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Abstract This paper presents a practical framework for various light field editing algo-
rithms, such as segmentation, sparse edit propagation, and inpainting. A novel framework is
introduced with its user interface to perform the light field editing algorithms. Unlike single-
image algorithms, the coherence between light field subaperture images is fully considered.
Instead of processing all light field subaperture images independently, the proposed frame-
work performs editing in the cluster image domain. The edit result in the cluster image is
propagated back to each light field subaperture image using 2D-to-4D light field edit prop-
agation. Experimental results on test images captured by a Lytro off-the-shelf light field
camera confirm that the proposed method provides robust and consistent results of edited
light field subaperture images.

Keywords 4D, light field · Spatio-angular consistent · Edit propagation · Segmentation ·
In-painting

1 Introduction

Over the last decade, light field processing has become an active research topic that has
attracted many researchers in computer vision and computer graphics communities. A light
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field image with 4D spatial and angular parameterizations contains more directional infor-
mation of captured rays than an ordinary image while sacrificing image resolution [13, 19,
24]. Unlike a conventional image, the focus plane, depth of field, and viewpoint are not fixed
at the moment of the image capture but can be adjusted while rendering during post pro-
cessing. Moreover, the aperture can be synthetically controlled to produce various effects of
imaging. In this context, it is expected that a light field camera can be used as a new type of
computational camera for capturing the additional information necessary for advance image
processing and understanding.

Prior to the availability of consumer light field cameras in the market, it was impracti-
cal for a common user to capture a 4D light field because it requires a large-size camera
array [28]. However, since Lytro [23] and Raytrix [25] light field cameras were introduced
to consumers, light field images have become readily available for numerous applications.
As the popularity of the light field continues to grow, the demand for efficient algorithms
to process the 4D light field also increases. Various algorithms and applications for con-
sumer light field images, such as depth estimation [5, 27], saliency detection [20], and
calibration [4, 8, 11], have been presented in recent academic conferences.

Compared to the maturity of single-image editing algorithms (i.e. matting, segmenta-
tion, inpainting, and colorization) [1, 6, 9, 17, 18, 26, 29], light field image editing is still
underdeveloped in terms of practicability and user-friendliness. Conventional image-editing
algorithms cannot be applied directly to light field images because they do not preserve the
angular coherence. In addition, their direct extension causes inefficiency due to the mas-
sive redundancy and immense size of the light field image. Although there is a study on
light field editing interfaces or tools [14], it is still limited to direct image editing (i.e. pen
or brush tools). On the other hand, recent sparse edit propagation on light fields [15] is
restricted to synthetic data experiments and requires user input over the 3D representation
of the light field with accurate depth information.

In this paper, we propose a novel framework for an efficient editing algorithm, which
is performed on a light field image. The editing tool consists of several edit propagation
operators (i.e. re-colorization and segmentation) and advance image editing operator (i.e.
inpainting). Contrary to [15], our framework simply requires a user input over a 2D image
at the center position of a 4D light field, which is a more practical and generalized method
for consumers. Note that our tool is designed for various applications of light field edit
algorithms. The experiments are conducted using real light field images captured by a Lytro
off-the-shelf light field consumer camera.

Our key observation is that, since light field contains high redundancy, the editing can
be performed on a representative image (cluster image) to increase the efficiency. While
the state-of-the-art methods [3, 15, 29] utilize affinity-based clustering methods or stroke
sampling to reduce the complexity, we perform variance-based correspondence matching
to select the best cluster for each pixel [27] (all-focus image generation). Then, a state-
of-the-art image editing operator is performed on the cluster image. The edit result is
propagated back to the 4D light field image by performing 2D-to-4D light field edit prop-
agation. To demonstrate the generality, our study integrates five types of image processing
operators: local edit propagation [12], global edit propagation [1], hard segmentation [26],
soft segmentation (matting) [18], and inpainting [10]. We have observed that the proposed
framework preserves the angular consistency between light field subaperture images due to
its clustering method.

In summary, our specific contribution is to propose the followings.

