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Abstract An image encryption scheme based on chaos system combining with DNA cod-
ing and information entropy has been proposed recently, in which chaos system and DNA
operation are used to perform substitution, and entropy driven chaos system is used to
perform permutation. However, two vulnerabilities are found and presented in this paper,
which make the encryption fail under chosen-plaintext attack. A complete chosen-plaintext
attack algorithm is given to rebuild chaos systems’ outputs and recover plain image, and its
efficiency is demonstrated by analysis and experiments. Further, some improvements are
proposed to make up these vulnerabilities and enhance the security.

Keywords Image encryption · Chosen-plaintext cryptanalysis · Chaotic system ·
DNA encoding · Information entropy

1 Introduction

In recent years, there has been an increasing interest at multimedia data security because of
the wide-spread transmission over all kinds of communication and social networks. Con-
sidering the inherent features of image, such as bulk data capacity and strong correlation
among adjacent pixels, traditional data encryption schemes cannot meet the requirements
of multimedia security. The intrinsic relationship between chaos and cryptography inspired
researchers and a variety of encryption schemes have been proposed [1, 2, 5, 6]. For
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example, Chen et al. [1] designed a three dimensional Arnold cat map, and used it in a
symmetrical image encryption algorithm. Guan et al. [2] proposed a fast image encryption
design according to the character of hyper-chaos. Unfortunately, many cryptanalysis works
[4, 9, 11, 12, 14] have revealed that some of those chaos-based cryptosystems have serious
security problems due to their improper use of chaos pseudo-random sequences. Rhouma et
al. [9] gives a way that just demands three couples of plaintext/ cipher text to break totally
the crypt-system.

In 1994, Adleman first introduced DNA computing into the encryption field, which cre-
ated a new stage of information security. Due to massive parallelism and extraordinary
information density exclusive characteristic of DNA molecule, DNA cryptography emerged
as a new frontier and is presently at the forefront of international cryptography research
[8, 13]. DNA encryption is a subject of study how to utilize DNA bases as an information
carrier, and it uses modern biological technology to achieve encryption. Many symmet-
ric encryption schemes have been proposed, in which the DNA-based image encryption
is generally categorized into two phases: firstly, using DNA theory to encode plain image
pixels into DNA sequence, and each gray pixel value is decomposed into four DNA ele-
ments, which can increase the efficiency of image substitution and permutation. Secondly,
the encoded DNA sequence is substituted and permuted to generate a key image based on
DNA operation rules and form the cipher image [3, 7, 10].

Recently, a novel image encryption algorithm [15] was designed based on chaos system
and combined with DNA coding and information entropy. It mainly consists of two stages
of process: substitution and permutation process. Encryption is operated on the domain of
DNA encoding matrix, and entropy is introduced to generate various permutation matrix
which is expected to enhance security against known/chosen plaintext attacks.

However, we notice that two vulnerabilities exist in this algorithm. First, the intro-
duced entropy fails to protect permutation indexes under chosen-plaintext attack, because
we can rebuild the entropy from cipher image directly rather than by breaking encrypted
entropy in cipher. And second, the substitution of elements in the last column leaks pat-
terns of the encoding rule, and which permit us to recover the encoding rule and cover
matrix after breaking the permutation. Then a complete attack algorithm is presented in this
paper based on these two vulnerabilities, and our analysis and experiments demonstrate that
this algorithm can break the encryption algorithm under chosen-plaintext attack. Further,
some improvements are proposed to make up these vulnerabilities and enhance encryption
algorithm’s security.

The remaining of this paper is organized as follows. The next section gives a brief
introduction of the original encryption algorithm. The vulnerabilities and the presented
chosen-plaintext attack is discussed detailedly in Section 3. In Section 4, some improvement
are proposed to enhance the security. And finally, the last section gives a brief conclusion.

2 The original encryption algorithm

2.1 Process of the encryption

The block diagram of the original image encryption algorithm [15] is shown in Fig. 1.
To perform the encryption, the plain image Iinput of size m × n is firstly converted into

an m×4n matrix Id by decomposing each pixel into four two-bit numbers. Then the matrix
Id is encrypted with the following two main stages:
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Fig. 1 Block diagram of the image encryption algorithm [15]

(1) Substitution stage
Iterate the logistic chaotic map (1) with the initial state (xl

0, u
l
0) to get a real number

sequence L1 = {x1, x2, · · · , x4n×m}.
f (x, u) = ux(1 − x) (1)

Let �x� denote the largest integer less than or equal to x. Compute terms L(i, j) =
�x(i−1)×4n+j × 28� mod 4(1 ≤ i ≤ m, 1 ≤ j ≤ 4n) to get the integer matrix L,
and encode L to cover matrix L′ according to rule (2). At the same time, compute
encoding modes e(i) = �xi×4n × 28� mod 8 and encode Id to matrix I ′ (the i-th row
is encoded following DNA encoding rule e(i)).

