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Abstract In the last few years, multimedia technologies in general, and Real-Time
multimedia Communications (RTC) in particular, are becoming mainstream among
WWW and smartphone developers, who have an increasing interest in richer media
capabilities for creating their applications. The engineering literature proposing novel
algorithms, protocols and architectures for managing and processing multimedia infor-
mation is currently overwhelming. However, most of these results do not arrive to
applications due to the lack of simple and usable APIs. Interestingly, in this context in
which APIs are the critical ingredient for reaching wide developer audiences, the
scientific literature about multimedia APIs and their usability is scarce. In this paper
we try to contribute to fill this gap by proposing the RTC Media API: a novel type of
API designed with the aim of making simple for developers the use of latest trends in
RTC multimedia including WebRTC, Video Content Analysis or Augmented Reality.
We provide a specification of such API and discuss how it satisfies a set of design
requirements including programming-language agnosticism, adaptation to cloud envi-
ronments, support to multisensory multimedia, etc. After that, we describe an imple-
mentation of such an API that has been created in the context of the Kurento open
source software project, and present a study evaluating the API usability performed in a
group of more than 40 professional developers distributed worldwide. In the light of the
obtained results, we conclude that the usability of the API is adequate across the main
development activities (i.e. API learning, code creation and code maintenance), with an
average usability score of 3.39 over 5 in a Likert scale, and that this result is robust
with respect to developers’ profiles, cultures, professional experiences and preferred
programming languages.
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1 Introduction

Analysts such as Marc Andreessen claim that Bsoftware is eating the world^ stressing the
importance of software-centered models into the economy and the transition of traditional
business to software-based organizations [7]. This trend is permeating into all areas of IT
(Information Technologies) including also multimedia industries. In the last few years, we
have witnessed how multimedia technologies have been evolving toward software-centered
paradigms embracing cloud concepts through different types of XaaS (Everything as a
Service) models [17].

More recently, another turn of the screw is taking place thanks to the emergence and
popularization of APIs (Application Programming Interfaces). This is perfectly summarized by
Steven Willmott with his claim Bsoftware is eating the world and APIs are eating software^
[81]. Software developers worldwide are getting used to create their applications as a compo-
sition of capabilities exposed through different APIs. These APIs are typically accessible
through SDKs (Software Development Kits) and expose in an abstract way all kind of
capabilities including device hardware, owned resources and remote third party infrastructures.
This model, applied to cloud concepts, is quite convenient for individual developers and small
companies, which have now the opportunity of competing with large market stakeholders
without requiring huge effort investments and without needing to acquire hardware infrastruc-
ture or software licenses. Thanks to this, in the last few years, we are experiencing an
explosion of innovation with thousands of new applications and services both for WWW
and smartphone platforms that are being catalyzed by the rich and wide ecosystems of APIs
made available to developers.

This trend towards the BAPIfication^ is also invading the multimedia arena and, very
particularly, the RTC (Real-Time multimedia Communications) area. Initiatives such as
WebRTC [44] are bringing audiovisual RTC in a standard and universal way to WWW users.
The main difference between WebRTC and other popular video-conferencing applications is
that WebRTC is not a service, but a set of APIs enabling WWW developers to create their
customized applications using standard WWW development techniques.

WebRTC belongs to the HTML5 ecosystem and has awakened significant interest among
the most important Internet and telecommunication companies. As opposed to other previous
proprietary WWWmultimedia technologies, it has been conceived to be open in a broad sense,
both by being based on open standards and by providing open source software
implementations. Currently, a huge standardization effort on WebRTC protocols is taking
place at different IETF working groups (WGs), being the RTCWeb WG the most remarkable
one [41]. In turn, WebRTC APIs are being defined and consolidated at the W3CWebRTCWG
[82]. WebRTC standards are still under maturation stage and they might take some time to
consolidate. In spite of this, most of the major browsers in the market already support WebRTC
and it is currently available in billions of devices providing interoperable multimedia
communications.

Hence, WebRTC is an opportunity for the creation of a next generation of disruptive and
innovative multimedia services catalyzed worldwide through those emerging APIs. However,
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to reach this goal, the WebRTC ecosystem needs to evolve further. Basing on WebRTC
browser capabilities, services can only provide peer-to-peer communications, which restrict
use-cases to simple person-to-person calls involving few users. In order to enhance this model,
server side infrastructures need to be involved. This is not new: as it is well known, the
traditional WWW architecture is based on a three tier model [31] involving an application
server layer and a service layer, this latter typically reserved to databases. In the same way, rich
media applications also base on an equivalent three tier model where the service layer provides
advanced media capabilities. The media component in charge of providing such capabilities is
typically called media server in the jargon.

There is not a formal definition of what a media server is and different authors use the term
with different meanings. In this paper, we understand that a media server is just the server side
of a client-server architected media system. We concentrate our attention on RTC media
servers, which are specialized in RTC media problems. Commonly, RTC media server
capabilities consist on the following [50]:

– Group communication capabilities: These include mixing and forwarding. This type of
media servers is called MCU (Multipoint Control Unit) [69] following the H.323 termi-
nology and usually takes the form of Mixing Mixers or Selective Forwarding Units (SFU)
[80].

– Media archiving capabilities: These are related to the recording of the audiovisual streams
into structured or unstructured repositories and the ability to recover them later for
visualization.

– Media bridging capabilities: This refers to attaining interoperability among networks or
domains having incompatible media formats or protocols. Transcoders and IMS (IP
Multimedia Subsystem) Gateways [34] are among the most popular in this area.

Media servers are a critical ingredient for transforming WebRTC into the next wave of
multimedia communications, and the availability of mature solutions exposing simple to use
yet powerful APIs is a necessary requirement in that area. However, most standardization and
implementation efforts are still concentrated at the client side, and server side technologies are
still quite fragmented. Although there are a relevant number of WebRTC media servers
available they do not provide coherent APIs compatible with WWW development models.
Developing solutions with them typically requires expertise with low level protocols such as
SIP [63], XMPP [64] or MGCP [6], on which average WWW developers do not have any
experience. In addition to this, most state-of-the-art WebRTC media servers just provide the
three basic capabilities specified above and are extremely hard to extend with further features.
However, nowadays, many RTC services involve person-to-machine and machine-to-machine
communication models and require richer multimedia processing capabilities such as computer
vision, augmented reality, speech analysis and synthesis, etc.

In this paper we propose an evolution on current state-of-the-art RTC media servers
presenting a new type of RTC API for media server control, which has been designed for
usability. This API addresses many current state-of-the-art limitations, such as the ones
described above, and is aligned with WWW development principles, architectures and meth-
odologies. The main contributions of this paper are threefold. First, we introduce the main
concepts of the above mentioned API. Second, we present how developers may leverage it and
create applications providing transparent interoperability among heterogeneous formats and
protocols through a modular and extensible architecture. Third, we present an evaluation of the
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proposed API usability based on the Cognitive Dimensions of Notations (CDs) [35], which is a
lightweight framework created for describing and analyzing the usability of notational sys-
tems, such as user interfaces, programming languages and APIs.

The remainder of this paper is as follows. Section 2 summarizes some approaches of RTC
media servers and APIs available in the literature. Section 3 presents the proposed RTC Media
API and illustrates how to create applications with it. Section 4 describes a survey in which our
API is evaluated by means of a research questionnaire following the CDs framework. The last
section concludes this research with discussion, contributions of the study and suggestions for
further work.

2 Related work

2.1 RTC media server control APIs

Media server technologies emerged in 90’s catalyzed by the popularization of digital video
services. Initial media servers were specialized into specific functions such as streaming [48],
transcoding [71] and RTC for audio and video conferencing [7]. In this paper we concentrate
on this latter category.

The popularization of video and audio conferencing made RTC media servers to evolve
through different types of standards, which include H.323 [73], where the media server role is
played by elements such as the MCU (Multipoint Control Unit) and the IMS (IP Multimedia
Subsystem), where media servers are generically called MRF (Media Resource Function) [46].
These standards were conceived by operators and corporate communications solution vendors,
who concentrated on the specificities of their infrastructures and not on the needs of devel-
opers. As a consequence, the involved media control interfaces were designed based on low
level protocols and not on high level friendly APIs. Among such protocols we can find the
IETF MGCP [6], which evolved later into the 3GPP H.248 [72] recommendation. These are
based on binary formats, which are hard to understand, implement, debug and extend.
Probably due to this, these protocols did not have much impact out of telecommunication
providers.

More recently, the commoditization of RTC media server technologies brought increasing
interest on more flexible mechanisms for media control. Several IETF WG emerged with the
objective of democratizing them among common developers. As a result, further protocols
such as MSCML [75], MSML [65] emerged providing the ability of controlling media server
resources through technologies understandable and familiar to average developers such as
XML [16].

Although these protocols are simpler to understand and integrate, developing application on
top of them is still a cumbersome, complex and error prone process. Due to this, many
stakeholders noticed that the natural tools used by developers are not protocols but APIs
and SDKs. Hence, a number of initiatives emerged trying to transform the protocol-based
development methodology into an API-based development experience providing seamless
media server control through interfaces adapted to programming languages specificities and
not to infrastructure characteristics. In particular, the Java platform was one of the first on
integrating this philosophy by trying to reproduce the WWW development experience and
methodology for the creation of RTC media enabled applications. A relevant activity in this
area is JAIN (Java API for Integrated Networks), which issued several APIs for the signaling,
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control and orchestration of media capabilities. These include the JAIN SIPAPI [53], the JAIN
SLEE API [29] and the JAIN MEGACO API [9]; this latter being specifically devoted to
control media servers through the H.248 protocol. JAIN APIs did not permeated much out of
operators, but their ideas inspired more popular developments such as the SIP Servlet APIs
[47] for the signaling plane, and the Media Server Control API (aka JSR 309) [27] for the
media plane, which have been more widely used for the development of RTC solutions for
voice and video.

Among all these APIs, this paper is especially interested in the JSR 309. JSR 309 concepts
were quite revolutionary at the moment because the API tried to fully abstract the low level
media server control protocols and media format details. The objective was to enable devel-
opers to concentrate on application logic. JSR 309 defined both a programming model and an
object model for media server control through a northbound interface, but independent of
media server control protocols and hence, without requiring any specific southbound protocol
driver. JSR 309 does not make any kind of assumption in relation to the signaling protocol or
to the call flow, which are left to the application logic.

