 , thus

S0
2 =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1

⎤

⎥
⎥
⎦. Finally, by concatenating the initial basis matri-

ces respectively, we construct a (�Qual, �Forb)-VCS with �0 = {{1, 2}, {1, 3, 4}, {2, 3, 4}},

where the basis matrices are S0 =

⎡

⎢
⎢
⎣

0 0 1 1 0 1 0 0
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0

⎤

⎥
⎥
⎦ and S1 =

⎡

⎢
⎢
⎣

0 0 1 1 0 0 0 1
1 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1

⎤

⎥
⎥
⎦.

By deleting the common column (1011)T , (0101)T and (0110)T from the initial basis
matrices S0 and S1, we obtain the optimal pixel expansion 5.

Remark 3 In general, we construct a VCS based on Lemma 2, where the non-essential
participants are assigned the value 0. However, the above examples do not follow Lemma 2
and achieve the optimal pixel expansions. A natural question for future studies may be
asked. For the non-essential participants, how to assign them the values 0 or 1 to achieve
the optimal pixel expansion, especially for (2, n) threshold access structure in Table 3. This
question may lead to another problem that how to assign the non-essential participants the
values 0 or 1 to guarantee that we can construct a VCS for the corresponding strong access
structure by the concatenation of matrices.

6 Conclusion

In this paper we mainly deal with the following two issues: taking more equations simulta-
neously to construct the initial basis matrices and finding exact number of common columns
in the initial basis matrices. For the first issue, we give a useful theory (Theorem 1), by
which we could exploit the linear algebraic technique to construct efficient VCS for general
access structures. For the second issue, we obtain the exact number of common columns
in the initial basis matrices of (2, n)-VCS. Though our proposed construction based on
Theorem 1 may not achieve the optimal pixel expansions for some cases, our theory lays
a sound and constructive foundation for the minimization of pixel expansion for general
access structures in the algebraic aspect of VCS.
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Appendix A

Let us first group the set �0 = {{1, 2}, {1, 3}, {1, 4}} into two collections, namely �1
0 =

{{1, 2}, {1, 3}} and �2
0 = {{1, 4}}. For �1

0, consider the following two systems of two linear
equations over the binary field: {

x1 + x2 = 0
x1 + x3 = 0

(15)

and {
x1 + x2 = 1
x1 + x3 = 1

(16)

Let S0
1 and S1

1 be the Boolean matrices whose columns are just all possible solutions of

(15) and (16), respectively. Thus, S0
1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 0

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
0 0

⎤

⎥
⎥
⎦. Note that the fourth

participant is non-essential for the strong access structure determined by �1
0, so we assign it

the values (00).
For �2

0, consider the following two systems of one linear equations over the binary field:

x1 + x4 = 0 (17)

and
x1 + x4 = 1 (18)

Let S0
2 and S1

2 be the Boolean matrices whose columns are just all possible solutions of

(17) and (18), respectively. Thus, S0
2 =

⎡

⎢
⎢
⎣

0 1
0 0
0 0
0 1

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

0 1
0 0
0 0
1 0

⎤

⎥
⎥
⎦. Note that the second

and third participants are non-essential for the strong access structure determined by �2
0, so

we assign both of them the values (00).
Finally, by Lemma 2 we construct a (�Qual, �Forb)-VCS on a set of four participants

having �0 = {{1, 2}, {1, 3}, {1, 4}} with the basis matrices S0 =

⎡

⎢
⎢
⎣

0 1 0 1
0 1 0 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ and S1 =

⎡

⎢
⎢
⎣

0 1 0 1
1 0 0 0
1 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦. It gives the pixel expansion 4.

Appendix B

Let us first group the collection �0 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}} into two collections,
namely �1

0 = {{1, 2}, {1, 3}} and �2
0 = {{2, 3}, {1, 4}}. For �1

0, consider the following two
systems of two linear equations over the binary field:

{
x1 + x2 = 0
x1 + x3 = 0

(19)
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and
{

x1 + x2 = 1
x1 + x3 = 1

(20)

Let S0
1 and S1

1 be the Boolean matrices whose columns are just all possible solutions of

(19) and (20), respectively. Thus, S0
1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 0

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

0 1
1 0
1 0
0 0

⎤

⎥
⎥
⎦. Note that the fourth

participant is non-essential for the strong access structure determined by �1
0, so we assign it

the values (00).
For �2

0, consider the following two systems of two linear equations over the binary field:

x2 + x3 = 0
x1 + x4 = 0

(21)

and

x2 + x3 = 1
x1 + x4 = 1

(22)

Let S0
2 and S1

2 be the Boolean matrices whose columns are just all possible solutions of

(21) and (22), respectively. Thus, S0
2 =

⎡

⎢
⎢
⎣

0 0 1 1
0 1 0 1
0 1 0 1
0 0 1 1

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

⎤

⎥
⎥
⎦.

Finally, by Lemma 2 we construct a (�Qual, �Forb)-VCS on a set of four participants

having �0 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}} with the basis matrices S0 =

⎡

⎢
⎢
⎣

0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 0 1
0 0 0 0 1 1

⎤

⎥
⎥
⎦

and S1 =

⎡

⎢
⎢
⎣

0 1 0 0 1 1
1 0 0 1 0 1
1 0 1 0 1 0
0 0 1 1 0 0

⎤

⎥
⎥
⎦. It gives the pixel expansion 5, obtained by deleting the common

column (0110)T from the initial basis matrices S0 and S1.

Appendix C

Let us first group the set �0 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}} into two collections, namely
�1
0 = {{1, 2}, {2, 3}} and �2

0 = {{1, 3}, {1, 4}}. For �1
0, consider the following two systems

of two linear equations over the binary field:
{

x1 + x2 = 0
x2 + x3 = 0

(23)

and
{

x1 + x2 = 1
x2 + x3 = 1

(24)
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Let S0
1 and S1

1 be the Boolean matrices whose columns are just all possible solutions of

(23) and (24), respectively. Thus, S0
1 =

⎡

⎢
⎢
⎣

0 1
0 1
0 1
0 0

⎤

⎥
⎥
⎦ and S1

1 =

⎡

⎢
⎢
⎣

1 0
0 1
1 0
0 0

⎤

⎥
⎥
⎦. Note that the fourth

participant is non-essential for the strong access structure determined by �1
0, so we assign it

the values (00).
For �2

0, consider the following two systems of two linear equations over the binary field:

x1 + x3 = 0
x1 + x4 = 0

(25)

and
x1 + x3 = 1
x1 + x4 = 1

(26)

Let S0
2 and S1

2 be the Boolean matrices whose columns are just all possible solutions of

(25) and (26), respectively. Thus, S0
2 =

⎡

⎢
⎢
⎣

0 1
0 0
0 1
0 1

⎤

⎥
⎥
⎦ and S1

2 =

⎡

⎢
⎢
⎣

0 1
0 0
1 0
1 0

⎤

⎥
⎥
⎦. Note that the second

participant is non-essential for the strong access structure determined by �2
0, so we assign it

the values (00).
Finally, by Lemma 2 we construct a (�Qual, �Forb)-VCS on a set of four participants

having �0 = {{1, 2}, {3, 4}, {2, 3}, {2, 4}} with the basis matrices S0 =

⎡

⎢
⎢
⎣

0 1 0 1
0 1 0 0
0 1 0 1
0 0 0 1

⎤

⎥
⎥
⎦ and

S1 =

⎡

⎢
⎢
⎣

1 0 0 1
0 1 0 0
1 0 1 0
0 0 1 0

⎤

⎥
⎥
⎦. It gives the pixel expansion 4.
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