L′(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

A if L(i, j) = 0
C if L(i, j) = 1
G if L(i, j) = 2
T if L(i, j) = 3

(2)

Then perform the DNA addition to get the DNA matrix IDNA by IDNA = I ′ + L′.
The eight encoding rules for the DNA sequence are listed in Tables 1 and 2 describes
DNA addition operation.

(2) Permutation stage

xn+1(i) = (1 − ε)f (xn(i), u) + ε

2
[f (xn(i + 1), u) + f (xn(i − 1), u)] (3)

A 3-dimensional spatiotemporal chaotic system (3), with parameter us , ε and initial
values xs

0(1), x
s
0(2), x

s
0(3), is adopted to generate two sequences R = {xi(1), 1 ≤

i ≤ m} and C = {xj (3), 1 ≤ j ≤ 4n}. Then the DNA matrix is permutated as
I ′
DNA(i, j) = IDNA(IndR(i), IndC(j)), in which the IndR and IndC are the sorting
indexes of sequences R and C respectively. To avoid chosen-plaintext attack, entropy
H of IDNA is introduced to modify us thus different plain image will have different
permutation indexes. First, the decimal part of entropy H is used as xH

0 (if H is an

Table 1 The DNA encoding and
decoding rules Code 0 1 2 3 4 5 6 7

0 A A C C G G T T

1 C G A T A T C G

2 G C T A T A G C

3 T T G G C C A A
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Table 2 The DNA addition
operation + A C G T

A T A C G

C A C G T

G C G T A

T G T A C

integer, then xH
0 = xl

0), and generate xH
20 with the logistic map (1). Keep the first 64

bits of xH
20 as Hdecimal , and us = 3.75 + 0.25Hdecimal .

Finally, the I ′
DNA is DNA decoded with the first rule in Table 1 and composed back into

an 8-bit cipher image Icipher . The encrypted Hdecimal and Icipher are sent as cipher text.

2.2 Encryption examples

Here we give a simple example to show the process of encryption. It is also an attack target
for our cryptanalysis example in Section 3.

The plain image I is first decomposed into a matrix Id .

For key = {xl
0 = 0.437, ul = 3.785, xs

0 = (0.364, 0.785, 0.293), ε = 0.2582}, the cover
matrix L′ and the encoding mode e are

e = (1, 7, 2, 2).

and Id is encoded as

Then the substituted matrix
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Fig. 2 Image Lena and its cipher image

Count the numbers of C, A, T, G, they are #(C)=10, #(A)=14, #(T)=11, #(G)=13. Then
the entropy H ≈ 1.9874, and us ≈ 3.9321. Run the spatiotemporal system, and sort the
generated sequences R and C, we get

IndR = (2, 3, 4, 1), and IndC = (1, 2, 10, 7, 3, 11, 8, 5, 4, 12, 6, 9).

Then the permutated matrix

Decode I ′
DNA and compose the matrix, we get the final cipher image Icipher .

For another example, the gray image Lena is encrypted with the same key, and the result
is shown in Fig. 2.

3 Chosen-plaintext cryptanalysis

Since the first step “decomposition” and the last step “DNA decoding & composing” in
encryption algorithm are independent with the key, we will bypass them in following
discussion for simplicity. The to-be-broken cipher matrix is denoted by I ′

DNA t .
Although entropy has been introduced to affect the parameter of the spatiotemporal sys-

tem, and thus the permutation indexes may differ for different images, we found it is still
possible to create an image which has the same permutation index as special cipher image
used. We name this image a ”good-entropy” image. In the following, the method of creating
good-entropy images will be described firstly, and it will be used to rebuild the permutation
indexes IndR and IndC ; then a further method is given to recover the e and L′. Finally, the
target plain image can be decrypted with the e, L′, IndR and IndC .
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3.1 Method to generate a good-entropy plain image

Notice that the spatiotemporal system is driven by the key and the entropy of IDNA, so
a plain image who generates the same IDNA entropy will have the same spatiotemporal
system intput and also have the same permutation indexes. Therefore the focus is how to
create a plain image with a specific IDNA entropy.

