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Abstract The measurement of similarity between two motion trajectories is one of the
fundamental task for motion analysis, perception and recognition. Previous research focus
on 2D trajectory similarity measurement. With the advent of 3D sensors, it is possible to
collect large amounts of 3D trajectory data for more precise motion representation. As
trajectories in 3D space may often exhibit a similar motion pattern but may differ in location,
orientation, scale, and appearance variations, the trajectory descriptor must be invariant to
these degrees of freedom. Shape context is one of the rich local shape descriptors can be used
to represent the trajectory in 2D space, however, rarely applied in the 3D motion trajectory
recognition field. To handle 3D data, in this paper, we first naturally extend the shape context
into the spatiotemporal domain by adopting a spherical neighborhood, and named it 3D Shape
Context(3DSC). To achieve better global invariant on trajectories classification, the adaptive
outer radius of 3DSC for extracting 3D Shape Context feature is proposed. The advantages of
our proposed 3D shape context are: (1) It is invariant to motion trajectories translation and
scale in the spatiotemporal domain; (2) It contains the whole trajectory points in the 3DSC ball
volume, thus can achieve global information representation and is good for solving sub-
trajectories problem; (3) It is insensitive to the appearance variations in the identical meaning
trajectories, meanwhile, can greatly discriminate the distinct meaning trajectories. In trajectory
recognition phase, we consider a feature-to-feature alignment between motion trajectories
based on dynamic time warping and then use the one nearest neighbor (1NN) classifier for
final accuracy evaluation. We test the performance of proposed 3D SC-DTW on UCI ASL
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large dataset, Digital hand dataset and the experimental results demonstrate the effectiveness of
our method.

Keywords Gesture trajectory . Shape context . Dynamic timewarping . Gesture Classification

1 Introduction

Motion trajectory analysis is one of fundamental tasks in many types of research area, such as
activity recognition [19, 21, 33], robots action [15], anomaly detection [22], video surveillance
[20], etc.

The studies in motion trajectory classification can be divided into three main categories
with respect to the classification scheme: model based, feature based and trajectory based.
Model based [11] classification aims to build a parameterized model for a collection of motion
trajectories, and classifying a new motion trajectory by determining the model that best fits to
it. The statistical models such as Gaussian, Markov and Hidden Markov Models [14], Random
Forest [18], Neural network are frequently used in this category. In the feature based studies
[28], the high dimensionality of motion trajectories are transformed into a set of features with
the help of suitable feature extraction methods. For example, Lin and Hsieh [16] develop a
Kernel-based representation for motion trajectory retrieval and classification. Bashir, et al.
[1]propose a Principle Component Analysis-based approach for trajectory indexing and
retrieval. Although such methods state above can optimally give a set of features, an extensive
survey claims that they become unfeasible for out-of-core processing which is usually the case
for large datasets[6].

Our motion trajectory classification framework falls into the trajectory-based category. In
this category, two of the fundamental problems are trajectories representation and the se-
quences alignment. An effective representation can yield significantly better performance than
the raw trajectory data. Moreover, alignment methods can also be used to improve the
performance of a classifier by integrating the trajectories representation into the alignment.

A basic way of comparing two trajectories is use the original data which rely on the
absolute positions of motion, yet ineffective in computation and invariant to motion trajectory
translation and scale [8]. Hence, the most challenge in motion trajectory classification is the
specific trajectory adjustments either in alignment or representation steps. To maintain the
scale and translation invariant during alignment, the raw trajectories data are often converted
in the form of geometric invariant signatures such as curvature, torsion, and their derivatives,
etc. To develop an effective system for real-world applications, many researchers have
devoted themselves to find a compact yet discriminative representation for trajectories. In
the existing work, Yang et al. [31] represented trajectories in segment level rather than point
level, and index the trajectories by four segment sequences classes to recognize them.
However, this methods can only represent simple shapes and are inefficient in complex and
long term trajectories. In Wu et al’ s [26] paper, three geometric invariant signature descrip-
tions for motion characterization are developed. Such flexible descriptions give the signature
high functional adaptability to meet various application requirements in trajectory represen-
tation, perception and recognition, however, computing three differential features and two
global features for each discrete point is computationally expensive. Also, reliable finite
difference estimation of higher order derivatives is difficult due to their high sensitivity to
noise. Yang et al. [29, 32] also present a mixed invariant signature descriptor in the basis of
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differential feature with global invariants for motion perception and recognition, however, it
has the same problems with Wu’s method.