From a developer’s perspective, probably the most innovative concept of JSR 309
was the introduction of a mechanism for defining the media processing logic in terms
of a topology. This mechanism is based on an interface called Joinable. In JSR 309,
all objects having the ability to manipulate media (e.g. send, receive, process, archive,
etc.) implement such interface, which has a join method enabling interconnecting
such objects following arbitrary dynamic topologies. Hence, a specific media process-
ing logic can be implemented by developers just joining the appropriate objects. As an
example, if you want to create an application mixing two RTP (Real-time Transport
Protocol) streams and recording the resulting composite into a file, you just need to
join the appropriate objects with the appropriate topology. Taking into consideration
that in JSR 309 the NetworkConnection is the class of objects capable of receiving
RTP streams, that MediaMixer is the class of objects with mixing capability and that
MediaGroup is the class with be ability of recording; the above mentioned media
topology can be achieved just by joining two NetworkConnection instances to a
MediaMixer instance, which in turn, is joined with a recording MediaGroup. This
approach makes possible for developers to conceive their media processing logic as
graphs of Bblack-box^ joinables, which is a quite modular and intuitive mechanism for
working in abstract terms with the complex concepts involved in RTC multimedia
applications.

Another relevant innovation of JSR 309 is the introduction of media events. Thanks to this
mechanism, the media processing logic held by a media server can fire events to applications
through a publish/subscribe mechanism. This is very convenient for enabling applications to
become media-aware meaning that complex processing algorithms at the media server can
provide asynchronous information dealing with things happening inside the media, for
instance DTMF (Dual-Tone Multi-Frequency) tones being detected, voice activity being
present, and so on.

JSR 309 permeated into mainstream developer audiences as a suitable API for media
server control following the typical three tier model [27]. However, in the last few
years, the emergence of novel technologies and computation paradigms have made JSR
309 to show relevant limitations. For example, nowadays group videoconferencing
services are evolving from Media Mixing models, which require relevant media pro-
cessing, towards SFU (Selective Forwarding Unit) models, which are based on media
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routing [80]. JSR 309 is heavily adapted to Media Mixing and, due to this, most of its
APIs assume that participants send/receive only one media stream to/from the media
server. As a consequence, SFU models do not fit nicely into JSR 309 APIs. This is
particularly a problem when all the streams of a group videoconference are multiplexed
into a single RTP session, as happens typically on modern WebRTC SFU media servers
supporting bundle RTP [43], because JSR 309 APIs do not provide any kind of
mechanism for demultiplexing streams from a NetworkConnection. Moreover, in
J SR 3 0 9 t h e AP I s p e c i f i c a t i o n e x p l i c i t l y f o r b i d s s e v e r a l i n p u t
NetworkConnections to be joined to a single output NetworkConnection, as
an SFU router would require. Instead, they need to be joined first to a MediaMixer,
which, in turn, can be joined to the output NetworkConnection.

When looking to other modern RTC technologies, we notice again that the JSR 309 design
has limitations. For example, if we consider WebRTCW3C APIs [82], we may understand that
they split endpoint capabilities into different functional blocks each of which is exposed
through an abstract interface (e.g. RtpSender, RtpReceiver, PeerConnection, etc.)
However, if we want to expose WebRTC media server capabilities through JSR 309 we need
to accept that endpoints can only be represented through the NetworkConnection inter-
face, which is extremely limited to support rich WebRTC capabilities such as
DataChannels [11], Trickle ICE [42], simulcast [79], etc.

JSR 309 shows also drawbacks in relation to its extensibility. In JSR 309 it is possible
to support new media object types using MediaGroups, however, configuration of
these new types have to be done with Media Server specific descriptions as strings,
which cannot be validated by the compiler. It is important to note that these new media
object types cannot be NetworkConnection, only MediaGroups. This is a hard
limitation because no other network protocol different than RTP (negotiated through
SDP) can be incorporated. The ideal would be to allow supporting the creation of new
object types in a similar way than the core types, with factory methods in
MediaSession (e.g. createNetworkConnection, createMediaGroup,
etc.), but this is not possible as MediaSession is an interface defined in JSR 309
API and hence it cannot be modified by the API user.

Further limitations about JSR 309 include:

– A counter-intuitive asynchronous development model based on an obscure
joinInitiate primitive, which is incompatible with modern Java mechanism for
managing asynchrony such as futures, continuations or lambdas. This lack of clean
asynchronous programming model makes JSR 309 difficult to adapt to reactive program-
ming frameworks and languages that are very demanded by developers today such as
Node.js or Scala.

– A complete lack of mechanisms for monitoring and gathering quality stats on media
sessions. This is an essential ingredient for production systems.

– JSR 309 is designed specifically for the Java language. It would be desirable a portable
API that can be used in as more languages as possible.

– This API is specifically designed to control Media Servers for phone communications
because it exposes concepts like Dialogs (Prompt and record, DTMF, VoiceXML dialog,
etc.). For example, it is mandatory for an implementation to provide a player with the
capability to detect audio signals in DTMF, but this kind of functionality is not very useful
in web applications.

14252 Multimed Tools Appl (2017) 76:14247–14304



2.2 Foundations of API evaluation and characterization

APIs are critical, non-optional and cross-cutting in the construction of modern software
systems [39]. Programming is a hard mental work and developers need to deal with large
amounts of information for writing satisfactory code. In that duty, APIs are the most critical
ingredient, especially when dealing with distributed systems and enterprise frameworks. For
example, recent works [40] show that API misuse is the single most prevalent cause of
software defects.

Designing APIs consists on conceiving abstractions through types and interfaces so that
they can be consumed seamlessly, efficiently and safely by application developers. This is
quite a complex topic for which very little is known and which requires interdisciplinary
knowledge combining cognitive psychology and software engineering. However, the respon-
sibility of API design is typically assigned to development team members who often do not
have expertise or training in this area and who, typically, are more concerned with implemen-
tation details than with usability.

In spite of the well-known importance of APIs, API design and evaluation has not been a
mainstream research topic and only recently some light has been shed on this area. Early
attempts to investigating APIs typically followed unstructured and ad-hoc approaches con-
centrating on the specificities of given technologies. For example, works have been published
with guidelines and recommendations for API design in C# [78], Java [15] or C++ [60] and for
ad-hoc evaluation of new programming languages [18].

Using another perspective, some authors concentrated on specific problems transversal to
all APIs with independence on their underlying technologies. Some remarkable efforts on this
area enabled to understand that, for instance, the factory pattern tends to generate usability
problems [26] and that there is a systematic set of questions that developers have when
learning new APIs [24]. All these efforts are relevant due to the talent of their authors to
detect and isolate common patterns and practices, but they do not make possible to build a
consistent and reusable methodology for the area.

During the last decades further authors have tried to systematize the problem of API design
and usability evaluation from a holistic perspective. Different approaches have been created for
this [2, 12, 21, 28]. However, in this area, the one which has gained highest popularity is the
Cognitive Dimensions of Notations (CDs) framework [13, 36]. CDs is a framework for
describing the usability of notational systems. In this context, a notational system typically
consists of a collection of symbols made on some medium and which define a behavior (i.e.
meaning) through some kind of structured interactions. Examples of notational systems
include English text on paper, buttons on a WWW GUI or programing with API calls on an
IDE. CDs allow designers of notational systems to evaluate their designs with respect to the
impact they have on the users of those designs.

The CDs framework is not an analytic method. Rather, it is a set of discussion tools for use
by designers and people evaluating designs whose main aim is to improve the quality of
discussion. CDs emerged because, at the end of the day, API design is more of an engineering
craft than a scientific discipline. It is subject to elements of affect, of fashion and of social
acceptance, in addition to technical considerations. For these reasons, we can learn from
studies of other design disciplines where the same craft elements apply. For example, a study
comparing knitwear designers and helicopter designers [25] observed that designers’ commu-
nities develop their own vocabulary for design criteria that is created through practice and
tradition. The CDs framework aims to provide the same kind of vocabulary for API designers.
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As a result, the CDs main objective is to enable API designers to reason consistently in
relation to how well an API supports the intended activities of its users. Simply stated, CDs
make possible to discuss in a coherent way about the extent to which an API supports
application developers at the time of performing typical activities such as API learning and
understanding, application design and creation, application maintenance and evolution, etc.
For this, the framework considers a set of dimensions each of which describes an aspect of the
API usability. These dimensions constitute a vocabulary of terms that can be used to charac-
terize cognitive artifacts and which makes possible to establish comparisons and to discuss and
investigate about the implications of design decisions on those artifacts. It is important to
remark that these dimensions are not good or bad in themselves but that they simply describe
properties of the system with respect to developers’ activities.

In the context of API evaluation, the CDs framework is a powerful tool because it allows to
compare users’ expectations and designer’s views of the APIs with what the system actually
provides. For example, early users of the HTML notation probably expected to be able to
modify their pages headings easily, whereas the language required one action per heading for
doing so. This signaled an imperfection in HTML API’s usability which probably drove to the
introduction of CSS (Cascading Style Sheets). In CDs terms such resistance to changes is
characterized through a dimension called viscosity. Hence, in this case, we would say that CSS
decreased the viscosity of HTML APIs. A comprehensive description of CDs dimensions can
be found in Blackwell et al [13]. For the sake of completeness, here we introduce a brief (and
incomplete) description of the 13 main dimensions of the CDs framework:

Viscosity: resistance to change.
A viscous system needs many user actions to accomplish one goal. Changing all

headings to upper-case may need one action per heading. (Environments containing
suitable abstractions can reduce viscosity.) We distinguish repetition viscosity, many
actions of the same type, from knock-on viscosity, where further actions are required to
restore consistency.
Visibility: ability to view components easily.

Systems that bury information in encapsulations reduce visibility. Since examples are
important for problem-solving, such systems are to be deprecated for exploratory activ-
ities; likewise, if consistency of transcription is to be maintained, high visibility may be
needed.
Premature commitment: constraints on the order of doing things.

Self-explanatory. Examples: being forced to declare identifiers too soon; choosing a
search path down a decision tree; having to select your cutlery before you choose your
food.
Hidden dependencies: important links between entities are not visible.

If one entity cites another entity, which in turn cites a third, changing the value of the
third entity may have unexpected repercussions. Examples: cells of spreadsheets; style
definitions in Word; complex class hierarchies; HTML links. There are sometimes actions
that cause dependencies to get frozen, e.g. soft figure numbering can be frozen when
changing platforms; these interactions with changes over time are still problematic in the
framework.
Role-expressiveness: the purpose of an entity is readily inferred.

Role-expressive notations make it easy to discover why the author has built the
structure in a particular way; in other notations each entity looks much the same and
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discovering their relationships is difficult. Assessing role-expressiveness requires a rea-
sonable conjecture about cognitive representations.
Error-proneness: the notation invites mistakes and the system gives little protection.

Enough is known about the cognitive psychology of slips and errors to predict that
certain notations will invite them. Prevention (e.g. check digits, declarations of identifiers,
etc) can redeem the problem.
Abstraction: types and availability of abstraction mechanisms.

