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Abstract Remote sensing images constitute a new type of multimedia data well suited to
land cover change detection tasks, as they can repetitively provide information about the
land surface and its changes over large and inaccessible areas. With plans for more
missions and higher resolution earth observation systems, the challenge is increasingly
going to be the efficient usability of the millions of collected images, especially the
decades of remote sensing image time series, to describe land cover and/or scene
evolution and dynamics. In contrast to traditional land cover change measures using
pair-wise comparisons that emphasize the compositional or configurational changes
between dates, this research focuses on the analysis of the temporal sequence of land
cover dynamics, which refers to the succession of land cover types for a given area over
more than two observational periods. The expected novel significance of this study is the
generalization of the application of the sequential pattern mining method for capturing
the spatial variability of landscape patterns and their trajectories of change to reveal
information regarding process regularities with satellite imagery. Experimental results
showed that this approach not only quantifies land cover changes in terms of the
percentage area affected and maps the spatial distribution of these land cover changes
but also reveals possibly interesting or useful information regarding the trajectories of
change. This method is a valuable complement to existing bi-temporal change detection
methods.
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1 Introduction

With the development of remote sensing technologies, satellite images with the characteristics
of multi-scale, multi-band, and multi-date make it tend to be big data [7, 16, 22, 25]. There is a
major computational challenges to extract the useful information from remote sensing big data
in an efficient manner, such as to analyze, aggregate, and store, especially for time-series
remote sensing images. Remote sensing has long been used as a means of detecting and
classifying temporal changes in the condition of the land surface [5, 15]. Satellite sensors are
well suited to this task because they provide consistent and repeatable measurements on a
spatial scale appropriate for capturing the processes of change [13]. A given scene may be
observed repeatedly from space, resulting in a times series of satellite images. The high spatial
resolution of current sensors provides detailed information on spatial structures, which after a
series of revisits, can be extended to spatiotemporal data structures. It follows that a time series
of satellite images represents a highly complex data set that potentially contains valuable
spatiotemporal information [6]. In order to efficiently use the huge amounts of data that will be
produced by plans for more missions and higher resolution earth observation systems, a
review of the currently used approaches is needed. On the one hand, most previous change
detection studies have relied primarily on examining the differences between two or more
satellite images acquired on different dates [3]. These procedures can be categorized into three
types. Procedures in the first category consist of combining the values of the image at time t
and those at time (t− 1) in order reveal the intrinsic temporal structure of the data. The
combination operator can be a subtraction [18], a division [11], or more sophisticated ones
[20]. And then, the resulting combined image is classified to map the change areas. Further,
procedures in the second category involve building a vector from two multi-band values (one
before and one after the change) in a multi-dimensional space. The norm and angle of this
vector is used as information on the type and intensity of the change [4]. Finally, procedures in
the third category considers that the pixel value at time t is linearly correlated to the pixel value
at time (t− 1). The parameters of the regression (e.g., the residual) are studied to map and
characterize the change [12]. These methods mentioned above are only suitable for two
images at one time. Thus, in order to handle time-series images, they all have to be applied
for several times (e.g., twelve images combined in one in [23]), which leads to hardly
understandable results.

On the other hand, although some research progress has been reported with regard to the
analysis of temporal trajectories, the method can be improved further to suit time-series remote
sensing images processing. Some methods use a Fourier or a wavelet decomposition to
analyze the time series images. Although these robust methods can handle time series as a
whole, they require a regular sampling of the time series, which means data must be regularly
sensed. For remote sensing time series images, this constraint is difficult to keep, since the
acquisitions depend on several factors (operational, meteorological, etc.). Sequential pattern
mining method is another way to deal with the time-series remote sensing images. This type of
methods extract frequent sub-sequences of radiometric evolutions or land cover change
trajectories by just using the ordering of the sequence. It has the advantage of being robust
to noise and extracting meaningful patterns. As remote sensing data are recognized as Bbig
data^ in a certain sense [17], it is necessary to consider the performance efficiency of finding
meaningful or interesting patterns from time-series remote sensing images. Therefore, there is
a critical need for a method that can enable efficient and reliable characterization of spatio-
temporal patterns contained in an image time series [9]. The objective of this study is to
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generalize the application of the sequential pattern mining method to time-series remote
sensing images by using the Continuous Association Rule Mining Algorithm (CARMA)
[10] to improve the mining efficiency.