– General framework applicable for various light field image editing operators.
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– Novel angular consistency term for 4D light field image editing.
– Practical 2D-to-4D propagation algorithm for a commercial light field camera (Lytro

Illum).

The remainder of this paper is organized as follows. Section 2 introduces the related
studies. The proposed method is described in Section 3. Section 4 and Section 5 present
the applications and experimental results of the proposed framework. Finally, we provide
concluding remarks in Section 6.

2 Related work

Initially, editing algorithms employed the color similarity between spatial neighboring pix-
els to locally propagate the sparse user strokes. A sparse affinity matrix was constructed as
utilized in colorization [17] and image tonal manipulation [22]. Chen et al. [6] preserved the
manifold structure utilizing neighboring pixels in the feature domain. The affinity matrix is
solved by the least square solver for a sparse linear system when the number of neighboring
pixels is adequate. These methods are computationally expensive for a large image size. An
and Pellacini [1] propose a global propagation method by considering all-pair pixel corre-
spondence. However, it is still inefficient to propagate the edit value on an immense light
field due to high complexity.

There are two classes of propagation algorithms that speed up the computation. Certain
algorithms perform the propagation in the cluster domain [3, 29]. The adaptive k-d tree
clustering was employed in the affinity space to optimize [1] with better efficiency [29]. Bie
et al. [3] presented a stroke sampling method to reduce the user-stroke sensitivity identified
in [29]. Another class of algorithms attempts to replace the global optimization method with
a local smoothing function [10, 12, 16, 21]. Li et al. [21] utilized radial basis functions to
interpolate the user-edited pixels. A novel domain transform [12], which preserves the edge
information, consists of a fast scribble propagation that achieves comparable results with
conventional methods. The usage of a domain transform to preserve temporal consistency
in graphics applications was performed by Lang et al. [16]. A real-time performance was
achieved with the exploitation of GPGPU parallelism. Yet these algorithms are not suitable
for light field because they do not consider angular coherence.

Jarabo et al. extended [1] with utilizing the light field based affinity matrix and solving
the optimization on feature-based clusters. However, [15] does not consider the coherency
in angular domain across the subaperture images and evaluate the performance on synthetic
data only. Moreover, it requires for users to provide input strokes in the 3D space, which is
impractical for users who want the interaction on 2D images. It also highly depends on the
depth information and its accuracy to propagate the 3D strokes into 4D light field image.
The work is limited to sparse edit propagation and cannot be extended for advance image
edit operator, such as inpainting. [14] performs a user study on how people edit the light
field. They introduce various workflows for performing light field editing with two user
interfaces: multi-view paradigm and focus paradigm. However, they limit their study on
local point-and-click tool instead of studying sparse edit propagation. Ao et al. [2] intro-
duces a novel light field reparametrization to perform downsampling-upsampling for light
field editing applications. Nevertheless, their work is limited to the global edit propagation
application.

There are numerous soft and hard segmentation algorithms for sparse stroke propagation.
Tang et al. [26] applied graph cut optimization to segment an image to several regions.
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On the other hand, Levin et al. [18] proposed a closed-form solution based on local color
smoothness prior to extracting the alpha map for each region. Both techniques are effective
for a single image segmentation but still require more study to deal with light field data. A
matting method for light field, which considers angular consistency, was proposed by Cho
et al. [7]. However, it requires a trimap as the input instead of user stroke. In addition, the
consistent matting with EPI smoothness term is intractable and computationally expensive
for computing all light field subaperture images.

Criminisi et al. [9] introduced an efficient inpainting method by filling the missing
regions with other patches inside the image. As the inpainting method is highly dependent
on the filling order, they propose confidence and data terms to create the best order to inpaint
an image. The confidence term leads to find the missing region that has more known pix-
els and the data term forces to select the missing regions with surrounding linear structures.
Their work is well known for a single image inpainting, but it requires an extension to be
applied for light field image due to angular consistency. In this paper, we focus on devel-
oping a new edit framework for light field that can accommodate all edit operators, while
preserving the angular consistency.