Abstractions (redefinitions) change the underlying notation. Macros, data structures,
global find-and-replace commands, quick-dial telephone codes, and word-processor
styles are all abstractions. Some are persistent, some are transient. Abstractions, if the
user is allowed to modify them, always require an abstraction manager (i.e. a redefinition
sub-device). It will sometimes have its own notation and environment (e.g. the Word style
sheet manager) but not always (for example, a class hierarchy can be built in a conven-
tional text editor). Systems that allow many abstractions are potentially difficult to learn.
Closeness of mapping: closeness of representation to domain.

How closely related is the notation to the result it is describing?
Consistency: similar semantics are expressed in similar syntactic forms.

Users often infer the structure of information artifacts from patterns in notation. If
similar information is obscured by presenting it in different ways, usability is
compromised.
Diffuseness: verbosity of language.

Some notations can be annoyingly long-winded, or occupy too much valuable Breal-
estate^ within a display area. Big icons and long words reduce the available working area.
Hard mental operations: high demand on cognitive resources.

A notation can make things complex or difficult to work out in your head, by making
inordinate demands on working memory, or requiring deeply nested goal structures.
Provisionality: degree of commitment to actions or marks.

Even if there are hard constraints on the order of doing things (premature commit-
ment), it can be useful to make provisional actions such as recording potential design
options, sketching, or playing Bwhat-if^ games. Not all notational systems allow users to
fool around or make sketchy markings.
Progressive evaluation: work-to-date can be checked at any time.

Evaluation is an important part of a design process, and notational systems can
facilitate evaluation by allowing users to stop in the middle to check work so far, find
out how much progress has been made, or check what stage in the work they are up to. A
major advantage of interpreted programming environments such as BASIC is that users
can try out partially- completed versions of the product program, perhaps leaving type
information or declarations incomplete.

The CDs framework has been criticized due to its theoretical and practical limitations. For
example, Moody et al [51] claim that CDs do not provide a scientific basis because of several
reasons:

– The dimensions are vaguely defined often leading to misinterpretation in applying them.
– The theoretical and empirical foundations of the dimensions are poorly defined.
– The dimensions lack clear operationalization (i.e. evaluation procedures and metrics),

which mean they can be only applied in a subjective manner.
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– It does not support evaluation, as the dimensions simply define properties of notations and
are not meant to be either Bgood^ or Bbad^.

– It does not support design: the dimensions are not design guidelines and issues of
effectiveness are excluded from its scope.

– Its level of generality precludes specific predictions meaning that it is unfalsifiable and,
hence, it cannot be considered to provide a scientific basis for evaluating anything.

In spite of these criticisms, most authors accept that, although CDs need further evolutions
and improvements, they are today the most suitable tool for performing comparative API
evaluation and that their methodological principles allow analyzing real-world development
problems on controlled lab studies in quite an efficient and lightweight manner [36]. The
advantages and main motivations why many authors prefer the CDs over other usability
techniques include the following:

– They offer a comprehensive, broad-brush evaluation mechanism which does not suffer the
‘death by details’ symptom of other techniques.

– They offer a set of discussion tools and a common vocabulary helpful for evaluating
designs.

– They are based on terms that are comprehensible by non-specialists.
– They are directly applicable, without requiring customizations or reinterpretations, to all

types of notations including APIs.
– Although they are not theoretically complete, they are theoretically coherent, which makes

possible to analysts to generate consistent analyses.
– They describe a set of necessary, though not sufficient, conditions for usability, which

enable deriving usability predictions from the structural properties of a notation, the
properties and resources of an environment and the type of activity.

2.3 Quantitative evaluation of API usability

CDs are used by designers for performing quantitative evaluation of API usability. The
common practice for this is to use a questionnaire [14] requesting users to evaluate, through
a Likert scale [4], how they experience CDs dimensions when performing their development
activities. There is a broad literature illustrating how to create such reliable questionnaires [58].
When questionnaires target unsupervised and open audiences through the WWW, as it is the
case on this paper, a critical aspect for attaining reasonable answer rates and acceptable
accuracy is simplicity [33]. Hence, without a full and complete understanding of the questions,
developers under evaluation might not be willing to provide any information on the API
usability at all, or might be giving incomplete or mistaken answers.

As stated above, the CDs framework defines dimensions as a vocabulary that can be used
by designers when investigating the cognitive implications of their design decisions, so that
designers might be able to express any properties of their information artifacts as a composi-
tion of these basic dimensions. As an analogy, this is somehow similar to the way vector
spaces work: any vector in the space can be expressed as a composition of the base vectors.
From this perspective, the base CDs dimensions are designed for independence (i.e. they do
not overlap) and not for clarity and simplicity. As a result, questionnaires addressing the
complete set of CDs dimensions in the context of all common development activities are too
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complex, long and impractical for our objectives [14]. Using them might decrease the aim of
the target population to provide answers as well as the overall usefulness of the resulting
research.

Due to this, some authors propose an adaptation to the CDs framework based on
transforming the dimensions into another base that is more meaningful for developers and
that is compatible with shorter and simpler questionnaires [57]. These new dimensions are
called Clarke’s dimensions and concentrate on 5 specific aspects of API usability: understand-
ability, abstraction, expressiveness, reusability and learnability. All these high-level dimen-
sions can be expressed in terms of the original CDs dimensions, but their operationalization for
quantitative research is more practical due to a number of reasons. First, Clarke’s dimensions
illustrate the user’s perspective (i.e. developer) and not the designer’s one, as happens with the
plain CDs dimensions. As a result, they allow to optimize the questionnaire for API users more
than for API designers. Second, Clarke’s dimensions are simpler to understand as they are
fewer and as they refer to intuitive and positive usability properties (i.e. the highest the
evaluation of each dimension the better the API usability). This is in opposition to CD
dimensions that are not associated to a specific notion of goodness. Thanks to this, we are
able to scale down the number of questions and to state them in a simpler and more
straightforward way. Third, each of Clarke’s dimensions refers to a specific developers’
activity, which further simplifies the questionnaire and enables a more direct analysis of the
results. For illustration, these activities include exploratory learning (i.e. learning how to use
the API for creating applications), exploratory design (i.e. the process of using the APIs for
designing and creating applications) and maintenance (i.e. corrective modifications, evolution-
ary modifications, etc.) Clearly, understandability and learnability are applicable to exploratory
learning activities, abstraction and expressiveness to exploratory design activities and main-
tainability to maintenance activities. Let’s explain in details the meaning and value of each of
Clarke’s high-level dimensions (see Table 1 for further details).

Understandability deals with evaluating the effort required for understanding how to use
the API for achieving a desired functionality. This dimension encompasses aspects such as

Table 1 This table shows the relation of Clarke’s dimensions of API usability with CDs dimensions and
illustrates the meaning of each of these dimensions for developers. As it can be seen, Clarke’s dimensions are, in
all cases, more intuitive and simpler to understand than the original CDs dimensions

Clarke’s dimension Main related CDs dimensions Assertion

Understandability Closeness of mapping
Hidden dependencies
Hard mental operations

The higher, the simpler the process of learning and
understanding the API is

Abstraction Abstraction The higher, the less the low-level details developers
need to manage for creating their applications

Expressiveness Role expressiveness
Visibility
Consistency
Premature commitment
Provisionality
Error proneness

The higher, the simpler is the process of translating
application requirements into code

Reusability Viscosity
Diffuseness

The higher, the simpler the maintenance and evolution
of applications are

Learnability Progressive evaluation The higher, the more incremental and progressive the
API learning process is
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whether the API names are descriptive and the relation among API types and constructs are
clear and unambiguous. This relates to the base CDs dimension called closeness of mapping. It
also includes the ability of the API to avoid developers to manage hidden information not
explicitly represented in the API, which is called hidden dependencies in terms of the base
CDs dimensions. In addition, the base CDs dimension called hard mental operations also
affects understandability. In brief, this dimension addresses how simple is to access API
features through object creation, primitive invocations or other means.

Abstraction, which is itself a base CDs dimension, relates to the ability of the API to
guarantee that programmers can use the API proficiency without requiring specific knowledge
or assumptions in relation to its implementation details. Abstractions should match the
conventions and practices of programmers, without being elegantly abstract at the expense
of understandability or other practical concerns. Abstraction is typically correlated with the
degree of comfort developers feel when using the API. Summarizing with a slogan, this
research question asks whether the API Bmakes simple things simple, and complex things
possible^.

Expressiveness can be seen as the ability of inferring readily the purpose of an entity. This
is related to the base CD dimension called role-expressiveness. Expressiveness is also related
to how easy is for the programmer to build her code without needing to assume any specific
cognitive model about API use. Intuitively, code written using expressive APIs tend to be
simpler to read and transforming requirements into code is typically more efficient in expres-
sive APIs. In terms of base CDs dimensions these properties are related to visibility and
consistency. Moreover, expressive APIs do not impose constraints neither in the order or
creation nor in the definiteness of the components comprising the code, which is related to the
CDs dimensions called premature commitment and provisionality. We also consider the CDs
base dimension called error-proneness to be part of the expressiveness properties of our API.

Reusability determines whether the client code is maintainable and extensible. In partic-
ular, this dimension addresses the typical concern on how hard is to modify pre-existing code
and adapt it to slightly, extended or more general requirements. The main related base CDs
dimensions is viscosity, understood as resistance to change, but it also involves other base
dimensions such as diffuseness (i.e. the verbosity of the notation).

Learnability address the ability of the API learning process to be incremental. Learnable
APIs enable developers to understand APIs in a gradual way without requiring initial
disproportionate efforts, which is related to the CDs base dimension called progressive
evaluation. Learnability also deals with whether performing a certain programming task using
the API has a positive impact on performing other related but different tasks. This dimension
might have some overlap with understandability, but emphasizes specifically the learning
process rather than its practical outcomes.