The remainder of this article is organized as follows. Section 2 describes the sequential
pattern mining method. Section 3 presents a case study and an analysis of the results. Finally,
Section 4 discusses the principal findings and states our conclusions.

2 Methodology

The effective use of a satellite image time series to characterize and monitor land cover
change trajectories requires the analysis of temporal variations in spatial patterns [9].
One basic problem when analyzing sequences of items is to find frequent episodes [14],
or in other words, to extract regular patterns from temporal data. To perform such
extraction tasks, we can rely on the various algorithms that have been designed to extract
frequent sequential patterns. Mining sequential and spatial patterns is an active area of
research in data mining, which is used for string mining or itemset mining in transactions
analysis.

In data mining field, several algorithms can be used to extract sequential patterns, and most
of them can be divided into two kinds: the Apriori-like, breadth-first search methods and the
pattern-growth, depth-first search methods. The bottlenecks of the breadth-first search methods
(such as AprioriAll [1], AprioriSome [1] and GSP [21]) include potentially huge sets of
candidate sequences, multiple scans of databases and difficulties at mining long sequential
patterns. And for the depth-first search methods (such as cSPADE [24], FreeSpan [8] and
PrefixSpan [19]), the major cost is the construction of projected databases. All traditional
algorithms operate offline: given minimal values for the support and the confidence the
algorithms scan and rescan the sequence set, often several times, and eventually produce all
association rules. However in general, the user does not know the appropriate thresholds in
advance. An inappropriate choice yields, after a long wait, either too many or too few
association rules. Among the various algorithms, CARMA is an efficient two-pass method
for finding sequences. CARMA is an alternative to Apriori that reduces Input / Output costs,
time, and space requirements. It uses only two data passes to deliver results which is much
lower support levels than Apriori. In addition, it allows changes in the support level during
execution. The time consumed is a crucial factor in remote sensing image processing, so in this
paper we aim to apply CARMA to exploit sequential pattern mining within the field of data
mining in order to analyze time-series remote sensing images.

This section introduces the sequential pattern mining method based on the CARMA
algorithm. First, some basic concepts of pattern mining are provided in Section 2.1, followed
by an introduction to the CARMA algorithm in Section 2.2.

2.1 Basic concepts

Let I = {I1,I2,…,Ip} be the set of all items; a set of items is referred to as an itemset and a
sequence is an ordered set of one or more itemsets. For example, in a sequence
s = <e1,e2,…,ej>, itemset e1 appears before e2, and e2 appears before e3, and so on. Itemset
ej is also an element of the sequence s denoted as (x1,x2,…,xq) in which xq ∈ I . A sequence that
contains k itemsets is a k-sequence. If there exists 1 ≤ i1 < i2 <… < in ≤m such that a1⊆bi1 ,

Multimed Tools Appl (2017) 76:22919–22942 22921



a2⊆bi2 ,…, an⊆bin appears in sequence A = 〈a1, a2,…, an〉 and sequence B = 〈b1, b2,…, bn〉,
then it is said that A is contained in B (denoted as A ⊆ B). A set of sequences is referred to as a
sequence set. In a sequence set, if a sequence s is not contained in any other sequence, then s
can be called the largest sequence. Additionally, in the sequence set, the number of sequences
that contain s is known as the support of s (written as sup(s)). In the mining process, if a
sequence satisfies the pre-determined minimum support, then it is a frequent sequence.
Sequential pattern mining is the mining of the largest sequences from the frequent sequences
in a sequence set, and the sequences found by sequential pattern mining can be called the
sequential pattern. In a sequential pattern s = <e1,e2,…,ej>, sequence s’ = <e1,e2,…,ej-1 > is
called the antecedent and sequence s^ = <ej > is called the consequent. The confidence for a
sequential pattern can be defined as the ratio of sup(s) to sup(s’). The confidence for each
generated sequential pattern should be calculated, and those sequential patterns whose confi-
dence is larger than the minimum confidence threshold are recognized as more interesting (or
more useful) than the other sequential patterns.