There is a clue for the IDNA entropy: The numbers of C, A, T, G are the same before and
after permutation because permutation changes positions but leaves values unchanged. So
the entropy of IDNA is equal to the entropy of Icipher . In fact, we do not need to send the
encrypted Hdecimal in the encryption algorithm, it can be calculated from the cipher image
with the key.

Based on this clue, we can design a greedy algorithm which tunes elements one by one
in the decomposed plain matrix Id , while observe the numbers of C, A, T, G in the cipher
image, until they are all equal to those in the target cipher image. The input of this algorithm
is a random image, and the output image has the same permutation indexes as the target
cipher image has. The detail of the greedy algorithm GA() is given in Table 3.

Note elements in the last column in Id0 are kept unchanged, because this column will be
used to recover the modes e. This is discussed in Section 3.3.

3.2 Rebuild the permutation indexes IndR and IndC

Once we make a good-entropy image matrix, denoted Id0, it is possible to rebuild the
permutation indexes.

Suppose we have another image matrix Id1 that is equal to Id0, except two elements (at
position a and b) are different: Id0(a) �= Id1(a) and Id0(b) �= Id1(b). If the two elements’
substitution results are swapped, i.e. S(Id0(a)) = S(Id1(b)) and S(Id0(b)) = S(Id1(a)), the
numbers of C,A,T,G in cipher matrixes for Id0 and Id1 will be equal, then we know Id1 is
also a good-entropy image matrix. Here we define function f (I (a), e) represents element
I (a) being DNA encoded by rule e, and function S(I (a)) = f (I (a), e) + L′(a) represents
the substituted element at position a (Fig. 3).

If we limit the two elements in the same row i (1 ≤ i ≤ m), they will be permuted to
a same row j (1 ≤ j ≤ m). By observing the difference between their cipher matrixes
Enc(Id0) and Enc(Id1), only two different elements exist in one row, we can find where the

Table 3 Greedy algorithm to create good-entropy images Idt = GA(Ids , I
′
DNA t )
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Fig. 3 Construct plain image with equal entropy by changing two elements

j is. Repeat the work for each row, and the permutation index IndR is rebuilt. We name this
process PI R() and details are given in Table 4.

Similar algorithm PI C() is performed to rebuild the column permutation index IndC , in
which all works on rows are changed to columns.

It is also worth to mention that since there are only four possible values for each ele-
ments in plain matrix and cipher matrix, it is easy to find two proper elements and their
modifications.

3.3 Recover the encoding modes e and cover matrix L′

The next work is to recover the encoding modes e.
We noticed that the encoding modes and cover matrix for the last column are both from

logistic sequence x4n×i . For example, element Id(1, 4n) is encoded with rule e(1) = �x4n ×
28� mod 8 and added with cover L′(1, 4n), which is mapped from L(1, 4n) = �x4n × 28�
mod 4 = e(1) mod 4. The substitution results f (I (∗, 4n), e)+L′(∗, 4n) for element value
I (∗, 4n) =0 and 3 are listed in Table 5.

It can be seen that the pairs (f (0, e) + L′, f (3, e) + L′) uniquely decide the encoding
rule e, and the mapping is given in Table 6.

Table 4 Algorithm to rebuild row permutation index IndR = PI R(Ids)
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Table 5 Substituted results for
element value 0 or 3 in the last
column

e 0 1 2 3 4 5 6 7

L = e mod 4 0 1 2 3 0 1 2 3

L′ A C G T A C G T

f (0, e) A A C C G G T T

f (0, e) + L′ T A G T C G A C

f (3, e) T T G G C C A A

f (3, e) + L′ G T T A A C C G

To perform the recovery, we first prepare two plain images Idf 0 (a matrix in which all
elements are 0) and Idf 3 (a matrix in which all elements are 3), tune them with algorithm
Id0 = GA(Idf 0, I

′
DNA t ) and Id3 = GA(Idf 3, I

′
DNA t ), so that they are both good-entropy

image matrixes. Note the last column will not be changed in GA(), i.e. elements in the last
column of Id0 are all 0 and that of Id3 are all 3. Encrypt them, and inverse-permute the
cipher matrixes, so that we can get the substitution results of the last columns. Then the
encoding rule e can be obtained by looking up Table 6 according to the last columns.

To recover the cover matrix L′ is easy. A simple DNA subtraction between substitution
result and encoded Id0 can make it.

3.4 The entire attack process

The entire attack process is given in Table 7, which includes:

Step 1: Generate two good-entropy image matrixes Id0 and Id3 with the greedy algorithm
GA(), in which elements in the last columns are 0 or 3 respectively. Then they are
encrypted as I ′

DNA0 and I ′
DNA3.