Dynamic time warping [4, 13, 30] is the most representative non-linear mapping method
which can handle the local time shifting by finding an optimal path with minimal sum of
distance from a pairwise distance matrix. In the traditional perspective, the pointwise based
alignment usually resorts to use the local information which is adjacent to each point [12].
Currently, Z, Zhang [34] have recently suggested using shape context [2] as a rich local shape
descriptor to replace the raw observed position value in conventional DTW in 2D space. To
keep the locality of a shape context, they set the outer radius of shape context to one tenth of
the length of the trajectories. As an alternative, this approach generates a more feature-to-
feature alignment between motion trajectories and thus serves as a robust similarity measure.
However, this matching mechanism cannot handle a situation that a trajectory partially similar
with its sub-trajectory. In addition, from a shape point of view, ignoring the relationship of
each point to its global sequence context, are largely unstable and incline to result in
pathological alignment [25]. In our point of view, to build effective trajectory recognition, it
will be helpful to refer to the concept of global shape descriptor on each trajectory point, and it
will outperform the local descriptor. For this purpose, we propose an adaptive outer radius of
3D shape context mechanism. During trajectory feature representation, the global trajectories
information are extracted with the largest point-wise distance in each trajectory equals to the
outer most circle radius of shape context descriptor. In this way, the global information of each
trajectory point can be included and extracted as pointwise feature for trajectories alignment.

Another challenge of motion trajectory classification is that the appearance variations
among the identical meaning trajectories may cause false discrimination. In the most motion
trajectory applications, such trajectories perturbations are emerged because these trajectories
are drawn repeatedly by different users. As far as we study, most of researchers are not
conscious of this problem. In our previous work [17], the 2D shape order context descriptor
combined with DTW was proposed. It is greatly insensitive to trajectories perturbations and
highly invariant to trajectories scale and translation. However, this previous work did not refer
to the 3D trajectories.

As we state above, motion trajectory classification approaches in 2D space are wildly
studied and already achieves better performance. It should be noted that emphasize on using
projected 2D trajectory in some kind of viewpoint, may lost the authentic meaning in the 3D
space. Compared with projected 2D trajectories, more rich information can be drawn from 3D
trajectories in spatiotemporal domain and therefore better performance can be achieved in
trajectory-based schemes. Also, with more and more complicate as behaviors and activities are
performed, 3D trajectory analysis should be further considered. Based on 2D shape context
descriptor, the extension of 3D shape context descriptor has been proposed in [9]. It relies on a
specific subdivision of the spherical volume around the trajectories point that needs to be
described. Matthias et al. [10] propose to use of 3D shape context to recognize the spatial and
temporal details inherent in human actions. However, such 3D shape context descriptors is not
restrictively in 3D space, but in 2D space plus time domain. S.H Zhao et al. [35] generalized
strategy for dynamic 3D depth data matching and apply this strategy in action retrieval task. In
Zhao’s paper, they use nine planes to segment the ball-like descriptor into 48 homogeneous
regions, resulting in the equal probability of the bins for capturing the contour points in each
static depth frame. And then employ dynamic time warping (DTW) to measure the temporal
similarity between two 3D dynamic depth sequences. Most previous works on 3D shape
context are mainly used in the application of static object such as pose estimation[23], 3D
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object recognition [3] and registration [27], etc, however, rarely apply in motion trajectory
classification.

In this paper, we present a novel feature extraction method for motion trajectories. The
proposed approach is very straightforward and simplicity for implementation. It takes a motion
trajectory of (x, y, z) coordinates, as the input data. Then we perform a two-stage of
normalization to yield a compact trajectories. The first stage implicitly normalize the raw
trajectories to the same points length. The second stage, called trajectory span distance
normalization, aims to normalize points coordinates by dividing the largest distance which is
calculated from any of pointwise in each trajectories. After preprocessing, we extend the
traditional shape context to spatiotemporal to capture the global representation for each 3D
trajectory point. A series of the resulting representation is guaranteed to be most efficient
feature for trajectories alignment by using dynamic time warping. Finally, the trajectories are
classified by one nearest neighbor (1NN) classifier. The proposed motion trajectory classifi-
cation method not only remarkably reduces the miss matching problem, thus improves the
classification accuracy, but also effectively avoids the trajectories appearance perturbation and
can be greatly invariant to motion trajectories scale and translation.

The rest of our paper is organized as follow. Section 2 presents a framework of our
proposed method. In Section 3, we first normalize the trajectories to the same length, then
briefly review the shape context descriptor and explicitly expatiated the proposed 3D shape
context. In Section 4, the trajectory alignment method based on DTW is introduced and the
combination of 3D-SC and DTW for trajectory recognition is elaborated. This paper is
concluded in Section 6.