2.2 CARMA algorithm

The CARMA algorithm uses an effective two-step method to discover sequential patterns. The
first step is used mainly to find frequent sequences, and the second step is used to generate
sequential patterns based on these frequent sequences.

For the first step, the main target is to form a set V of all potentially large itemsets in a
lattice. There are three parameters for each itemset in the lattice: count(v), firstTrans(v), and
maxMissed(v). The meanings of these three parameters are introduced below and shown in
Fig. 1:

count(v): number of occurrences of itemset v since v was inserted in the lattice.
firstTrans(v): index of the sequence data at which v was inserted in the lattice.
maxMissed(v): upper bound on the number of occurrences of v before v was inserted in
the lattice.

The construction of the lattice is shown in Table 1:
In Fig. 1, t1,t2,…,tn are the sequences in the database. When tj was under the scan process,

itemset v was inserted into V. Suppose that we are reading sequence ti; therefore, maxMissed(v)

Fig. 1 Illustration of the meanings of the three parameters of CARMA
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denotes the number of occurrences of v from t1 to tj-1, the value of firstTrans(v) is j, and
count(v) denotes the number of occurrences of itemset v from tj to ti. For any itemset v in the
lattice, we get a deterministic lower bound count(v)/i and upper bound [maxMissed(v) +
count(v)]/i. We denote these bounds by minSupport(v) and maxSupport(v), respectively. The
detailed flowchart of CARMA is shown in Fig. 2:

1. The framework of CARMA algorithm has two parts: First, we initialize V to {ø} and set
count(ø) = 0, firstTrans(ø) = 0, and maxmissed(ø) = 0. Thus, V is a support lattice for an
empty sequence. Suppose that V is a support lattice up to sequence i-1; if we are reading
the i-th sequence ti and want to transform V into a support lattice up to i, we have to go
through three steps.

1) For each itemset v in V, if v is contained in ti, let count(v) = count(v) + 1.
2) We insert a subset v of ti into V if and only if all subsets w of v are already contained in

V and satisfy maxSupport(w) ≥ σi (where σi is the current user-defined support

Table 1 Example of the lattice

Itemset Count firstTrans maxMissed

i1 count(i1) firstTrans(i1) maxMissed(i1)

i2 count(i2) firstTrans(i2) maxMissed(i2)

… … … …

ik count(ik) firstTrans(ik) maxMissed(ik)

Fig. 2 Flowchart of CARMA
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threshold). As v is contained in the current sequence ti, let count(v) = 1,
firstTrans(v) = i, and we compute the value of maxMissed(v).

& As w is a subset of v, we obtain maxSupport(w) ≥maxSupport(v). Furthermore, according
to Formula (2.1), Formula (2.2) and Formula (2.3), we obtain Formula (2.4).

maxSupport wð Þ ¼ maxMissed wð Þ þ count wð Þ½ �=i ð2:1Þ

maxSupport vð Þ ¼ maxMissed vð Þ ¼ count vð Þ½ �=i ð2:2Þ

count vð Þ ¼ 1 ð2:3Þ

maxMissed vð Þ ≤ maxMissed wð Þ þ count wð Þ − 1 ð2:4Þ

When we are inserting a subset v into V, the set v is not yet contained in V. Hence, the
support of v for the first (i-1) sequences satisfies Formula (2.5), where |v| denotes the
number of items in v.

supporti−1 vð Þ ≤ avgi−1 ⌈σ⌉i − 1ð Þ þ jv − 1j
i − 1

ð2:5Þ

& In addition, considering Formula (2.6), we obtain Formula (2.7)

maxMissed vð Þ ¼ supporti−1 vð Þ � i � 1Þð ð2:6Þ

maxMissed vð Þ≤ i−1ð Þavgi−1 σd ei−1
� �� �þ vj j−1 ð2:7Þ

& Based on all of the above, we can define Formula (2.8).