Step 2: Id0 is used to rebuild the permutation indexes IndR and IndC with algorithm
PI R() and PI C().

Step 3: The cipher matrixes of I ′
DNA0 and I ′

DNA3 are inverse permuted. The last columns
of them are used to recover the DNA encoding rule e according to Table 6.

Step 4: Id0 is DNA encoded with rule e, then DNA subtracted from the inverse permuted
cipher matrixes of Id0. The result recovers the cover matrix L′.

Step 5: Use the IndR , IndC , e and L′ to decrypt the cipher image with normal decryption
algorithm.

Table 6 Encoding rule e
uniquely decided by substituted
elements of two cases

Encoding f (0, e) + L′

rule e A C G T

A – 6 – 1

f (3, e) + L′ C 4 – 7 –

T – 5 – 2

G 3 – 0 –
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Table 7 The attack algorithm

3.5 Attacks on examples in Section 2.2

As an example, we will attack the matrix Icipher in Section 2.2 first.
In step 1, two good-entropy image matrixes I0 and I3 are generated according to the

matrix I ′
DNA t .

The cipher matrixes are:

Count the numbers of C, A, T, G in both matrixes, they are #(C)=10, #(A)=14, #(T)=11,
#(G)=13, equal to the result of I ′

DNA.
In step 2, permutation indexes IndR and IndC are rebuilt and equal to those shown in

Section 2.2.
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Table 8 Recover of rule e for
matrix example in Section 2.2 Last column Last column Encoding

of IDNA0 of IDNA3 rule e

A T 1

C G 7

G T 2

G T 2

In step 3, Ie0 and Ie3 are inverse permuted, and we get:

Take the last column to look up Table 6, we get the encode rule e. This is shown in
Table 8.

In step 4, Id0 is DNA encoded with rule e,

Compute L′ = IDNA0 − I ′
0, we can get the same cover matrix as given in Section 2.2.

Finally in step 5, we use the IndR , IndC , e and L′ to decrypt the cipher image with
normal decryption algorithm, and the decryption result is equal to original input matrix I .

For the example of encrypted Lena, the attack result is shown in Fig. 4.

4 Improvement on encryption algorithm

There are two vulnerabilities in the original encryption algorithm: one is the entropy fails
to play the role in protecting permutation indexes; and the other is the encoding rule and
cover matrix for elements in last column are based on a same number, which leaves a pattern
in cipher and cause the rule be recovered. Therefore, our improvement aims at these two
vulnerabilities.

(1) To protect the permutation indexes
Instead of using entropy of IDNA, a hash function is much better to generate a finger

print of IDNA. For example, we can DNA decode IDNA using rule 0, and reform all
elements into a 0-1 sequence. Then standard SHA algorithm can be applied to hash
the sequence, and the hash value is used to replace the entropy value.

We know hash value can be viewed as a fingerprint of data. No matter what changes
in numbers or positions of C,A,T,G, it will lead to a different hash value. So, although
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Fig. 4 Revealed image Lena

IDNA and I ′
DNA have same numbers of C,A,T,G, they don’t have same hash value,

and attackers can’t guess IDNA from I ′
DNA.

Also, the hash value needs to be encrypted and sent.
(2) To improve the substitution process

To separate the source of encoding rule and cover matrix, we can assign a private
value to e by generating longer chaos sequences. Namely,

L1 = {x1, x2, · · · , x4n}, e1 = �x4n+1 × 28� mod 8,

L2 = {x4n+2, x4n+3, · · · , x8n+1}, e2 = �x8n+2 × 28� mod 8.

and so on.
Such, the relation between encoding rule and cover matrix will be protected by the

property of chaos system.

Further, if we use another logistic sequence driven by appending key (xe
0, u

e
0) to cal-

culate encoding rule e, and use original logistic sequence driven by (xl
0, u

l
0) to calculate

cover matrix L′, the relation between encoding rule and cover matrix can be protected more
safely.

5 Conclusion

In this paper, we present a cryptanalysis on an encryption algorithm which based on chaos
system and combined with DNA coding and information entropy. Two vulnerabilities are
found, and they make the substitution based on DNA coding and operation fail to cover plain
data, and introduced entropy fails to protect permutation indexes under chosen-plaintext
attack. A complete attack algorithm is given, and our analysis and experiments demonstrate
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its effectiveness. Finally, some advices are proposed to make up these vulnerabilities and
enhance encryption algorithm’s security.
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