3 Proposed framework

We develop an efficient editing method for a light field image that preserves angular
coherency between subaperture images. A novel light field consistency term Eangular is
introduced and integrated with the conventional 2D edit energy function, as described in:

E(J ) = Edata(J ) + Espatial(J ) + Eangular (J ) (1)

J ∗ = argmin
J

E(J ) (2)

where J is the edit value and J ∗ is the solution that minimizes E(J ). Edata and Espatial are,
respectively, the data and spatial smoothness terms which varies depending on the individual
edit operator. The new term Eangular enforces the similar results between a pixel and its
corresponding pixels in other subaperture images, as defined in:

Eangular (J ) =
∑

p

∑

q∈A(p)

(J (p) − J (q))2 (3)

where p and q are the spatial and angular position vectors of a pixel and its corresponding
pixel, respectively. A(p) is the set of the corresponding pixels in the angular domain of a
pixel p. It determines that a pixel p and its corresponding pixel q should have the same
color since they represent the same point in the real world coordinate. However, the angular
(light field consistency) term is intractable because we need to handle a huge sparse affinity
matrix. In this paper, we focus on how to approximately solve the light field consistency
term efficiently. The overview and detail of the proposed framework are described in the
following subsections.

3.1 Framework overview

Figure 1 presents the overview of the proposed framework. The idea behind our method is
based on the redundancy nature of light field image. Thus, we observe that it is desirable
to perform the image editing algorithms on a cluster image generated from a 4D light field
image. Each pixel in a cluster image is expected to have similar value to its corresponding
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Fig. 1 Pipeline of the proposed algorithm (re-colorization example only). Image is captured by Lytro Illum
camera

pixels in light field image. We also observe that the all-focus image, generated from the set
of refocus images, is suitable to satisfy the demand of the cluster image. This is because each
pixel in all-focus image is reconstructed using the corresponding pixels in all subaperture
images. In our approach, we use angular color variance to create the all-focus image. The
detail of the all-focus image generation is described in Section 3.2. Then, we perform an
image editing operator selected by user on the cluster image. In this study, we implement a
set of operators including re-colorization (global and local), segmentation (soft and hard),
and inpainting.

Next, we need to propagate the edit result on the cluster image to the entire 4D light field.
This step is important to achieve consistent results between a pixel and its corresponding
pixels as introduced in the angular term. As the cluster image has a pixel value similar to that
of light field, we assume that the edit value should be similar too. Note that the assumption
is equivalent to having the light field consistency term Eangular . Thus, the idea is to find the
corresponding pixel in the cluster image for each pixel in light field subaperture images. We
measure the intensity differences to find the corresponding pixels. After the corresponding
pixels are found, we utilize the edit value of the corresponding pixel as the edit value of a
pixel in the light field image. While the conventional approach [14, 15] relies on the depth
accuracy, our method does not require any accurate depth information. We describe the
2D-to-4D propagation method in Section 3.3.

3.2 All-focus image generation

We generate the refocus images of the center view to collect the cluster candidates of
each pixel. To compute the refocus image Rα for each cluster candidate α, each light field
subaperture image LO is first re-mapped to Lα:

Lα(x, y, u, v) = LO

(
x + u

(
1 − 1

α

)
, y + v

(
1 − 1

α

)
, u, v

)
(4)

where (x, y) and (u, v) are the spatial and angular positions for each pixel, respectively.
Then, the average of the re-mapped images is computed, as defined in:

Rα(x, y) = 1

W

∑

u,v

Lα(x, y, u, v) (5)

where W denotes the number of subaperture images. We compute the angular variance
σ 2

α (x, y) of the corresponding pixels for each cluster candidate, as defined in:

σ 2
α (x, y) = 1

W

∑

u,v

(Lα(x, y, u, v) − Rα(x, y))2. (6)
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Fig. 2 Illustration of all-focus image generation step

Due to the redundancy nature of a light field, the candidate with the minimum variance
α∗

σ (x, y) is selected as the representative pixel:

α∗
σ (x, y) = argmin

α
σ 2

α (x, y). (7)

Finally, the all-focus image I (x, y) is described in:

I (x, y) = Rα∗
σ
(x, y). (8)

The clustering method, used in this study, is similar to the variance-based depth estimation
method [27]. However, we do not factor in the depth accuracy (cluster index), and hence, it is
not required to perform global optimization. Though variance ambiguity might be observed
in a textureless region, it does not affect the result because we only need the cluster color
intensity instead of the cluster index (depth). Figure 2 shows the illustration of the all-
focus image generation step. All-focus image consists of various parts from different refocus
images (near focus, middle focus, and far focus images).