maxMissed vð Þ ¼ min i−1ð Þavgi−1 σd ei−1
� �� �þ vj j−1;maxMissed wð Þ þ count wð Þ−1jw⊂vg

�

ð2:8Þ

3) We compute Formula (2.9)for each itemset v of V when every k sequences (the value
of k is defined by the user) are scanned. For any itemset v whose maxSupport < σi, we
delete v from V.

maxSupport ¼ maxMissed þ countð Þ=I ð2:9Þ

2. For the second step, the main aim is to scan the sequences a second time and generate
sequential patterns based on the frequent sequences found in the first part of CARMA. In
the second step, we compute the precise support of all itemsets v in V and continually
remove itemsets with maxSupport < σn where σn is the last threshold of minSupport.
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While performing the scanning, all itemsets v of V are checked and the parameters
associated with v are updated. Two situations may arise:

1) If firstTrans(v) < i, then v is considered as a large itemset. If the current sequence
index is greater than firstTrans for all itemsets in the lattice, the second part of the
CARMA algorithm stops.

Table 2 Earth observation data available and processed for the study

Sensor Year Acquisition time Path/Row Level

TM 2010 20091017 122/039 L4

TM 20090906 123/038 L4

TM 20090906 123/039 L4

TM 2005 20040917 122/039 L4

TM 20050911 123/038 L4

TM 20050911 123/039 L4

ETM+ 2000 20000914 122/039 L4

ETM+ 20000820 123/038 L4

ETM+ 20001007 123/039 L4

TM 1990 19921018 122/039 L4

TM 19930926 123/038 L4

TM 19910719 123/039 L4

MSS 1980 19791020 132/038 L4

MSS 19781016 132/039 L4

Fig. 3 Location of Wuhan city in Hubei province, China. The spatial extent of the experiment is shaded in light
grey
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2) If the current sequence contains itemset v of V, we use Formula (2.10) and Formula (2.11),
and if firstTrans(v) = i, we use Formula (2.12). However, using Formula (2.12)for an
itemset vmight yieldmaxSupport(w) >maxSupport(v) for some supersetw of v. Thus, we
use Formula (2.13) for all supersetsw of vwithmaxSupport(w) >maxSupport(v). We also
remove the itemsets v from V with maxSupport<σn.

count vð Þ ¼ count vð Þ þ 1 ð2:10Þ

maxMissed vð Þ ¼ maxMissed vð Þ � 1 ð2:11Þ
maxMissed vð Þ ¼ 0 ð2:12Þ

maxMissed wð Þ ¼ count vð Þ � count wð Þ ð2:13Þ

From all of the above, it is clear that CARMA requires only two scans of the sequences to
obtain the sequential pattern.

Fig. 4 Flowchart of the
experimental procedure
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3 Case study and analysis

The main objective of this paper is to generalize the typical sequential pattern mining
algorithm in order to obtain patterns for remote sensing time-series images that could be
useful for reaching meaningful conclusions regarding land cover change. Here, we
analyze some selected patterns obtained by the CARMA algorithm, which represent
the process of land cover change. This approach quantifies land cover changes in terms
of the percentage area affected and maps the spatial distribution of these changes.

3.1 Study area and data

The present paper is based on a study of Wuhan city in Hubei province, China. As shown in

Fig. 3, Wuhan is located in the east of Hubei province, between 113°41′–115°05′E and 29°58′–

31°22′N, and covers an area of around 8494.41 km2. The terrain of Wuhan city is dominated

by plains and supplemented by hills with a surface elevation ranging from 11.3 m to 873.7 m.

The landform falls under the hilly regions in the southeast Hubei province. It is a transitional

area between the eastern margin of Jianghan plain and the southern low mountains and hills of

the Dabie Mountains. Wuhan city has witnessed rapid urbanization and industrialization owing

to a booming economy; the population growth and economic development have contributed to

drastic changes in land use/land cover in Wuhan.
Time-series Landsat MSS/TM/ETM+ images for five periods (i.e., 1980, 1990, 2000, 2005,

and 2010) were selected as the data source (Table 2) for the study. The images used in the
experiment were all downloaded free of charge from two websites: http://ids.ceode.ac.cn/ and
http://glovis.usgs.gov/.