2 Overview of the framework

The main idea behind our motion trajectory classification approach is to obtain a series of
global 3D trajectory shape descriptors in spatiotemporal domain, to replace the raw observed
values in finding the alignment between two motion trajectories. Figure 1 shows the block
diagram of the proposed method. Our representation method for 3D motion trajectory is
composed of three functional units, namely pre-processing, 3D shape context representing
and dynamic time warping. In the flow diagram, during the pre-processing step, trajectories are
firstly normalized to the same length and then each of the trajectory points coordinate is
divided by the maximum pointwise Euclidean distance. The pre-processing results are then
represented by 3D shape context descriptor in spatiotemporal domain. In the resulting feature
space, we integrate the 3D SC descriptor into a dynamic time warping framework for feature-
wise aligning and finally use the standard nearest-neighbor algorithm for trajectory
classification.

Gesture Trajectory

Data Trajectory

Length

Normalization

Pre-Processing Feature Extraction

3D Shape

Context

Dynamic

Time

Warping

Nearest Neighbor

Algorithm

Classification

Trajectory

Span Distance

Normalization

Fig. 1 Block diagram of the 3D shape context based gesture trajectory classification algorithm
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3 Trajectory Pre-processing and representation

3.1 Pre-processing

Motion trajectory length normalization is important because of the fact that the majority of
trajectories recognition algorithms are need to work with the same length of trajectories points.
Since the trajectories are discrete sequences, the number of sampling points may differ from
one trajectory to another. Also, the performance of 3D shape context feature will be affected by
the distance inequality of two adjacent trajectory points. To avoid directly calculating the 3D-
SC feature on a row data, we need to normalize the length of trajectories ahead. This trajectory
length normalization based on sampling several neighboring points will reduce the sensitivity
of the 3D-SC feature to the trajectory points’ intervals. Also, using a fixed amount of points
intervals can guarantee that all the identical trajectories in different scales can be represented
by the unified histograms.

Given L sampling points along a 3D trajectory, we can represent the set of points as

xk ; yk ; zkf gLk¼1 ð1Þ
where {xk, yk, zk} denote the {x, y, z} coordinates of the k − th point on the trajectory respec-
tively. Some examples of 3D trajectories in the compact Australian Sign Language dataset are
shown in Fig. 2.

The starting and ending points of gesture trajectory are manually drawn and the stationary
points caused by the signer’s holding behavior, are eliminated by considering the relationship
between adjacent points' positions.In our experiments, these stationary points can be detected
by examining the condition of

xk−xk−Δkj j þ yk−yk−Δkj j þ zk−zk−Δkj j≤ε ð2Þ
where Δk = 2 and ε = 0.01.

Fig. 2 3D gesture trajectories from ASL dataset
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A parametric spline approximation [5] is implemented to smooth the trajectory curve. Then,
we perform resampling so that the resampled trajectories are of equal length as shown in
Fig. 3. In order to finding the optimized trajectory length for trajectory representation, in the
experiment section, we employ many different normalized trajectories length for final classi-
fication. As a result, the optimization trajectory length can be approximately set at 70 sample
points after experiment evaluation.

For the second step of pre-processing, we proposed a trajectory span distance normalization
method, which transform each 3D trajectory to a common domain.

Given a set of resample points xk ; yk ; zkf gL
0

k¼1 from the previous step, normalized coordi-
nates are given by

x
0
k ; y

0
k ; z

0
k

n oL
0

k¼1
¼ xk

dmax
;
yk
dmax

;
zk
dmax

� �L
0

k¼1

ð3Þ

where dmax ¼ arg max
i; j∈L0

i≠ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x j
� �2 þ yi−y j

� �2
þ zi−z j
� �2r( )

In such a case, the distance of any two points is involved in the range between 0 and 1.
As a result, the scale variations contained in the raw trajectory data can be effectively
removed.

3.2 The review of shape context

In this section, we first review the shape context descriptor [2] which can be utilized in
representing a object point by measuring the distribution of relative positions of neighboring
points. Obviously, the full set of vectors used as shape descriptors contains global details since
it configures the entire shape relative to the reference points. This set of vectors is identified as
a highly discriminative descriptor which can represent the shape distribution over relative
positions. The shape context of pi is defined as a coarse histogram hi of the relative coordinates
of the remaining n − 1 points:

hi kð Þ ¼ # q≠pi : q−pið Þ∈bin kð Þf g ð4Þ

Fig. 3 Example of gesture trajectory normalization; the upper line shows the original trajectory with different
points number; the bottom line shows the normalized trajectory with the same points number

15418 Multimed Tools Appl (2017) 76:15413–15434



The bins are uniform in log-polar space, making the descriptor more sensitive to the
positions of nearby sample points than to those of points farther away. The histogram similarity
of pair wise points (pi, qj) between two trajectories can be denoted as follow:

Ci j ¼ 1

2

XK
k¼1

hi kð Þ−hj kð Þ	 
2
hi kð Þ þ hj kð Þ ð5Þ

where hi(k) and hj(k) denote the K-bin normalized histogram at pi and qi, respectively.