3.3 2D-to-4D light field edit propagation

Depth invariant light field edit propagation is utilized to transfer the edit value from the
cluster image to light field subaperture images. Similar to most image editing techniques,
there are two assumptions to propagate the output value from 2D to a 4D light field. The
first assumption is that the occluded region has a similar value with neighboring visible
regions. The second one is that nearby pixels with similar color should have similar result.

For each pixel in 4D light field, the propagation is performed by computing the most
similar pixel in the cluster image. Instead of employing forward propagation, we perform
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inverse propagation to ensure that there is no hole in the final result. The candidate pixels
are obtained by shifting a pixel in the cluster image for all α, as described in:

Iα(x, y, u, v) = I

(
x − u

(
1 − 1

α

)
, y − v

(
1 − 1

α

)
, u, v

)
. (9)

The absolute intensity difference is computed for each candidate to measure the pixel
similarity. We copy the edit value from the most similar pixel. This leads to the following
minimization:

α∗
c (x, y, u, v) = argmin

α
(Iα(x, y, u, v) − LO(x, y, u, v))2 (10)

J ∗(x, y, u, v) = Jα∗
c
(x, y) (11)

where J ∗ is the optimum solution. Figure 3 shows the illustration of the propagation step.

4 Applications

We show various image editing applications to demonstrate the benefit and general appli-
cability of our framework. The applications are classified into two categories: stroke
propagation (edit propagation / segmentation) and inpainting. The workflow is varying
for each category and summarized in Fig. 4. The proposed framework can be generalized
and it is possible to add new edit operators. Five different algorithms implemented in our
framework are described in the following subsections.

4.1 Local and global edit propagation for re-colorization

We employ state-of-the-art algorithms for both local and global edit propagation. In this
case, J in (1) is the color edit value (color difference), denoted as s(p). We utilize re-
colorization using filtering in the domain transform [12] and An’s colorization algorithm [1]
for the local and global edit propagation, respectively. For the local edit propagation, the
data and spatial smoothness terms are defined as follows.

Edata(s) =
∑

p

‖s(p) − t (p)‖ (12)

Espatial(s) =
∑

p

‖s(p) −
∑

q∈N(p)

zpq s(q)‖ (13)

Fig. 3 Illustration of 2D-to-4D light field edit propagation step
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Fig. 4 Workflow of the proposed framework

where t (p) is the user input and N(p) is the small neighborhood window centered at p. zpq
is the affinity value between the pixels p and q. Furthermore, the data and spatial terms for
the global edit propagation are described as follows.

Edata(s) =
∑

p

∑

q

zpqwp(s(p) − t (p))2 (14)

Espatial(s) = λ
∑

p

∑

q

zpq(s(p) − s(q))2 (15)

where wp is the weight for the user input t (p) and λ = ∑
p wp/n is the relative weight. n is

the number of pixels. Refer to [12] and [1] for the detail. Note that the angular term is same
as that in (3). To obtain the final edited light field images LE , we add the edit value s to the
original subaperture images LO :

LE(x, y, u, v) = LO(x, y, u, v) + s(x, y, u, v). (16)

Figure 5 shows an example of re-colorization results on the all-focus images.

4.2 Hard and soft segmentation

In our framework, we implement both hard and soft segmentation (matting) algorithms.
We employ [26] and [18] to perform the hard and soft segmentation, respectively. J in (1)
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Fig. 5 Results of local (upper) and global (lower) edit propagation for re-colorization. a All-focus images;
b Input strokes; c Re-colorized images

is denoted as the alpha value a(p). For hard segmentation, we utilize the data and spatial
smoothness terms as follows.