Fig. 5 Relationship of support, confidence, and number of patterns: different combinations to find the appro-
priate support and confidence values
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3.2 Experimental procedure

For rational and effective analysis of land cover changes, after the image pre-processing, we
first classified the time-series images of the study area into land cover maps. Second, based on
the land cover maps, we constructed the image sequence set within which each sequence is a
land cover class trajectory at pixel level that is described through the classified images
assembled in the time series. Third, we applied the sequential pattern mining algorithm to
the image sequence set to search for sequential patterns. Finally, we analyzed some interesting

Fig. 6 a–e Results of the classification for remote sensing images from 1980 to 2010, respectively
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sequential patterns to reveal the trajectory of land cover change and evaluated the degree of
change. The flowchart of the experimental procedure is shown in Fig. 4.

3.3 Pre-processing and classification

The pre-processing steps included reprojection, image mosaicking, and subsetting. The
images were projected to the Albers Conical Equal Area projection coordinate system
with detailed parameters as follows: central longitude 105° E and WGS84 spheroid.

Fig. 6 (continued)
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Then, the images for each year were mosaicked in the same coordinate system, and
the study area was clipped from the mosaicked images against the municipal boundary
layer. Thus, all the data were arranged in the same coordinate system to form a data
set with consistency and integrity, suitable for spatial and sequential comparative
analyses.

We used eCognition software for image classification, and image enhancement was
performed to increase the visual discrimination between features from the data.
Because differences and disagreements may appear in the classification process when

Fig. 6 (continued)
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interpreting land cover types, the classification for all the images was undertaken by a
single expert by combining software and manual techniques. The land cover types
were classified into five categories, namely, forest land, grassland, wetland (including
rivers, ponds, and reservoirs), farm land, and built-up land, using a modified Ander-
son land cover classification scheme [2]. After all the pre-processing steps, the
original digital number values for every pixel in the five images were transformed
into land cover type values. Then, the land cover types or classes were converted into

Fig. 6 (continued)
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symbols. The experiment used five characters, namely, B1^, B2^, B3^, B4^, and B5^, to
represent forest land, grassland, wetland, farm land, and built-up land, respectively.

3.4 Construction of land cover change sequence set

An image time series portraying the same scene can be transformed into a landscape
trajectory by decomposing the sequence image-by-image and projecting it as a time-

Fig. 6 (continued)
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ordered series of coordinates in a pattern metric space. In our research, as land classes
were converted to symbols, a categorical land cover change sequence set that contains
the pixel history, or the land cover trajectory, at the pixel-level, was created by
obtaining each sequence for every pixel transition. Suppose that the classification
result for the pixel located in position (1, 1) in the image is grassland in 1980,
1990, and 2000, and built-up land in 2005 and 2010; then, the land cover change
sequence for this pixel can be denoted as B22255^. Therefore, the land cover change
sequence set can be generated by copying the land cover change sequence sequen-
tially for each pixel in the study area from the beginning of the image to the end. All
the land cover change sequence for each pixel constitute the land cover change
sequence set, and this sequence set is the data source for sequential pattern mining.

3.5 Sequential pattern mining

The greater the number of land cover classes, the greater is the number of change
trajectories. For three successive land cover classifications with 10 land cover classes
each, the potential number of land cover change trajectories is 1000. Analyzing and
interpreting all the possible change trajectory results is a time-consuming task; more-
over, it is difficult to draw conclusions regarding the land cover change for the entire
area. In order to identify the typical land cover changes and determine the bases of
the sequences, sequential pattern mining was performed on the constructed land cover
change sequence set. Here, we used the CARMA algorithm to explore the sequential
patterns that represent the typical land cover changes. In the mining process, the two
most important parameters are the support and the confidence of the sequence mode.
We selected a number of different combinations to establish the most appropriate
support and confidence values and tested the obtained sequential patterns, as shown in
Fig. 5.