2.4 Contributions of this paper: the RTC Media API requirements

APIs are always designed for satisfying requirements that are implicitly or explicitly assumed
by the designer. The creation of the API proposed in this paper, that we call not surprisingly the
RTC Media API, was founded also on a set of commonly accepted implicit requirements [15]
plus a number of explicit ones. Among the former we have simplicity, usability, security, self-
documenting and consistency. The latter were identified in the course of several large research
projects devoted to RTC media [30, 52] as essential needs that should be provided by any
modern RTC media API but, as discussed above, are not available in any state-of-the-art
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technology. The creation of an API complying with these requirements, and the validation of
its usability properties basing on the CDs framework, are the main contributions of this paper.
Among the above mentioned requirements, we may include the following:

Seamless API extensibility through custom modules
We want developers to be able to plug additional capabilities to the API (e.g.

processing algorithms, protocols, etc.) and to enable their consumption as if they were
native API capabilities (i.e. without requiring different syntax or language constructs.)
The mechanism we require for this is based on modules in the sense that every extension
takes the form of a module artifact (e.g. a .jar file in the Java language, a .js file in
JavaScript language, etc.) and that developers may plug the modules they wish at
development time without requiring any further modification or configuration. Remark
that, for the reasons specified in sections above, JSR 309 does not comply with this
requirement.
Adaptation to WWW technologies and methodologies

This requirement has two aspects. The first, and most important, is the need of our API
to be adapted to novel RTC WWW technologies and very particularly to WebRTC [44].
The WebRTC architecture, based on heavy use of RTP bundle [43] and RTCP
demultiplexing mechanisms [56] and requiring complex ICE [62] management tech-
niques such as Trickle ICE [42], makes complex to comply with this requirement. Also
as specified in sections above, JSR 309 is not compatible with this as the
NetworkConnection is based on plain RTP. The second, is the need of the API to
adapt to the typical WWW three tier development model [73]. This means that the RTC
Media API should be usable for WWW developers with their common development,
deployment and debugging techniques and tools. To some extent, this means that the RTC
Media API should be perceived by WWW developers as any other of the APIs consumed
in the application logic, such as database APIs or ESB (Enterprise Service Bus) APIs.
Full abstraction of media details (i.e. codecs and protocols)

Media representation and transport technologies are complex and require specialized
knowledge that is not typically available for common developers. For maximizing
productivity and minimizing development and debugging complexity the RTC Media
API should hide all the low level details of such technologies through the appropriate
abstractions. In doing so, these abstractions must maintain the appropriate expressiveness
enabling the API semantics to provide to developers the ability of performing the required
operations onto protocols and formats including payloading, depayloading, decoding,
encoding, re-scaling, etc.
Programming language agnostic

In today’s Internet, developers use a multiplicity of programming languages for
creating their applications. In fact, the majority of applications are called Bpolyglot^
because they use different languages. The specific choice depends on factors such as the
previous experience, the personal preferences, the tasks to be accomplished, the target
platform or the required scalability. In this context, tying developers to a specific
programming language may be perceived as inflexible and unfriendly. For this reason,
the RTC Media API needs to be language agnostic and adapt to the most common
programming languages used nowadays. Of course, the specific syntax of the API calls
may differ depending on language specificities. However, this requirement indicates that,
somehow, the constructs, basic mechanisms and programming experience needs to be the
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same across different languages. This means, for example, that a developer having the
appropriate expertise for creating applications with a Java RTC Media API implementa-
tion should be able of doing so with a JavaScript implementation as long as the subtleties
of the two languages are known.
RTC media topology agnostic

One of the main objectives of RTC Media Servers is to provide group commu-
nication capabilities to applications. Due to this, any useful RTC media API must
consider this as a central aspect of its design by exposing the appropriate con-
structs for group communications. When looking to how RTC group communica-
tions are technically implemented, we can notice that they are based on a set of
well-known RTP interconnecting topologies [80] among which the most common
ones are Media Mixing Mixers (MMM), Media Switching Mixers (MSM) and
Selective Forwarding Units (SFU). In short, MMMs are based on the principle of
composing a single output media stream out of N input media streams, so that the
final composite stream represents the addition of the N input streams. MMMs
require decoding of the N input streams, the generation of the composite (e.g.
linear adding in audio or matrix layout for video) and encoding to generate the
output stream. Due to the performance cost of these operations MMM do not scale
nicely. On the other hand, MSMs and SFUs do not perform any heavyweight
processing and they just forward and route N incoming streams to M outgoing
streams, reason why they have better scalability properties. Their only difference is
that MSMs enable the N to M mapping to change dynamically while on SFUs it is
static and the only possible operation is switching on/off forwarding on any of the
output M streams.

Understanding the differences and appropriate usage scenarios of these topolo-
gies is complex and a source of extra complexity for application developers. Due
to this, we include a requirement for our RTC Media API to transparently manage
all the subtleties of this problem so that the most appropriate solution is provided
transparently by the API. Remark that JSR 309 also tried to comply with this
requirement through the BJoinable^ mechanism making possible for developers to
establish topologies just by joining sources with sinks. However, as explained
above, both JSR 309, and equivalently JSR 79, are only compatible with MMM
topologies and cannot manage the, by the way most popular, MSM or SFU
models.
Advanced media QoS information gathering

QoS is critical in multimedia services. Some milliseconds of latency or jitter can be the
difference between successful and unsuccessful applications [77]. For this reason, RTC
media developers need to have the appropriate instrumentation mechanisms enabling
seamless debugging, monitoring and optimization of applications. These requirements
guarantees that our RTC Media API developers are able to access advanced QoS metrics
of the streams including relevant information such as packet loss, bandwidth, latency or
jitter. Remark that none of the above mentioned RTC media server APIs, including the
JSR 309, provide this kind of capability.
Compatibility with advanced media processing capabilities

So far, most RTC media technologies and APIs have been concentrated on the
problem of transport (i.e. taking media information on one place and moving it to
other places.) This happened because the most prevalent use case for RTC is
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person-to-person communications, where end-users expect from technology to
eliminate distance barriers (i.e. to maintain a conversation as if it were face-to-
face.) However, during the last decade novel use cases involving person-to-
machine and machine-to-machine communications are gaining popularity in differ-
ent verticals such as video surveillance, smart cities, smart environments, etc. In all
these verticals, going beyond plain transport is a relevant requirement. As an
example, the number of low latency RTC video applications being used in security
scenarios is skyrocketing. In all these applications the ability to integrate Video
Content Analysis (VCA) capabilities through different types of computer vision
algorithms is an unavoidable requirement [37]. In addition, modern media appli-
cations in areas such as gaming or entertainment complement VCA with another
trending technology: Augmented Reality (AR), which is also having high demand
from users [84]. As a result, we include our RTC Media API to provide full
compatibility with these advanced processing techniques enabling their seamless
integration and use.
Context awareness

In RTC media services, as in other types of services, context is becoming a relevant
ingredient for providing added value to applications [1]. Context is somehow an ambig-
uous concept for which there is not yet a formal definition. However, most authors accept
context as any kind of information that can be used for characterizing the situation of an
entity [22]. The OMA (Open Mobile Alliance) has generated a formal definition of
context through the NGSI standard [10] as a set of attributes that can be associated to
an entity. When working with RTC media, the entity is most typically a RTC media
session (e.g. a media call).

Considering this context definition, this requirement means that our RTC media API
needs to be capable of consuming context for customizing and adapting end-user
experience but, most important, it needs to be capable of extracting context attributes
from the media communication itself. In other words, the part of the context dealing with
the media itself (i.e. what the media content is and what it represents at any time) needs to
be manageable by the proposed API.
Adapted to multisensory multimedia

Traditionally RTC media has referred to simple audiovisual streams comprising
typically one video track and one or two (i.e. stereo) audio tracks. However, modern
trends and technologies extend this to a new multisensory notion [55], where multisen-
sory streams may comprise several audio and video tracks (e.g. Multi-view and 3D video)
but may also enable the integration of additional sensor information beyond cameras and
microphones (e.g. thermometers, accelerometers, etc.) [70]. Hence, we establish a re-
quirement for our RTC Media API to be capable of managing such multisensory
multimedia in as seamless and natural way.
Adaptation to cloud media servers

Cloud computing is permeating in all IT domains, including multimedia, as the
de-facto standard for system deployment and management [85]. This trend is also
permeating into the RTC media server arena, reason why we need to consider it in
the definition of our API. Adapting the RTC Media API to cloud environments
basically means to make it compatible with how a PaaS (Platform as a Service)
media server works [76]. In other words, our API needs to be compatible with a
new notion of distributed media server, which in opposition with traditional
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monolithic media servers, is distributed through a cloud environment and can
elastically scale to adapt to end-users generated load.

3 Description of the proposed API: the RTC Media API

3.1 API specification

3.1.1 MediaObjects: MediaElements and MediaPipelines

Before providing a formal description of the RTC Media API, which is probably too harsh,
let’s introduce some simple initial concepts that might be helpful for the understanding of the
basic mechanisms and philosophy behind our API. The RTC Media API is built on top of an
object oriented model where the root of the inheritance hierarchy is the MediaObject. The
MediaObject is only a holder providing utility members (it is abstract and cannot be
instantiated). The two main types inheriting from MediaObject are MediaElement and
MediaPipeline.

The MediaElement is the main abstraction of the RTC Media API. Intuitively, a
MediaElement can be seen as a black box implementing a specific media capability.
In general, MediaElements receive media streams through sinks, send media streams
through sources and, in the middle, do Bsomething^ with the media. There are two
main subclasses of MediaElements: Endpoints and Filters. An Endpoint is always a
MediaElement with the ability of communicating media with the external world. All
media streams coming into an Endpoint sink are send out of the MediaElement
through some kind of external interface (e.g. network interface, file system interface,
etc.) In the same way, all media streams received from the external interface are
published and made available to other MediaElements through the Endpoint source.
Filters, on the other hand, do not communicate media streams with the external world.
Their only function is to implement some kind of media processing. This can be simple
transport (e.g. a pass-through filter) or may involve complex processing algorithms
including computer vision or augmented reality.

MediaElements can be connected among each other by means of a connect primitive.
When a MediaElement (let’s call it A) is connected to other MediaElement (say B), the
media streams available at A’s source are feed to B’s sink. The connectivity of
MediaElements works following quite intuitive and natural rules. First, a
MediaElement source can be connected to as many MediaElement sinks as you want
(i.e. a MediaElement can provide media to many MediaElements). Second, a
MediaElement sink can only receive media from a connected source. Hence, connecting
a source to a sink that is previously connected makes that sink to first disconnect from its
previous source before being connected to the new one. Hence, application developers create
their media processing logic just by connecting media elements following the desired
topology.

Another interesting feature of MediaElements is that the connect primitive is
overloaded to provide the ability of connecting just one track of those available on a
media stream. The RTC Media API distinguishes three types of tracks: AUDIO,
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VIDEO and DATA. The two former correspond with the typical audio-visual compo-
nent of a stream. The latter represents arbitrary sensor data whose semantics is
application-dependent. The DATA component makes possible to integrate any kind of
sensor data into media applications.

Just for illustration, some example of MediaElements follows:

– RtpEndpoint: it represents an Endpoint having the capability of sending and
receiving media streams based on standards such as the RTP protocol [68], the
AVP and AVPF RTP profiles [54, 67], and the SDP media session negotiation
mechanisms [38].

– WebRtcEndpoint: it represents an Endpoint having the capability of sending
and receiving WebRTC streams complying with the appropriate standards and
drafts [5].

– PlayerEndpoint: it represents an Endpoint with the ability of reading streams from
different sources, such as a file system, an HTTP resource or RTSP [66].