Edata(a) = −β‖θS − θ S̄‖ (17)

Espatial(a) = λ
∑

p

∑

q∈N(p)

zpq|a(p) − a(q)| (18)

subject to hard constraint given by the user input t (p). θS and θ S̄ are the histograms inside
the foreground and background, respectively. β(= 0.05) is the weight of the color separation
term and λ(= 0.95) is the weight of the smoothness term. zpq is the affinity value between
the pixel p and q. Furthermore, the data term for soft segmentation is defined as follows.

Edata(a) =
∑

p

∑

q∈N(p)

(a(q) − I (q)f (p) − b(p)) (19)

where f (p) = 1
F(p)−B(p)

and b(p) = − B(p)
F (p)−B(p)

. F(p) and B(p) are the foreground and
background intensities at pixel p, respectively. I (q) is the intensity of the all-focus image at
pixel q, which is inside a small neighborhood window N(p). The spatial smoothness term
is as follows.

Espatial(a) = λ
∑

p

f (p)2 (20)

subject to hard constraint given by the user input t (p) with λ(= 0.0001). Refer to [26]
and [18] for the detail. The segmented 4D light field LS is obtained by multiplying the
original subaperture images LO and the alpha value a:

LS(x, y, u, v) = LO(x, y, u, v) × a(x, y, u, v). (21)

Figure 6 shows an example of segmentation results on the all-focus images.



16624 Multimed Tools Appl (2016) 75:16615–16631

Fig. 6 Results of hard (upper) and soft (lower) segmentation. a All-focus images; b Input strokes;
c Segmented objects

4.3 Inpainting

The proposed framework also accommodates a light field consistent inpainting algorithm.
First, an exemplar-based image inpainting algorithm [9] is applied on the cluster image. In
this application, we do not simply propagate the result from a 2D cluster image to a 4D light
field image. Instead, we perform the inpainting algorithm [9] with search space modification
on each light field subaperture image. To preserve the light field consistency and reduce
the computational complexity, our inpainting method does not search for the corresponding
patch in the whole light field but looks for the best corresponding patch in the inpainted
cluster image. The inpainting result is shown in Fig. 7.

5 Experimental results

The proposed framework is implemented on an Intel i7 4770 @ 3.4 GHz computer with
12GB RAM. We evaluate the proposed framework with light field data captured by a Lytro
Illum camera in indoor and outdoor environments. To extract the 4D light field image, we
utilize the toolbox provided by Dansereau et al. [11]. Specifically, the captured light field

Fig. 7 Results of inpainting application. a All-focus image; b Mask image; c Inpainted image
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data have a 625×434 spatial resolution and a 15×15 angular resolution. We utilize 15 differ-
ent α values. The input stroke is given on the cluster image. The algorithm is implemented
using C++ while a few computationally complex functions are parallelized on the GPU.
With the unoptimized implementation, the total running time of 225 subaperture images for
a re-colorization operator is approximately 7.1 seconds. These are split into 3.2 seconds for
the clustering function, 0.5 seconds for the 2D edit propagation function, and 3.3 seconds
for the 4D edit propagation function. Note that the average running time for an individual
subaperture image is around 0.032 seconds which is fast enough for an image process-
ing computation time. We evaluate our framework on several applications, as described in
Section 4.

5.1 Qualitative evaluation

Owing to space limitations, we could not show all light field subaperture images in this
paper. Instead, we show the edited refocus images to appraise the edited results. Note that
the edited refocus images are generated from the edited 4D light field. Therefore, a consis-
tent edited light field leads to consistent refocus images. Figures 8 and 9 show the refocus
images of light field datasets (Tower, Flower, Animal, and Flower2) for edit propagation
and segmentation, respectively. For the inpainting application, Fig. 10 shows the refocus
results of Dino dataset. It is observed that the edited refocus images have no artifacts and
obtain similar refocus areas as the input images. Figure 11 shows the additional results of

Fig. 8 Refocus images of original and edited light field. (Left to Right) Near to far focus. a Tower dataset; b
Local edit propagation result of (a); c Flower dataset; d Global edit propagation result of (c)
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Fig. 9 Refocus images of original and segmented light field. (Left to Right) Near to far focus. a Animal
dataset; b Hard segmentation result of (a); c Flower2 dataset; d Soft segmentation result of (c)

other light field datasets. In the supplementary video, we crop some parts of the results and
show the zoomed version.