3.3 The adaptive 3D shape context descriptor

Based on shape context, the 3D shape context descriptor is very straightforward. In 2D shape
context, a point histogram is built based on 2D log-polar coordinate system as shown in Fig. 4
(left).In 3D shape context, the pervious descriptor is extended to 3D space by building a point
histogram based on 3D spherical coordinate system as shown in Fig. 4 (right). Denoting an
origin on one of a trajectory point, the 3D shape context captures the 3D spatial and 1D
temporal distribution of all other trajectory points around it. Along radial direction, bins are
arranged uniformly in log-polar space which makes it more sensitive to positions of nearby
points than to those of remaining points farther away. If there are i bins for the radius,j bins for
azimuth and k bins for elevation, the 3D shape context is partitioned to i × j × k bins in total.

The traditional coordinate representation denotes each position of trajectory points as x, y, z
in Cartesian coordinate. It can be represented in the spherical coordinate as follow:

x ¼ rsinθcosθ
y ¼ rsinθsinφ
z ¼ rcosθ

8<
: ð6Þ

Generally, a 3D shape context descriptor can be described by five parameters: the number
of θ bins along the azimuth dimension, the number of log(r) bins along the radial dimensions,
the number of φ bins along the elevation dimension, outer radius, and inner radius. Outer
radius is the radius of the outer most circle in 3D SC ball, and the inner radius is the radius of
the inner most circle in 3DSC ball. The (x, y, z) position of each point in the Cartesian
coordinate can be converted to (r, θ,φ) in the spherical coordinate as follow:

x

y

Fig. 4 The illustration of log-polar coordinates in 2D (left) and 3D (right) space
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2z2

p
θ ¼ arccos

z
r

� �

φ ¼ actan
y
x

� �

8>><
>>:

ð7Þ

Obviously, the outer radius controls the 3DSC ball volume. It restricts the number of
trajectory points that involve in each 3D shape context. It also indicates the width of the time
window from the perspective of time series. In previous works, there are two main kinds of
strategies to determine the outer radius in 2D shape context: one is to set the outer radius to one
tenth of the motion trajectories length, which means that at most 10 % of the points will be
covered by each shape context. The other is compute the average distance of any two points in
the motion trajectories and take it as the maximum size of the outer radius. In our work, instead
of using 3DSC to extract the local information from each trajectory, the global information of
the whole motion trajectory is concerned, as shown in Fig. 5.

In Eq. (7), we treat a origin in the spherical coordinate the same as a origin in the Cartesian
coordinate. However, for the 3DSC feature extraction, each trajectory point should be treated
as a reference point with origin translate from (0,0,0) to the current point position (xn, yn, zn).
Hence, for 3DSC descriptor representation, the parameter of each reference point can be
expressed as:

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr−xnð Þ2 þ yr−ynð Þ2 þ zr−znð Þ2

q

θ ¼ arccos
zr−zn
rn

� �

φ ¼ arctan
yr−yn
xr−xn

� �

8>>>>><
>>>>>:

ð8Þ

where (xr, yr, zr) denote the all other trajectory points aside from the current point position (xn,
yn, zn). Consequently, for the n-th trajectory point (xn, yn, zn) as the 3DSC descriptor’s origin,
the corresponding outer radius can be expressed as follow:

rmax
n ¼ argmax

xr; yr; zrð Þ∈L0∪
xr; yr; zrð Þ≠ xn; yn; znð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr−xnð Þ2 þ yr−ynð Þ2 þ zr−znð Þ2

q� �
ð9Þ

Fig. 5 Local 3D shape context (left) vs. Global 3D shape context (right)on gesture trajectory representation
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As seen from above equation, the adaptive outer radius sets rmax
n

 �L
0

n¼1 in a trajectory can be
established by assembling each outer radius which generate from each trajectory point. We

would like to point out that although different length of outer radius rmax
n

 �L
0

n¼1 are yielded by

setting different 3DSC ball origin, all the trajectory points can also be involved in each 3D
shape context compactly.

In our trajectory representation strategy, each outer radius equals to the local maximum
trajectory span distance which calculated according to the current 3DSC origin. In addition, a
spherical grid is defined by means of subdivisions along the azimuth, elevation and radial
dimensions. To account for generality, the number of subdivisions can be different along each
dimension. In our experiments, the azimuth and elevation dimensions are equally divided into

12 and 8 spaces respectively. Typically, the outer radius of rmax
n

 �L
0

n¼1 in each trajectory is 2k

times larger than the inner radius. Hence, the radial dimension is logarithmically divided into 5
spaces, which means k = 5. For the 3DSC histogram computation, each bin accumulates a
weighted sum of the trajectory points number falling thereby.