– RecorderEndpoint: it represents an Endpoint with the ability of storing media out of
the pipeline, typically on the media server file system or in a media repository through
HTTP.

– FaceOverlayFilter: it consists of a Filter using the Haar [49] computer vision
algorithm for detecting faces on a stream and overlying on top of them images with
customized scales and offsets.

MediaPipelines, in turn, are just containers of MediaElement graphs. A
MediaPipeline holds MediaElements that can connect among each other following
an arbitrary and dynamic topology. MediaElements owned by one MediaPipeline
cannot connect to MediaElements owned by another MediaPipeline. Hence, the
MediaPipeline represents an isolated multimedia session from the perspective of the
application.

To illustrate these concepts, let’s create a simple application. This application performs a
full-duplex back-to-back call between two users and records their streams into a repository.
Figure 1 shows the corresponding pipeline.

This pipeline can be implemented in Java with the code shown in Table 2.

3.1.2 RTC Media API IDL specification

One of the main requirements of the RTC Media API is that it should be available in
different programming languages. Due to this, RTC Media API capabilities are speci-
fied through an IDL (Interface Definition Language) which is language agnostic. From
an implementation perspective that IDL is compiled later to different programming
languages in order to generate the appropriate SDKs. In this way, RTC Media API
capabilities are defined only once but the corresponding implementations can be
generated for a variety of languages.

For simplicity, we have decided the RTC Media API IDL to be based on a JSON notation.
In an RTC Media API file there are four sections: remoteClasses, complexTypes,
events and code:
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– The remoteClasses section is used to define the interface to media server objects. We
call it Bremote^ because these objects are remote from the perspective of the API
consumer, as they are hosted into the RTC media server. For example,
PlayerEndpoint and ImageOverlayFilter are defined in this section in their
corresponding IDL file.

– The complexTypes section is used to define enumerated types and registers
used by remote classes or events. For example, the enumerated type
MediaType with possible values AUDIO, DATA or VIDEO may be defined in
this section.

Fig. 1 Architectural diagram of an example application performing a back-to-back call between two users where
their corresponding streams are recorded

Table 2 Code snippet for developing the application specified in Fig. 1 in Java with the Kurento Client API, our
reference implementation of the RTC Media API. Media from each WebRtcEndpoint is recorded in the file
system of the media server (files videoUserA.webm and videoUserB.webm respectively)

KurentoClient rtcMediaAPI = KurentoClient.create();

MediaPipeline pipeline = rtcMediaAPI.createMediaPipeline();

WebRtcEndpoint userA = new WebRtcEndpoint.Builder(pipeline).build();
WebRtcEndpoint userB = new WebRtcEndpoint.Builder(pipeline).build();

userA.connect(userB);
userB.connect(userA);

String videoUserA = "file:///path/to/videoUserA.webm";
String videoUserB = "file:///path/to/videoUserB.webm";

RecorderEndpoint userARecorder =
new RecorderEndpoint.Builder(pipeline,videoUserA).build();

RecorderEndpoint userBRecorder =
new RecorderEndpoint.Builder(pipeline,videoUserB).build();

userA.connect(userARecorder);
userB.connect(userBRecorder);
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– The events section is used to define the events that can be fired when using RTCMedia
API. For example, EndOfStreammay be defined in the events section of the IDL file
describing a PlayerEndpoint, so that the event is fired when the end of the stream is
reached by the player.

– The code section is used to define properties to control the code generation
phase for different programming languages. For example, in this section we can
specify the package name in which all artifacts are generated for the Java
language.

The code snippet shown in Table 3 outlines an example of an IDL file. For the sake of
simplicity, we have replaced with dots (…) some parts of it.

As it can be observed, to define a remote class in Media API IDL it is mandatory to assign it
a name. In addition, the following fields can be incorporated:

– Extends: A remote class may extend another remote class. In this case, all properties,
methods and events of the superclass are available in objects of the subclass. Note that
constructors of the superclass are not inherited. That is, they cannot be used to create
objects of the subclass.

– Constructor: A remote class constructor is defined with a parameter list. Every parameter
has a name and a type. The available types are: primitive types (String, boolean,
float, double, int and int64), remote classes or complex types. Parameters can be
defined as optional.

– Properties: A property is a value associated with a name. To define a remote class
property it is necessary to specify its name and type. Properties can be defined as Bread
only .̂

– Methods:Methods are named procedures that can be invoked with or without parameters.
Every parameter is specified by its name and type. Parameters can be defined as optional.
A return type can be specified if the method returns a value.

– Events: If a remote class declares an event it means that events of this type can be fired by
objects of this remote class. It depends on the target programming language how this
events are processed.

Remote classes are used mainly to define the MediaElements of the RTC Media API.
To define a new MediaElement the only requirement is to define a new remote class that
extends the built-in MediaElement remote class. This super class define the properties,
methods and events of all MediaElements. The MediaElement class extends the
MediaObject class, creating the class hierarchy represented in Fig. 2

To define an event, it is mandatory to assign it a name. In addition, an event can
have properties. Every property must be defined with a name and a type. In the same
way than remote classes, events can also extend a parent event type inheriting all its
properties.

Regarding complex types, they can have two formats: enumerated or register. If a property
or param is defined with an enumerated complex type, it can only hold a value from the list of
specified values. For example, properties based on the enumerated complex type MediaType
of Table 3 must have the value AUDIO, DATA or VIDEO. On the other hand, register complex
types can hold objects with several properties. For example, the register complex type
Fraction has two int properties: numerator and denominator.
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To conclude, the code section is used to specify language-dependent configurations to the
IDL compiler. Every programming language has its own section to avoid collisions. For
example, the Java package name of the generated code has only sense in Java, while the name
of the node module has only sense in JavaScript.

3.1.3 Compiling the RTC Media API IDL

The IDL format described above makes possible to define the RTC Media API modules in a
language-agnostic way. However, this needs to be translated into programming-language-

Table 3 Example of an RTC Media API IDL file defining a PlayerEndpoint media element capability

{
"code": {

"api": {
"java": {

"packageName": "org.kurento.client",
...

}
}

},
"remoteClasses": [

{
"name": "PlayerEndpoint",
"extends": "UriEndpoint",
"constructor": {

"params": [
{ "name": "mediaPipeline", "type": "MediaPipeline" },
{ "name": "uri", "type": "String" }

]
},
"properties": [

{ "name": "position", "type": "int64" }
],
"methods": [

{ "name": "play", "params": [] }
],
"events": [ "EndOfStream" ]

},
...

],
"events": [

{
"name": "EndOfStream",
"extends": "Media",
"properties": []

},
...

],
"complexTypes": [

{
"name": "MediaType",
"typeFormat": "ENUM",
"values": [ "AUDIO", "DATA", "VIDEO" ]

},
{

"name": "Fraction",
"typeFormat": "REGISTER",
"properties": [

{ "name": "numerator", "type": "int" },
{ "name": "denominator", "type": "int" }

]
},
...

],
...

}
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dependent interfaces in order to have the real APIs to be used by application developers. The
IDL compiler performs that task. Hence, we need to specify how this compilation happens so
that all compiler implementations maintain compatibility on the generated code. For illustra-
tion, we have created such specification and as well as the compilers for the two most popular
programming languages in the WWW: Java and JavaScript.

The Java IDL compiler works in the following way:

– Package: all artifacts (i.e. classes, interfaces and enums) are generated in the package
specified in code.api.java.packageName section of JSON IDL file.

– Remote classes: For every remote class there are two generated artifacts: an interface and a
builder class:

& Interface: For every remote class a Java interface is generated. This interface has the
remote class methods defined in the IDL. In addition, for every property, a getter
method is also included. The name of the method is the string Bget^ followed by
property name. If the property is not read only, a setter method is also generated
following the same approach. Finally, for every event declared in the remote class, a
method to subscribe listeners to it is generated. For example, the PlayerEndpoint
has the event EndOfStream declared in the IDL so the method String
addEndOfStreamListener(Listener <EndOfStream> listener) is
generated. The complementary method to remove the subscription is also generated.
Listener<E > is a generic interface with only one method: onEvent(E event).

& Builder class: We use the builder pattern [32] to create new remote class instances. A
Builder is generated for each remote class. All mandatory params in the remote class
constructor are mapped to parameters to the only constructor of the builder class. In
this way, the compiler enforces that all mandatory parameters have a value. Optional
constructor parameters are generated in builder class as fluent setter methods (prefixed
with Bwith^ instead of Bset^ or not prefixed if the method starts with Buse^). The
builder class is generated as an internal type of the above-mentioned interface to
associate easily the class and the interface. The code snippet on Table 4 shows the
creation of a PlayerEndpoint with the optional constructor parameter
useEncodedMedia set to true.

Fig. 2 MediaObject UML (Unified Modeling Language) inheritance diagram as defined in the RTC Media
API IDL specification
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– Complex types: Depending on the complex type format (enum or register) the code
generation is different:

& Enumerated complex type: A Java enum class is generated.
& Register complex type: A basic Java bean class is created. For every property,

getter and setter methods are generated. In addition, a constructor with all
properties as parameters is also generated. The code snippet in Table 5 shows a
sample code using a register (WindowParam) as a constructor parameter of a
PointerDetectorFilter remote class.

– Events: For each event defined in a RTC Media API IDL file a new Java class is
generated. BEvent^ is appended to the name of the class. This class is very similar to
the generated classes for register complex types. That is, a getter and a setter method is
included for each property. In addition, all event classes extend from the
RaiseBaseEvent base class. This base class contains properties for holding the source
of the event (source) and the timestamp in which the event was generated
(timestamp). The code snippet in Table 6 shows an example illustrating how to work
with events.

When working with JavaScript IDL compilers, equivalent rules have been created:

– Package: We base on the NPM (Node Package Manager) [74] JavaScript packaging
system. NPM mandates that a package.json file is generated. The following values
are used:

& package name: code.api.js.nodeName
& package description: code.api.js.npmDescription

– Remote classes: For every class a new JavaScript prototype based class is generated. This
class has all methods defined in the IDL file. In addition, for every property, a getter
method is generated. Also setter methods are generated for non-read only properties. All
generated methods have the parameters defined in the IDL plus a callback function. That
callback parameter is used to implement the asynchronous execution of the method given
that the API primitive may require to communicate with the RTCmedia server and, hence,
cannot be synchronous. To create an object from a remote class, a factory method called
create available at the pipeline object needs to be executed. The first parameter of the

Table 4 Code snippet showing how to instantiate a PlayerEndpoint in Java

PlayerEndpoint player = 
new PlayerEndpoint.Builder(pipeline,"video.webm").useEncodedMedia().build();

Table 5 Example illustrating how to instantiate a register complex type (WindowParam) as a Java bean

PointerDetectorFilter pointer = new PointerDetectorFilter.Builder(pipeline,
new WindowParam(5, 5, 30, 30)).build();
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method is the name of the remote class to create as a string. The second is an options bag
used when constructor parameters are required. The third, and last, is the async callback to
receive the new object handler or an error. The code snippet in Table 7 shows the creation
of a PlayerEndpoint with the mandatory parameter uri and optional constructor
parameter useEncodedMedia set to true. As it can be observed, media element
creation is an async operation.