To show the advantages over the existing approach, we evaluate the performance of the
single image algorithm without angular consistency. Instead of propagating the edited result
from the all-focus image, we first propagate the user input to each light field sub-aperture
image. Then, we apply the single image algorithm for each sub-aperture image. Figures 12

Fig. 10 Refocus images of the original and inpainted light field. (Left to Right) Near to far focus. a Dino
dataset; b Inpainting result of (a)
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Fig. 11 Additional results of our editing framework. a Cluster image with user stroke; b Edited cluster
image; c Edited near focus image; d Edited far focus image; (First row) Local edit propagation; (Second
row) Global edit propagation; (Third row) Hard segmentation; (Fourth row) Soft segmentation; (Fifth row)
Inpainting

and 13 show the comparison of the local edit propagation for recolorization and hard seg-
mentation results, respectively. We show that the existing approaches have some artifacts

Fig. 12 Comparison of local edit propagation application. aNear focus; bMiddle focus; c Far focus; (Upper)
Conventional framework; (Lower) Proposed framework
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Fig. 13 Comparison of hard segmentation application. a Near focus; b Middle focus; c Far focus; (Upper)
Input images; (Middle) Conventional framework; (Lower) Proposed framework

because they do not consider angular consistency. For example, we can notice the color leak-
age around the tower edge boundary in Fig. 12 and the dark artifacts of the zebra body in
Fig. 13. The zoomed version of the patches with artifacts is shown for clearer observation.

To show the feasibility of another advanced image processing algorithm on a light field,
we develop a prototype of cut and paste algorithm. It integrates two light field images which
act as background and foreground, consecutively. An alpha map obtained from soft seg-
mentation operator is required to naturally blend both 4D light fields. Figure 14 presents
the example results of cut and paste prototype application. It is apparent that the application
generates appreciable refocus images of cut-and-paste results.

Fig. 14 Example of cut and paste application. a Background images; b Foreground images; c Cut and paste
results; (Upper) Near focus images; (Lower) Far focus images
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5.2 Computational complexity analysis

We analyze the computational complexity of the global edit propagation for recolorization.
For a single image recolorization, the cost of An’s colorization algorithm [1] is O(m2n)

where n is the number of pixels and m is the number of samples. Furthermore, as shown
in [15], the computational complexity of the colorization algorithm for a light field image
is O(m2ln), where l is the number of sub-aperture images. Although the complexity can be
reduced by downsampling, it linearly increases with the light field size.

On the other hand, in the proposed method, the costs for all-focus image generation and
2D-to-4D light field edit propagation are O(cln) where c is the number of cluster candi-
dates. Then, the colorization on the all-focus image needs computation with O(m2n). Since
cl < m2, the total cost of the proposed algorithm isO(m2n), which is smaller thanO(m2ln)

Therefore, it is shown that the proposed framework is more efficient than conventional
approaches.

6 Conclusion

In this paper, we proposed a general framework for image editing algorithms on a 4D light
field. To maintain the coherence between light field subaperture images, we presented a
novel light field consistency term that was integrated with general edit optimization. Instead
of directly solving the light field consistency term, we proposed the editing method in the
efficient representative image of immense light field data. We generated the cluster image by
utilizing a set of refocus images. Then, various image editing algorithms were performed on
the cluster image. After performing the editing process, we propagated the edit information
from the cluster image to 4D light field image. The experimental results showed that the
proposed method achieved satisfactory results for all edit operators and fast computational
time (0.032 seconds for a subaperture image). We believe that our findings on angular-
consistency cost approximation will be advantageous the other light field problems as well.
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