The benefit of using adaptive outer radius mechanism is that it makes it possible for
generating the global information which can increase the diversity of pairwise points during
distance calculation. Furthermore, the global 3D shape context can give a better discrimination
for matching a motion trajectory with its sub trajectory. In this case, the pairwise points with
global information give relatively higher matching score for the same meaning trajectories, and
reversely give relatively lower matching score for different meaning trajectories but which
partially has the same shape appearance from one to another.

From a shape point of view, trajectories of the same class could be seen as similar shapes
but with small non-rigid shape deformations, as shown in Fig. 6. 3D Shape contexts are
extremely rich descriptors in that they can give appropriate tolerances for these trivial
deformations, meanwhile, are only sensitive to those discriminative deformations. In contrast,
trajectories of different classes always contain deformations large enough to be grasped by 3D
shape contexts.

Fig. 6 Gesture digital B6^ under shape deformations perform by different signers
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4 Gesture trajectory alignment

4.1 Dynamic time warping

In time series analysis, dynamic time warping (DTW) is a well-established algorithm for
comparing temporal sequences which may vary in time or speed. DTW addresses the main
problem of aligning two sequences in order to get the most suitable distance measure of their
overall difference. Compared with Euclidean distance, DTW can overcome the time distortion
problem by finding a time-flexible alignment between two given time series, where the total
cumulative distance is minimized. Each point of the time series is aligned to at least one point
of another time series.

More specifically, suppose X = {x1, x2,⋯ xm} ∈Rm and Y = {y1, y2,⋯ yn} ∈Rn denote two
time series with length m and n, respectively. To align two sequences using DTW, an m by n
matrix is construct. The value of the (ith, jth) cell of the matrix is the base distance between the
two feature vectors xi and yi, namely δ(xi, yi).

A warping path W defines an alignment between X and Y can be formally written as W =
w1,⋯,wT, where max(m, n) ≤ T ≤m + n − 1. Each wt = (i, j) specifies that feature vector xi of
the X sequence is matched with Y feature vector yi. The warping path is typically subject to
several constraints:

Boundary conditions: w1 = (1, 1) and wT = (m, n);
Temporal continuity: Given wt = (a, b), and wt − 1 = (a′, b′), then a − a′ ≤ 1 and b − b′ ≤ 1;
Temporal monotonicity: Given wt = (a, b) and wt − 1 = (a′, b′), where a − a′ ≥ 0 and b − b′ ≥

0.
From the point of view of above restrictions, an exponential number of warping paths can be

found; however, DTW computes the optimal path that will minimize the following warping cost:

DTW X;Yð Þ ¼ min
XT

t¼1

δ wkð Þ
( )

ð10Þ

To find the optimized path, DTW can be recursively calculated using dynamic programming
which computes the cumulative distanceDTW(i, j) with the distance δ(xi, yi) found in the current
cell and the minimum of the cumulative distances of the adjacent elements as the follow:

DTW i; jð Þ ¼ δ xi; yið Þ þmin DTW i−1; j−1ð Þ;DTW i; j−1ð Þ;DTW
�
i−1; j

� �
ð11Þ

In this way, we can find the best warping pathW∗ and the global matching scoreD∗ by back
tracing the cumulative distance matrix.

4.2 Using 3D shape context in DTW

The standard dynamic time warping typically using successive sequence locations as the
trajectory feature for the cost matrix computation. In our proposed method, each element of
the cost matrix is acquired by computing the histogram similarity between two 3D shape
context. The new base distance between each pair of points can be defined as:

δ3D−SC p; qð Þ≡Cpq ð12Þ
where Cpq is defined in Eq. (5); The δ3D − SC can be substitute δ(⋅) for computing DTW.
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One thing must be clarified is that different from SC-DTW [34] which uses shape context to
generate the alignment, our 3DSC-DTW consider to use the matrix cost of global 3D shape
context feature rather than original Euclidean distance as the cumulative value. The merit is
that it is greatly invariant to the trajectory translation and scale.

One of the significant reason in combination of the global 3DSC feature and DTW is that it
can deal with the sub-trajectories problems. Without lose of generality, we take the digital
gesture in the 2D space as an example. As we can see in Fig. 7, the digital gesture B2^ can be
treated as the sub-gesture of the digital gesture B3^. By using the local 3DSC feature, the
alignment of digitalB2^ and the partial of digitalB3^,as shown in Fig. 7a, coincide with the
alignments of digital B2^. Only the end point of digital B2^ is left to match the rest points of
digital B3^. Toward this end, the final decision score may be relatively lower and can readily
cause the miss classification. On the contrary, the alignments of digital B2^andB3^ in Fig 7b,
which make use of the global 3DSC feature, can achieve relatively higher matching score,
hence has strong discrimination.