– Complex types: For enumerated complex types, there is no code generation. Enum values
are simply strings. On the other hand, register complex type are generated as JavaScript
classes based on prototypes. Also, for every registered complex type a factory function is
generated to allow the creation of objects. The code snippet in Table 8 shows the creation
of a PointerDetectorFilter using a complex type WindowParam as parameter.

– Events: There is no classes generated for events in JavaScript. When an event is raised, a
new object is created and populated with all relevant information as properties. In Table 9
a Player is created and a listener is registered for its event EndOfStream. When this
event is generated, a function is executed with the event as parameter. This event
parameter can be used to obtain the relevant information such as timestamp, source of
the event, etc.

3.1.4 Creation and deletion of media capabilities

Java and JavaScript have notable differences in media object creation. This is due to the
differences in the type safety of both languages. Java is strongly typed. Hence, it is important
that the compiler enforces typing in several contexts: mandatory parameters, optional param-
eters, media object signature, etc. On the other hand, in JavaScript there is no type checking
until runtime and this is why we do not enforce any kind of protection.

Table 6 Example illustrating how to work with events both in Java 7 and Java 8

PlayerEndpoint player = 
new PlayerEndpoint.Builder(pipeline,"video.webm").useEncodedMedia().build();

//Java 7
player.addEndOfStreamListener(new EventListener<EndOfStreamEvent>() {
public void onEvent(EndOfStreamEvent e) {

System.out.print("EOS Player "+e.getSource().getId());
}

});

//Java 8
player.addEndOfStreamListener(
e -> System.out.print("EOS Player "+e.getSource().getId())

);

Table 7 Code snippet showing how to instantiate a PlayerEndpoint in JavaScript

pipeline.create("PlayerEndpoint",{uri:"video.webm",useEncodedMedia:true}, 
function(error, player) {

if (error) return console.error(error);

//use player here
});
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The releasing of media objects is simple. We consider that a media object is released when
the release method is invoked. In Java, the release method can be executed in a
synchronous way, blocking the invoking thread until a response is received. That response
can be successful or fail. In the latter case, an exception is thrown. In JavaScript, it is executed
asynchronously. For this reason, a callback parameter is necessary so that failures can be
notified. The following piece of code shows the release of a media object in Java and
JavaScript (Table 10).

3.1.5 Synchronous and asynchronous programming models in the RTC Media API

One of the most critical design decisions when designing APIs is how they behave in relation
to threads. When performing I/O (Input/Output) operations, there is a common agreement that
asynchronous APIs are more scalable than synchronous ones [8]. Synchronous I/O typically
block threads until a response is received or a timeout is reached. Hence, given that there is a
practical limit on the number of threads in a system (mainly due to memory constraints),
synchronous API models tend to generate thread starvation and decrease performance due to
the overload they generate into the operating system task scheduler. To solve this problem,
many modern APIs provide asynchronous I/O operations. In this case, the thread executing the
I/O is not blocked after the invocation and can be used to execute other tasks. However,
asynchronous APIs are more complex to use and are susceptible of suffering a problem called
Bcallback hell^ [45]. This is a well-known problem that arises when asynchronous calls are
invoked in the callbacks of another asynchronous calls, creating a deep nesting of callbacks.

When we designed the RTC Media API we decided to provide developers the flexibility of
choosing between the synchronous and the asynchronous models so that they were not limited
by any of their corresponding drawbacks. Due to this decision, our Java IDL compiler
generates two methods for each I/O operation: the synchronous and the asynchronous

Table 8 Example illustrating how to instantiate a register complex type (WindowParam) as a JavaScript object

var options = {
"windowParam":WindowParam({

"topRightCornerX":5,
"topRightCornerY":5,

"height":30,
"width":30

})
};
pipeline.create("PointerDetectorFilter",options, 
function(error, pointer) {

if (error) return console.error(error);

});

Table 9 Example illustrating how to work with events in JavaScript

pipeline.create("PlayerEndpoint",{uri:"video.webm",useEncodedMedia:true}, 
function(error, player) {

if (error) return console.error(error);

player.on("EndOfStream", function(e){
console.log(“EOS player ”+e.source.id)

});
});
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versions. Synchronous methods block the calling thread until a response is received. This can
be appreciated, for example, in the code snippet shown in Table 7. After that, the execution
continues. The asynchronous primitives, in turn, include a continuation as last parameter, that
is, an object that have two methods: onSuccess, that is executed when the response is
received, and onError, that is executed when an error or timeout occurs. The code snippet in
Table 11 shows an example.

When going to JavaScript, things are more complex. Due to the characteristics of the
JavaScript language both in the browser and in Node.js [74], only asynchronous I/O operations
are possible. Due to this, and as it can be seen in the code snippets shown in Table 12, our IDL
compiler includes a callback as the last parameter that is executed asynchronously when the
operation is resolved. However, providing only this mechanism reduces the flexibility of
developers to avoid the callback hell. This is why we designed novel mechanisms for
simplifying developers’ work. The first one is based on Promises [45]. A Promise represents
an operation that has not completed yet, but is expected to do so in the future. Hence, an
asynchronous method can return a promise object instead of expect a callback as last
parameter. The developer specifies the code to be executed when the promise is fulfilled,
executing a method called Bthen^ with the callback as parameter. Table 12 shows a

Table 10 Code snippets showing how to release a PlayerEndpoint both in Java and JavaScript

//Media object release in JavaScript
player.release(function(error){

if (error) return console.error(error);
});

//Media object release in Java
player.release();

Table 11 Example illustrating the creation of a PlayerEndpoint using the asynchronous Java API

new PlayerEndpoint.Builder(pipeline, "video.webm")
.buildAsync(new Continuation<PlayerEndpoint>() {

@Override
public void onSuccess(PlayerEndpoint player) throws Exception {

player.play(new Continuation<Void>() {

@Override
public void onSuccess(Void result) throws Exception {

log.info("Play started");
}

@Override
public void onError(Throwable error) throws Exception {
log.error("Exception invoking play in player", error);

}
});
}

@Override
public void onError(Throwable error) throws Exception {
log.error("Exception creating player", error);

}
});
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JavaScript code creating a player and invoking the play method on it, comparing the
traditional implementation based on callbacks with an implementation using promises.

Moreover, if promises are combined with generators [59], a new ES6 (ECMAScript 6)
feature, the asynchronous code can look like synchronous one. For illustration, remark that
Table 13 code snippet implements the same logic than the one on Table 12, but using
generators. As it can be observed, the improvement on code readability is noticeable.

The next version of JavaScript, ES7, which is still under standardization, has a proposal to
simplify this: the async/await keyword, which marks when a call is asynchronous but accepts
synchronous API syntax. Using it, the code in Table 13 can be written as shown in Table 14
with ES7. As it can be observed, the yield keyword is replaced by await and the co function
is no longer necessary.

3.1.6 RTC Media API capabilities

Once we have presented the formal aspects of the RTC Media API, we can switch to a more
practical perspective and introduce its media capabilities. These capabilities comprise specific

Table 12 Different forms of PlayerEndpoint creation in JavaScript (with callbacks, with promises, and
with ES6 arrow functions)

//Asynchronous API with callbacks
pipeline.create("PlayerEndpoint",{uri:"video.webm",useEncodedMedia:true}, 
function(error, player) {

if (error) return console.error(error);

player.play(function(error){
if (error) return console.error(error);
console.log("Play started");

});
});

//Asynchronous API with promises
pipeline.create("PlayerEndpoint",{uri:"video.webm",useEncodedMedia:true})
.then(function(player){ return player.play(); })
.then(function(){ console.log("Play started"); })
.catch(function(err){ console.error(error); });

//Asynchronous API with promises and ES6 arrow functions
pipeline.create("PlayerEndpoint",{uri:"video.webm",useEncodedMedia:true})
.then(player => player.play())
.then(() => console.log("Play started"))
.catch(err => console.error(error));

Table 13 Creation of a PlayerEndpoint using generators in JavaScript. As it can be observed, the code
readability improves significantly and the callback hell is fully avoided

co(function*(){
try{
var player = yield pipeline.create('PlayerEndpoint');
yield player.play();
console.log("Play started");

} catch(e) {
onError(e);

}
})();
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media objects that are made available to application developers to create their RTC media
enabled applications following the above-described API guidelines. These capabilities can be
grouped into two main categories: media elements, which inherit from the MediaElement
class and manage a single media stream, and hubs, which inherit from the Hub class and have
been specifically designed for the management of groups of streams.

As specified in sections above, media elements have two flavors: Endpoints and Filters.
Endpoints are in charge of the I/O media operations in the media pipeline. Figure 3 shows the
RTC Media API endpoint inheritance hierarchy, which comprises the following capabilities:

– The WebRtcEndpoint is an I/O endpoint that provides full-duplex WebRTC media
communications compatible with the corresponding protocol standards [5]. It is important
to remark, that among WebRtcEndpoint capabilities, the RTC Media API defines as
mandatory the DataChannel support. DataChannels are a mechanism for receiving media
information beyond audio and video given their ability to accommodate arbitrary sensor
data that is transported in the same ICE connection than the audio and the video and,
hence, may maintain synchronization with them.

– The RtpEndpoint is equivalent but with the plain RTP protocol.
– The HttpPostEndpoint is an input-only endpoint that accepts media using

HTTP POST requests. This capability needs to support HTTP multipart and
chunked encodings, so that it is compatible with the HTTP file upload function
exposed by WWW browsers. This endpoint must support the MP4 and WebM
media formats.

– The PlayerEndpoint is an input-only endpoint that retrieves content from the local
file system, HTTP URLs or RTSP URLs and injects it into the media pipeline. This

Table 14 Creation of a PlayerEndpoint in ES7

try{
var player = await pipeline.create('PlayerEndpoint');
await player.play()
console.log("Play started");

} catch(e) {
onError(e);

}

Fig. 3 UML class diagram of the
Endpoints specified by the RTC
Media API
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endpoint must support the MP4 and WebM media formats for all input mechanisms as
well as RTP/AVP/H.264 for RTSP streams.

– The RecorderEndpoint is an output-only endpoint that provides function to store
contents in reliable mode (doesn’t discard data). This endpoint may write media streams to
the local file system, or to HTTP URLs using POST messages. This endpoint must
support MP4 and WebM media formats.