In Fig. 5, the numbers of generated patterns for different supports tend to coincide
as the confidence increases. Therefore, in subsequent experiments, we selected a

Table 3 Area statistics of the land cover types over the 30-year study period

Year Land cover types 1 2 3 4 5

Forest land Grassland Wetland Farm land Built-up land

1980 Area (km2) 587 86 2321 4944 555

Percentage of the research area (%) 6.91 1.02 27.33 58.21 6.54

1990 Area (km2) 587 75 2321 4922 588

Percentage of the research area (%) 6.91 0.89 27.33 57.95 6.93

2000 Area (km2) 577 12 2154 4893 858

Percentage of the research area (%) 6.79 0.14 25.35 57.61 10.11

2005 Area (km2) 568 11 2148 4660 1107

Percentage of the research area (%) 6.69 0.13 25.29 54.86 13.03

2010 Area (km2) 567 11 2112 4307 1497

Percentage of the research area (%) 6.67 0.13 24.87 50.71 17.63
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confidence level of 40 % and a support rate of 0.02 % as the parameters for the
sequential pattern mining.

Table 4 Top 18 land cover change patterns

Pattern Support (%) Confidence (%) Pattern category

44444 49.36 92.80 stable pattern

33333 23.95 97.39 stable pattern

11111 6.59 98.50 stable pattern

55555 6.47 93.82 stable pattern

44455 2.34 48.07 human-induced pattern

44555 1.64 40.93 human-induced pattern

33444 1.16 92.64 human-induced pattern

22555 0.74 97.95 human-induced pattern

44433 0.64 71.70 natural pattern

33555 0.64 50.80 human-induced pattern

33355 0.56 48.09 human-induced pattern

33343 0.25 51.95 human-induced pattern

45555 0.25 43.37 human-induced pattern

33345 0.20 41.79 human-induced pattern

44434 0.16 47.58 human-induced pattern

25555 0.13 44.7 human-induced pattern

22222 0.12 97.67 stable pattern

11555 0.11 62.96 human-induced pattern

Total 95.31 %

Fig. 7 The performance of CARMA and cSPADE algorithm
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3.6 Result and analysis

3.6.1 Classification result and area statistics

Five classes were considered to represent the different types of land cover for the entire study
area. The classification results are shown in Fig. 6 and the statistical results for the classifica-
tion are listed in Table 3.

According to the records of the Wuhan Planning and Design Institute, since the
1990s, the city has expanded considerably owing to rapid advances of the develop-
ment zone and district economy. As a result of urban development, the city has

Fig. 8 Spatial distribution of the stable patterns
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expanded along the main lines of communication. This change is confirmed by the
findings of the present study. According to the area statistics of the land cover types
and their changes over the 30-year study period, the built-up area has grown remark-
ably from 555 km2 in 1980 to 1497 km2 in 2010, and the grassland area has
decreased by nearly 90 % from 86 km2 in 1980 to 11 km2 in 2010. At the same
time, other types of land cover have reduced by varying degrees.

3.6.2 Performance of CARMA

To compare the performance of CARMA to traditional algorithms, we implemented CARMA
along with the cSPADE algorithm developed by Zaki in 2001, and the recorded time consume
for both algorithms are given in Fig. 7. The comparison results (Fig. 7) shows the runtime of
CARMA and cSPADE in mining sequential patterns with different support thresholds. Ac-
cording to Fig. 7, we can see that CARMA outperformed cSPADE especially on low support
thresholds. That due to cSPADE requires more time for removing all useless sub-sequences
that are computed by the algorithm. It also requires, for a given evolution, browsing the whole
dataset for identifying pixels that are concerned by this evolution. In addition, CARMA is
typically by an order of magnitude more memory efficient and readily computes association
rules in cases which are intractable for cSPADE.

3.6.3 Sequential pattern mining result

For the study area, the mining process of CARMA over the land cover change sequence set led
to the identification of 113 sequential patterns, each with their own proportion. In order to
highlight the most significant land cover change trajectories, the top 18 land cover trajectories
whose support rates were more than 0.1 % were selected as the land cover change patterns.