Another reason for embedding the 3DSC descriptor into DTW is that it can greatly resist to
trajectory appearance perturbation. Unlike pose models, trajectory data encompasses a notion
of time flow. Even trajectories have the same appearances, they may represent different
meanings due to the different directions of time flow. Typically, all the gesture trajectories
no matter for training or testing should be captured under a fixed canonical coordinate frame.
However, the rotation of trajectory should be considered in two situations:(1) all the gestures
are captured under the fixed canonical coordinate frame. In this case, as we mentioned before,
even the gesture trajectories may have slightly appearance difference or axis inclination, the
3D shape context descriptor is insensitive to such deformations, and can greatly eliminate the
presence of noise. (2) Gestures are captured under different coordinate frame. In this case, we
should transform the trajectory into a canonical coordinate frame according to the translation
and scale parameters. Otherwise, it is hard to determine whether two gestures have the same
meanings or not even they have similar shape.

4.3 Time complexity

Suppose P denotes the number of bins in a 3D shape context histogram. The time complexity
of computing a gesture point histogram is P = r ∗ a ∗ b, where r is the number of radial bins, a

(a) Alignments with the local 3D-SC descriptor (b) Alignments with the global 3D-SC descriptor

Fig. 7 Alignments of two digital gestures with global (left) and local (right) 3D shape context descriptor. a
Alignments with the local 3D-SC descriptor b Alignments with the global 3D-SC descriptor
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is the number of θ angular bins, b is the number of φ angular bins. Recall that m and n
represent the lengths of two time series after gesture normalization. DTW has to consider all
cells in the warping matrix; thus, it has a time complexity of O(m ⋅ n). In 3DSC-DTW, the base
distance is the difference between two histograms instead of two real numbers. Hence, SC-
DTW has a time complexity of O(P ⋅m ⋅ n).

5 Experiments

In this section, we conduct a series of experiments to evaluate the proposed method.
Experiments are conducted on three types of datasets: two types of Australian Sign
Language dataset(compact and large) from UCI KDD archive [24] and the 3D hand
digital dataset [7]. The compact ASL trajectory dataset consists of 95 sign classes
(words), and 27 samples were captured for each sign. The large ASL dataset also
contain 95 signs examples. Each sign has 70 examples and with 6650 sign samples in
total.

For ASL datasets(compact and large) evaluation, we first utilize the compact ASL
dataset to investigate the optimization of trajectory normalization length. Secondly, the
benefits of using adaptive outer radius and scale invariance in trajectory classification are
implemented, and then we compare our results to the state-of-the-art methods. The
trajectory recognition performance under varying training size is also tested based on the
large ASL database. Finally, we made a evaluation on the 3D hand digital dataset to test the
discrimination capacity between sub-trajectory and full-trajectory as well as the robustness
of proposed method.

5.1 The benefit of using trajectory length normalization

The propose of this experiment is to evaluate the impact of various of trajectories
normalization in the performance of 3DSC based trajectory classification technique. As
shown in Table 1, the classification accuracy with normalized trajectories length are
overall higher than original trajectories length. Thus, the effectiveness of using normal-
ized trajectory can be verified. The best results were obtained when the normalization
length approximately equals to 70 sample points. This result may suggests the best
normalization length should be fixed neither too larger nor too small. Consequently,
we choose each trajectories equals to 70 sample points as the optimal normalization
length.

Table 1 Classification accuracy with varying the sample length of motion trajectories

Classes Original Length Normalization Length

10 20 30 40 50 60 70 80 90 100 110

2 93.83 96.30 97.53 98.15 97.53 98.46 97.53 98.62 98.46 97.22 97.53 97.53

4 82.41 91.05 94.29 95.83 95.99 96.14 96.91 95.68 95.83 95.6 8 96.30 95.52

8 69.52 81.64 88.66 89.27 89.35 90.12 90.51 91.43 90.12 88.66 89.74 88.97

10 68.70 80.06 87.04 88.07 87.16 89.04 89.59 90.14 89.04 87.28 87.59 87.04
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5.2 The benefit of using adaptive outer radius

In this section, the compact ASL dataset are utilized and a 9-fold-cross validation was
conducted for trajectory classification by varying the scale of adaptive outer radius. One of
ninth trajectories from each category serve as testing samples and the others serve as training
samples. We repeated this test 7 times. After 7 round evaluations, the average classification
rate is computed for the final comparison.