Filters, in turn, are used for processing media streams. Filters are useful for integrating
different types of capabilities such as Video Content Analysis (VCA), Augmented Reality
(AR) or custom media adaptation mechanisms. The RTCMedia API does not specify any kind
of mandatory filter and it is let to API implementers to define their filters following the RTC
Media API extensibility mechanisms.

To conclude, hubs follow the inheritance scheme depicted in Fig. 4. Hubs work in
coordination with HubPorts: a special type of media element, which provides sinks
and sources to hubs. The RTC Media API only defines as mandatory hub type the
Composite, which implements a MMM media topology, as described in previous
sections. Developing with Composites is simple as long as the following rules are
taken into account.

– Composites, as all hubs, act as a factory of HubPorts. This means that at a
Composite instance we can create as many HubPorts as we want. These HubPorts
are media elements having sources and sinks, which makes possible to connect other
media elements to them and get media into and out of the hub.

– A Composite mixes all streams received from its HubPort’s sinks and exposes the
resulting mixed stream at the sources. The audio of the mixed stream obtained at a
HubPort’s source includes all the inputs except the one of its own HubPort’s sink.
The video, on the other hand, combines all HubPort’s sinks into the resulting composite
matrix.

3.1.7 Extending the API

One of the main requirements of the RTC Media API is extensibility: developers should be
able to include new MediaElements into the API so that they maintain compatibility with
other MediaElements defined natively by the API or by third parties. In order to support
extensibility, we have created the notion of the RTC Media Module. A module is a bundle
composed by:

Fig. 4 UML class diagram of
main Hub types in the RTC Media
API
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– A module definition: the MediaElement interfaces and related types defined in the RTC
Media API IDL.

– The corresponding software libraries: the specific language-dependent SDK enabling
developers to use the module in their software projects.

According to this, imagine that you have created a new capability in your RTC
media server involving some kind of computer vision algorithm to process a video
stream and mark some relevant regions on it. The details about how this is imple-
mented are out of the scope of this paper. The point is that, for exposing this new
feature through the RTC Media API, the best choice is to create a Filter. Without
loss of generality imagine we call it CompuVisionFilter. This filter interface
needs to be defined in a RTC Media Module Definition file, which contains the RTC
Media API IDL. If we suppose that the filter requires an int parameter upon
construction for tuning the behaviour of the algorithm and that it has a method that
can be invoked at any time to enable or disable the processing (the Benable^ method);
the resulting module definition is the one shown in Table 15.

From this file, the Java IDL compiler should be able to generate the
CompuVisionFilter SDK library. When generated, the filter can be incorporated
into any pipeline and interoperate with any of the rest of RTC Media API capabilities.
Table 16 shows a code snippet illustrating how to create an application processing a
media clip with the filter and exposing the resulting stream in real-time to a WebRTC
capable browser. Remark that the example requires the filter to interoperate with built-
in RTC Media API capabil it ies such as the PlayerEndpoint or the
WebRtcEndpoint.

Table 15 Example of module definition for a new Filter called CompuVisionFilter

{
"code": {

"api": {
"java": {

"packageName": "com.company.filter"
}

}
},
"remoteClasses": [

{
"name": "CompuVisionFilter",
"extends": "Filter",
"constructor": {

"params": [
{ "name": "mediaPipeline", "type": "MediaPipeline" },
{ "name": "param", "type": "int" }

]
},
"methods": [

{ 
"name": "enable", 
"params": [{ "name" : "enabled", "type": "boolean" }]

}
]

}
]

}
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3.1.8 Implementing the RTC Media API: the Kurento Client API

In order to implement the RTCMedia API and making it expose useful capabilities to developers
we just need two ingredients. The first is an RTCmedia server. This media server needs to expose
at its northbound some kind of control interface or protocol enabling the management of RTC
media capabilities in a compatible way with the semantic requirements of the RTC Media API.
The details about how to create such RTC media server and control protocol are out of the scope
of this paper. The second, is to implement an RTCMedia IDL compiler suitable for translating the
RTC Media IDL into the corresponding programming-language-dependent SDKs. Remark that
this compiler is not protocol agnostic, in the sense that it needs to translate the RTC Media API
invocations into the appropriate messages of the RTC media server control protocol. In other
words, each specific media server control protocol needs to have a custom IDL compiler.

In the context of the Kurento open source software project (http://www.kurento.org), we have
created an example implementation of the RTC Media API. This implementation follows the
architectural scheme depicted in Fig. 5. As it can be observed, our implementation provides the
two above-mentioned ingredients. The Kurento Media Server plays the role of the RTC media
server. Observe that Kurento Media Server exposes its capabilities though a JSON-RPC over
WebSocket control protocol called the Kurento Control Protocol. This protocol has been designed
to be compatible with the RTC Media API semantics. In addition, we have created an RTC Media
IDL compiler capable of translating the IDL specifications into the appropriate API implementations
both in Java and JavaScript. The resulting programming-language-dependent SDKs are called
Kurento Client APIs in the Kurento jargon. Remark that the Kurento Client API is just a specific
implementation of the RTC Media API suitable to interoperate with the Kurento Media Server.

Kurento is a complex technological stack and the interested reader can check the commu-
nity documentation (http://www.kurento.org/documentation) and source code repositories
(https://github.com/kurento) to have full information about the project. For the objectives of
this paper, the interesting aspects are twofold. First, the Kurento Client API provides a full
implementation of the RTC Media API as described in this paper. This implementation is
specified through the RTC Media IDL and stored in files with the .kmd.json extension

Table 16 Using the filter CompuVisionFilter previously defined

import com.company.ComputVisionFilter;

...

MediaPipeline p = rtcMediaApi.createMediaPipeline();

WebRtcEndpoint webrtc = new WebRtcEndpoint.Builder(p).build();
PlayerEndpoint player = new PlayerEndpoint.Builder(p,"file://...").build();

CompuVisionFilter filter = new CompuVisionFilter.Builder(p,10).build();

player.connect(filter);
filter.connect(webrtc);

//At any time…
filter.enable(true);
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(KMD for Kurento Module Description).1 Second, the Kurento project provides a
bunch of extensions to the RTC Media API in the form of custom filters, hubs and
endpoints.2 These extensions have been created following the RTC Media Module
mechanism described above. Just for illustration, some of these extensions are
presented here:

– The ZBarFilter filter detects QR and bar codes in video streams. When a code is
found, the filter publishes a CodeFoundEvent. Application developers can add a
listener to this event to execute some logic.

– The ImageOverlayFilter filter inserts still images in the video stream. The
filter makes possible to select the position, scaling and rotation coordinates of the
image.

– The FaceOverlayFilter filter detects faces in a video stream and overlays custom
images onto the face coordinates. The filter makes possible to select specific scaling and
offsets for the image position.

– CrowdDetectorFilter filter implements a computer vision algorithm suitable for
detecting crowds of people into video streams. The level of crowdedness is published
through a custom event that contains information about the direction and speed of
movement of the crowd.

– PlateDetectorFilter filter detects European car plates and publishes the detected
plate number as a custom event.

– AugmentedRealityFilter filter wraps the Alvar library [3] to provide marker and
markerless Augmented Reality capabilities.

– AlphaBlending hub is a special type of hub that makes possible to mix different video
streams using alpha transparency. This hub is useful for producing chroma blended videos
in real time.

Thanks to all these capabilities, the Kurento software stack has been used for creating
hundreds of applications combining different types of features which include WebRTC and
RTP transports, media recording, Video Content Analysis, or Augmented Reality.3 All in all,
Kurento provides a full working test-bed where the RTC Media API constructs described in
this paper can be used, evaluated and improved.

1 Latest versions of the IDL files specifying the Kurento RTCMedia API in the kmd.json format can be found at
the Kurento GitHub repository at the following locations:

– https://github.com/Kurento/kms-core/blob/master/src/server/interface
– https://github.com/Kurento/kms-elements/tree/master/src/server/interface
2 Latest versions of the IDL files specifying the Kurento RTC Media API extensions in the kmd.json format can
be found at the Kurento GitHub repository in different locations, including the following:

– https://github.com/Kurento/kms-filters/tree/master/src/server/interface
– https://github.com/Kurento/kms-crowddetector/tree/master/src/server/interface
– https://github.com/Kurento/kms-platedetector/tree/master/src/server/interface
3 Demos showing different Kurento applications created using the Kurento RTCMedia API implementations are
a c c e s s i b l e a t t h e K u r e n t o Yo u T u b e c h a n n e l : h t t p s : / / w w w . y o u t u b e .
com/channel/UCFtGhWYqahVlzMgGNtEmKug
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3.1.9 Matching the RTC Media API requirements

To conclude with the RTC Media API presentation, we would like to come back to the list of
requirements exposed in Section 2.4 to validate that they are fulfilled:

– Seamless API extensibility through custommodules:As it can be seen in Section 3.1.7,
the RTC Media API can be extended in a seamless way by using the RTC Media Module
mechanism, which provides full flexibility and no restrictions other than extending from
the base RTC Media API classes.

– Adaptation to WWW technologies and methodologies: As shown in Section 3.1.8,
RTC Media API implementations fully comply with the traditional WWW three tiered
development model and enable developers to create applications leveraging novel WWW
RTC media technologies such as WebRTC in a seamless and direct way.

– Full abstraction of media details (i.e. codecs and protocols): As it can be appreciated in
the discussions and code examples in Sections 3.1.1, 3.1.3 and 3.1.7, the RTC Media API
connect primitive exposed by all MediaElements makes possible to fully abstract
codecs, protocols and formats. In all our examples there are no explicit references to
codecs or formats, but many of the examples require specific transcodings to work. This is
due to the fact the semantics of the connect primitive mandates the underlying media
server capabilities to perform all the appropriate adaptations in a fully transparent way.

Fig. 5 Architecture of a Kurento application. As it can be observed, the Kurento IDL compiler generates the
Java and JavaScript Kurento Client SDKs from the Kurento API IDL following the RTC Media API specifica-
tions described in this paper. Using these SDKs, developers can create their applications following the traditional
three tiered WWWarchitecture just using the Kurento Client API as any other of their service APIs. The Kurento
Client API implementation provides semantics to the API invocations by issuing the appropriate Kurento Control
Protocol messages
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– Programming language agnostic: Discussions in Section 3.1.2 demonstrate the full
agnosticism of the RTC Media API IDL in relation to programming languages. The only
requirement for supporting a given programming language is to specify how the IDL is
transformed into it and to implement the appropriate compiler following that specification. In
Section 3.1.3 and 3.1.8 we provide such specifications and describe their implementations in
Java and JavaScript in the context of the Kurento open source software project.