The analysis of land cover change trajectories has focused on the selected top 18 patterns with a
total cover equal to 95.31 % of the entire study area (Table 4). The remainder is spread among the
other 95 patterns. To analyze the temporal human impact on the environment, we divided the
selected top 18 patterns into three categories, namely, stable patterns, human-induced patterns, and
natural patterns. Stable patterns are characterized by pixels that are constant over time (e.g., 11111
and 22222). In particular, the trajectories are dominated by five stable patterns accounting for
86.49 % of the study area, where the land cover type never changed between 1980 and 2010. This

Table 5 Composition of land cover change in the human-induced patterns (each land cover change area taken
from the entire area)

Land cover
change

1980–1990 1990–2000 2000–2005 2005–2010 Total

1–5 0 0.11 % 0 0 0.11 %

2–5 0.13 % 0.74 % 0 0 0.87 %

3–4 0 1.16 % 0.45 % 0.16 % 1.77 %

3–5 0 0.64 % 0.56 % 0 1.2 %

4–3 0 0 0.16 % 0.25 % 0.41 %

4–5 0.25 % 1.64 % 2.34 % 0.2 % 4.43 %

Total 0.38 % 4.29 % 3.51 % 0.61 % 8.79 %
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implies that the majority of the land cover types have remained the same since 1980 for the entire
time series. The spatial distribution of the stable pattern B11111^ is shown by the pixels in the yellow
region in Fig. 8. The support of the pattern is 6.59 %, and in 1980, forest land accounted for 6.91 %
of the entire area. This implies that more than 95 % of the forest land in 1980 belonged to that the
same land cover type in 2010. Similarly, for pattern B55555^ (the red region in Fig. 8), we concluded
that 98.93 % of the built-up land in 1980 belonged to the same land cover type in 2010. This also
indicates that the areas that are not covered by the stable patterns have undergone some kind of land
cover change. Thus, the current land area share of the same land cover type can have different
histories.

Fig. 9 Spatial distribution of the human-induced patterns
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Human-induced patterns are represented by pixel histories with decisive changes
due to human activities, such as the change from farm land to built-up land. Table 5
shows the composition of the 12 human-induced patterns accounting for 8.79 % of
the study area. Human-induced land cover change trajectories are dominated by the
transition from farm land to built-up land, especially during 2000 to 2005. Further,
during 1990 to 2010, the highest percentage (4.29 %) of the area was affected by
human-induced land cover change.

Figure 9 shows the spatial distribution of human-induced land cover change
patterns over the past 30 years. In the study area, the human-induced land cover
change is more concentrated in urban areas and becomes gradually sparse toward the
suburbs. It also can be noted that some land cover change patterns are continuous in
time and space, such as B44555^ and B44455^, and B33555^ and B33355^. For
example, consider B44555^ and B44455^; in 2005, areas of human-induced change
from farm land to built-up land most likely appeared in the farm land adjacent to the
built-up land that had been converted from farm land in 2000. This implies that urban
expansion has spatial connectivity and temporal continuity.

Natural change patterns include indecisive changes due to natural processes. Only
one sequential pattern falls into this category, i.e., B44433^; it indicates that the land
cover type was farm land before 2005, which changed to wetland after 2005 probably
because of floods.

4 Conclusion

The method developed in this study allows the identification, classification, and
spatial localization of land cover types and their trajectories of change for a temporal
series. It quantifies the land cover changes in terms of the percentage of area affected
and maps the spatial distribution of these changes. Further, it provides a different
measure for the description of land cover changes according to their current charac-
teristics and history. The expected novel significance of this study is the generaliza-
tion of the application of the sequential pattern mining method for capturing the
spatial variability of landscape patterns and their trajectories of change, to reveal
information regarding process regularities with satellite imagery.

Although the presented case study clearly demonstrates that the sequential pattern
mining method is a promising analytical tool for spatiotemporal data analysis, a
number of issues warrant further investigation. As with other studies using historical
data for studying landscape changes, the availability and quality of the data, their
classification, and analysis all influence the typology of the landscape patterns and of
the changes detected. Discovering interesting patterns is an important requirement in
this field. In future research, we intend to develop interestingness and mining methods
that are more sophisticated in order to improve the utility and efficiency of applying
sequential pattern mining to remote sensing data.
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