The propose of this experiment is to demonstrate the advantage of using adaptive outer
radius. Figure 4 shows the classification accuracy under varying the scale of adaptive outer
radius. The scaled adaptive outer radius is defined as follow:

rn
0

n oL
0

n¼1
¼ κ⋅ rmax

n

 �L
0

n¼1 ð13Þ

where k is the scale factor which control the size of the 3D shape context;
The x axis in the Fig 8 represents the scale factor from 0.1 to 1, with step 0.1. For

example, 0.1 means we set outer radius of each 3D shape context equals to 10 % of the
corresponding local maximum trajectories span distance. We consider that the scale
factor from 0.1 to 0.9 generate the local feature, otherwise it generate the global feature.
With the increasing of the outer radius, the classification accuracy of 4, 8, and 10 classes
are gradually getting higher. All these three types of classes reach the maximum
classification rate 95.68 %, 91.43 %, 90.14 % respectively under the scale factor equals
to 1, which means all the gesture points are involved in each 3D shape context ball
volume and the global 3DSC descriptor are generated for histogram distribution
computing.

Fig. 8 Classification rate under varying adaptive outer radius
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5.3 Scale invariance performance

In this part, we evaluate the performance of classification accuracy by changing trajectory
scale and translation in 2, 4, 8, and 10 classes respectively. As shown in Figs. 9 and 10, a
considerable improvement of our proposed method on scale invariance can be obviously
seen. To apply a certain amount of scaling to the input gestures, we multiply the x and y
coordinates of each trajectory point by a set of small increments ([1.1, 1.3, 1.5, 1.7, 1.9]).
To apply a certain amount of translation to the input trajectories, we add a set of small
increments ([0.01, 0.03, 0.05, 0.07, 0.09]) in meters to the x and y coordinates of the
position of each gesture point. With gradually increasing scale and translation factors, the
classification rate of Euclidean Distance based DTW method [8] rapidly dropped, how-
ever, the proposed method and Mix signature method [32] still remain a stable accuracy.
Moreover, the performances of our method outperform Mix signature method. This
advantage owes to the 3D shape context descriptor with adaptive outer radius can
automatically represent the global information for each pairwise points as a robust similar
measure.

(a) Two classes (b) Four classes

(c) Eight classes (d) Ten classes

Fig. 9 Classification accuracy vs. gesture scale: a Two classes, b Four classes, c Eight classes, d Ten classes
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5.4 Comparison with other methods

In the third experiment, the compact ASL dataset is used to evaluate the trajectory recognition
performance. Since this database and the chosen classes were used in [26, 31, 32] for
experiments, we implement experiment on the equivalent situation for comparison. Consider
that trajectory recognition also relies on efficient recognition engine, we test the performance
of the adaptive 3DSC descriptor by utilizing another two recognition engines as well, which is
support vector machine and Lock-step measure. Lock-step measure means a one-to-one
correspondence matching between time series as they compare i-th point of one time series
to i-th point of another time series. According to the experimental results represented in
Table 2, we can observe that: 1) For all of the approaches, the proposed method achieves
the highest recognition rate in matching within 2, 4, 8 and 10 classes respectively. 2)The
performance of alignment based method DTW [8, 26, 32], Euclidean distance(Solution 1)
outperform the discriminate methods SVM(Solution 2). 3)As the number of classes increase,
the recognition ratio of all method gradually dropped, however, the decline rate from class 10
to class 2 of our proposed method is 8.48 %, less than that of all other methods. That is to say,
our method is more flexible for multiclass recognition.

(a) Two classes (b) Four classes

(c) Eight classes (d) Ten classes

Fig. 10 Classification accuracy vs. gesture translation: a Two classes, b Four classes, c Eight classes, d Ten
classes
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5.5 Recognition with varying training size

This section utilized the large ASL dataset to evaluate trajectory recognition performance
under varying training size. In this experiment, for fair comparison, we follow to extract
2,4,8,10 classes in [26, 31, 32] to evaluate the classification accuracy. Since the dataset has 70

Table 2 Comparison with the state-of-the-art methods on compact ASL dataset

Method Description Classes Accuracy

2 4 8 10

Wu et al. [26] Flexible signature +DTW+ 1NN 92.54 87.11 83.52 80.06

Yang et al. [32] Mixed Signature + DTW+ 1NN 94.83 89.74 86.36 85.64

Yang et al. [31] Segmented Invariant Descriptor 95.04 76.73 63.48 53.96

P. Doliotis [8] Euclidean Distance + DTW+ 1NN 97.46 91.83 89.09 88.28

Solution 1 Adaptive 3DSC+ Lock Step 97.75 89.20 85.78 83.63

Solution 2 Adaptive 3DSC+ SVM 82.47 75.15 61.81 49.94

Solution 3 Adaptive 3DSC+DTW+ 1NN 98.62 95.68 91.43 90.14

(a) Two Classes (b) Four Classes

(c ) Eight Classes (d) Ten Classes

Fig. 11 The classification accuracy versus training size on Large ASL dataset
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examples for each sign, we decide to take leave one out cross validation strategy. During
evaluation, we successively select each gesture example from each category as testing data,
and treated the remaining examples of each category as training data. For the propose of
examining the relationship between training size and recognition rate. We randomly extracted
a certain number of examples from the remain training data. As shown in Fig 11, with
gradually increasing the training size, the classification accuracies of 2, 4, 8, 10 classes
improved significantly and achieve maximum with using 69 training samples. Also, we can
observe that the proposed method outperforms all other state-of-the-art methods, which
indicates that our proposed method is also suitable for large datasets. Moreover, we also test
other amounts of classes, due to the space limitation we did not show here. Nevertheless, the
tendency of classification accuracies, in general, remain the same.

5.6 Results on 3D HSD dataset

In this section, the experiments are conducted on the 3D Hand-Signed Digit which can be
visualized as shown in Fig. 12. This hand gesture datasets is a commonly used benchmark for

Fig. 12 The visualization of the 3D Hand-Signed Digit

Table 3 Comparison of Recognition Rate by other state-of-the-art methods

Method Description Accuracy(%)

Wu et al. [26] Flexible signature + DTW+ 1NN 86.6

Yang et al. [32] Mixed Signature + DTW+ 1NN 92.5

Yang et al. [31] Segmented Invariant Descriptor 62.7

P. Doliotis [8] Euclidean distance + DTW+ 1NN 88.6

Solution 1 Adaptive 3DSC + Lock Step 90.2

Solution 2 Adaptive 3DSC + SVM 66.8

Solution 3 Adaptive 3DSC +DTW+ 1NN 98.4

Table 4 Sub-gesture table for
Hand Signed digit from B0^ to B9^ Sub-gesture Super-gestures

B1^ {B7^,B9^}

B2^ {B3^}

B5^ {B8^}

B7^ {B2^,B3^}
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gesture recognition with 10 categories performed by 12 different people. In training examples,
300 digit exemplars with 30 per class were stored in the database. In test examples, 440 digit
exemplars with 44 per class were captured.

Table 2 illustrates.
Table 3 illustrates the performance comparison of different algorithms by using 300 training

data and 440 testing data. As expected, our proposed method(Solution 3) yield a higher
recognition rate than other methods. It is worth noting that our proposed adaptive 3DSC
descriptor achieve a relatively higher performance when it combine with Lock-step measure
(Solution 2).

In Table 4, we manually define the full meaning gestures and the corresponding sub-gesture
for the hand signed digits recognition. From Table 4, we can see that gesture B1^,B2^,B5^,B7^
can be defined as the sub-gesture of {B7^,B9^},{B3^},{B8^},{B2^,B3^} respectively.

In the following tables, we examine the miss matching numbers between the super-gestures
and the corresponding sub-gestures. For simplicity, we choose outer radius scale factor equals
to 0.5 to represent the local 3DSC descriptor. As we can see from the following Tables 5, 6, 7
and 8, the total misclassification numbers that caused by sub-gestures are larger than other
gestures. That explains why the proposed global 3DSC representation can be effective on
decreasing misclassification and restraining the ambiguity among partial similar gestures.

Table 7 The missclassification
numbers between subgesture "5"
and the corresponding super-gesture

B8^ Others

B5^ Scale =0.5 3 1

Scale =1.0 1 0

Total 4 1

Table 8 The missclassification
numbers between subgesture "7"
and the corresponding super-
gestures

B2^ B3^ Others

B7^ Scale =0.5 2 1 1

Scale =1.0 1 0 1

Total 4 2

Table 6 The missclassification
numbers between subgesture "2"
and the corresponding super-gesture

B3^ others

B2^ Scale =0.5 3 1

Scale =1.0 0 1

Total 3 2

Table 5 The missclassification
numbers between subgesture "1"
and the corresponding
supergestures

B7^ B9^ Others

B1^ Scale = 0.5 2 1 1

Scale =1.0 1 1 0

Total 5 1
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6 Conclusions and future work

In this paper, we present a novel motion trajectory classification method in the spatiotem-
poral domain. An invariant descriptor - 3D shape context with adaptive outer radius is
presented. This descriptor able to flexible extract rich global shape context information for
motion trajectory representation. An effective alignment algorithm based on Dynamic Time
Warping which replaces the raw distance feature by 3D shape context descriptor is proposed
for calculating the matching similarity. We compare the classifying performance with our
proposed descriptor to the previous descriptors in the three benchmark datasets. The exper-
iments results show that the proposed method achieves the state-of-the-art performance in
both accuracy and efficiency for motion trajectory classification in the spatiotemporal
domain.

There are still several future tasks to improve our current work. It is in urgent need to
establish a real-time motion trajectory recognition or classification system to automatically
segment the motion trajectory by detecting the start and end frame. In addition, how to
recognize the motion trajectory from different viewpoint and how to apply the proposed 3D
motion trajectory strategy to various application, such as activity recognition, anomaly detec-
tion, video surveillance is still worth study.
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