– RTC media topology agnostic: Following the discussions on Sections 3.1.1 and 3.1.6
one can appreciate that the RTC Media API makes possible to interconnect media
elements following arbitrary and dynamic topologies thanks to the connect primitive.
This means that developers do not need to be aware of the low level details of MMM,
MSM or SFU technologies: they just need to interconnect their endpoints, filters and hubs
accordingly to their needs. The RTC Media API semantics shall translate these intercon-
nections into the appropriate low level mechanisms using MMMs, MSMs or SFUs in a
fully transparent way.

– Advanced media QoS information gathering: As it can be observed in the discussions
in Section 3.1.2, the RTC Media API IDL does not restrict in any way the information a
media object may expose through its properties and methods. We have leveraged such
flexibility for creating QoS metrics gathering mechanisms in all endpoints based on the
RTP protocol. In particular, the WebRtcEndpoint exposes primitives fully compliant
with the standard WebRTC Binboundrtp^ and Boutboundrtp^ stats [83].

– Compatibility with advanced media processing capabilities: As it can be observed in
the discussions in Section 3.1.8, the Kurento software project has created a bunch of
modules providing advanced capabilities such as Video Content Analysis, Augmented
Reality, Computer Vision, etc. This demonstrates the ability of the RTC Media API
Filter concept to hold all kind of extensions for advanced media processing.

– Context awareness: The notion of context emerges in quite a seamless way from the
discussions on Section 3.1.2. As it can be observed, the RTCMedia API event mechanism
makes possible for media capabilities to publish events to applications. These events may
contain semantic information about the media content itself as shown, for example, in the
CrowdDetectorFilter mentioned in Section 3.1.8. Hence, creating multimedia
context-aware applications is straightforward: the application logic just needs to subscribe
to the relevant events and publish them into a context database based on NGSI or any
other equivalent standard.

– Adapted to multisensory multimedia: The RTC Media API can manage seamlessly
arbitrary sensor data beyond audio and video. This can be achieved through the combi-
nation of two features. The first is the support for DataChannel that, as specified in
Section 3.1.6, makes possible for any media pipeline to exchange multisensory multime-
dia with the external world using the WebRTC protocol stack. The second is the fact that,
as described in Section 3.1.1, all streams exchanges among MediaElements may have
a DATA track. In particular, any information received using DataChannels into a
WebRtcEndpoint is published to the rest of the pipeline through the endpoint’s source
DATA track. In the same way, any information received through the DATA track at a
WebRtcEndpoint’s sink is sent to the network using DataChannels. As the
MediaElement interface enables all the information received through the DATA to
be used by the element internal logic, this mechanism makes possible, for example, to
create Augmented Reality filters that leverage sensor information for customizing the
augmentation logic.
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– Adaptation to cloud media servers: As it can be observed in the discussion of Sec-
tion 3.1.2, the RTC Media API does not specify how media pipelines are placed into
media server instances. The API implementer has full freedom for selecting how newly
created media pipelines are scheduled. This flexibility can be leveraged by API imple-
menters to adapt their code to all kinds of cloud architectures. For example, as shown in
the code snippet in Table 2, at the Kurento Client RTC Media API Java implementation,
we decided that the RTC Media API is represented by a specific class (i.e.
KurentoClient) that is built though a static create factory method. This method
may accept as a parameter a single IP, in which case all pipelines are instantiated into the
media server listening at that IP; a list of IPs, which causes media pipelines to be round-
robin distributed on the corresponding media servers; or a media server scheduling
interface, which can provide arbitrary logic for scheduling media pipeline creation into
media servers. It may also accept no parameters and let the developer specify the behavior
in a configuration file. All this flexibility makes possible for our RTC Media API to work
seamlessly in cloud clusters of Kurento Media Server instances. Just as an example, this
scheme is currently used in the NUBOMEDIA [52] and FIWARE [30] clouds. The
complex details on how this happens are out of the scope of this paper. The point is to
remark that the RTC Media API does not constraint the API implementer in any way
when adapting to complex cloud scheduling and placement logic.

3.2 Some real-world example applications

The RTC Media API is currently being used in the context of the Kurento open source
software community by hundreds of developers for creating RTC applications. Just for
illustration, we can briefly describe here two of these applications.

The first implements a functionality that we call BCrowd Detection^ and is useful in Smart
Cities scenarios. This application is convenient for public safety given that, when there are
problems in a public space (e.g. a person having a heart-attach, a robbery, an accident, etc.) a
crowd of people (i.e. a group of people who do not move or move slowly) tends to concentrate
around in quite a fast way. To this aim, we use the CrowdDetectorFiltermentioned above.
Upon reception of a video stream, the CrowdDetectorFilter generates events indicating
the degree of crowdedness on specific areas of the scene (e.g. NONE, LOW, MEDIUM, HIGH).
Assuming that we have video feeds coming from RTSP street cameras, and that, upon alarm,
policemen receive the streams in a WebRTC capable device, the required pipeline for our
application is the one shown in Figs. 6 and 7. The application logic can just subscribe to the
crowdedness level and, when a HIGH level is received, the application may generate an alarm
sending, for example, an instant message to a policeman device providing an URL where the
camera video can be seen. The notion of multimedia context awareness, as mentioned above,
emerges in quite a natural way as the crowdedness can be seen as a context attribute characterizing
the camera’s video status. In the same way, the alarm generation logic may be influenced by other
context attributes (e.g. the closest policemen, the time of day, etc.)

The second application shows how to implement a typical WebRTC group videoconfer-
encing service. We call this the Broom application^ because every group of communicating
users is connected to a virtual shared space called a Broom^. As shown in Fig. 8 the media
pipeline for this application can be created in a seamless way using the RTC Media API. Each
participant maintains a WebRTC session with the media server through a
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WebRtcEndpoint. All theWebRTC incoming streams are connected to aMMMHubMedia
Element called Composite. This Composite creates an outgoing media flowmixing all the
incoming video and audio streams following the scheme described above in this paper. This
resulting flow is fed to the sinks of the WebRtcEndpoints, which send it back to the
participants’ browsers. Figure 9 shows the resulting user interface of this application.

Fig. 6 Conceptual representation of the crowd detector application pipeline. An RTSP camera injects a street video
scene into the pipeline through a PlayerEndpoint Media Element. This passes the media to the
CrowdDetectorFilter. The application code can then subscribe to the crowdedness events and generate alarms
accordingly. Upon reception of an alarm the application logic can take different actions such as, for example, sending
an instant message to a policeman who can connect to a WebRtcEndpoint service to the processed stream. Given
the RTCMedia API flexibility, further actions could be taken for dynamically modifying the pipeline in order to, for
example, recording the stream through a RecorderEndpointwhenever the crowdedness level is over a threshold

Fig. 7 Web user interface of BCrowd detector^ application. It shows a real-time video stream from IP Camera
augmented with colors, which depend on the detected level of crowdedness
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4 API evaluation

In the sections above we have presented the RTC Media API and we have introduced a
specific implementation of it. The rest of this paper is devoted to describing a study we
performed for evaluating the RTC Media API usability in the context of the Kurento open
source software community.

4.1 Study design: methodology and hypotheses

For performing the study of the RTC Media API usability we decided to follow the method-
ology presented in Section 2.3 above. Hence, our study is based on a questionnaire that

Fig. 8 Media pipeline associated
to the Broom^ application
assuming the presence of 4
participants into the
videoconferencing session. All
participants connect a WebRTC
feed to the media server through a
WebRtcEndpoint. The
WebRTC received streams are
mixed into a Composite Hub
that generates a single output
stream. This is fed to the
WebRtcEndpoint sinks, which
in turn send it back to the end-
users’ browsers

Fig. 9 Web user interface of the Broom^ application. As it can be observed, all the incoming streams are mixed
into a grid by the Composite that detect the dominant speaker and depicts it bigger
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evaluates developers’ experiences in terms of Clarke’s dimensions in a Likert scale. The final
objective of the study is to validate the main hypothesis of this paper, namely:

H1: The RTC Media API herein presented enables the creation of rich RTC applications
consuming advanced media capabilities with full abstraction of low-level details and in a
programming language agnostic way.

The term creation must be understood here in a wide sense to cover all the
activities developers perform in relation to the API. As also stated in Section 2.3,
these activities include exploratory learning (i.e. the process of learning how to use
the API), exploratory design (i.e. the process of creating application code consuming
the API) and maintenance (i.e. the process of debugging and evolving the application
code after the application has been first created).

Following this, the validation of this hypothesis requires finding answers to questions such
as the following:

– Do developers feel that the API can be learnt in a simple, incremental and seamless way?
– Do developers feel that the API is helpful for the creation of clean and error-free

application code without needing to manage low-level complexities?
– Do developers feel that maintaining and evolving code consuming the API is smooth and

uncomplicated?
– Do developers have the same perception of the API usability with independence on their

demographic characteristics (i.e. years of experience, nationality, etc.) and on the types of
applications they create?

– Do developers have the same perception of the API usability with independence on their
programming language?

4.1.1 Research questionnaire

Following the methodology presented in Section 2.3 above, we created a questionnaire
comprising 28 assertions which characterize the 5 target dimensions (understandability,
abstraction, expressiveness, reusability, and learnability). For every assertion, users
provide their degree of agreement or disagreement in a Likert scale from 1 (I fully
disagree) to 5 (I fully agree). For assessing the internal consistency of the data, and
following common practices in psychological research, some of the assertions are
generated in negative terms. For example, if a respondent expressed agreement with
the claim BI feel this API is simple^ and disagreement with BI find it’s hard
programming with this API^ this would be an indication of internal consistency. We
call these N-assertions. For the statistical analysis, answers of N-assertions are
inverted (i.e. 1 is transformed into 5, 2 into 4, 4 into 2 and 5 into 1), so that
consistency and coherence is maintained. The complete list of assertions is provided
in Table 17.

In addition to this, and with the objective of characterizing different aspects of participants,
a number of questions were included for profiling demographic data and for evaluating their
degree of experience. These questions are shown on Table 18. As it can be observed, most of
the questions are self-explanatory with these exceptions:
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Table 17 Research questionnaire used for evaluating developer’s perception of API usability on the 5 target
dimensions. Every assertion in the questionnaire is identified with a unique ID for further reference (e.g. U.1
refers to the first question of the Understandability dimension). Assertions generated in negative terms (i.e. N-
assertions) start with an (N) mark. These assertions are useful for evaluating the consistency of the research.
Participants are asked to provide their degree of agreement with every assertion in a scale from 1 (I fully disagree)
to 5 (I fully agree). For the statistical analysis, N-assertions are inverted so that the coherence of the questionnaire
is maintained

Dimension ID Assertion

Understandability U.1 Kurento APIs are, in general, easy to understand

U.2 In Kurento APIs object names are descriptive and unambiguous

U.3 (N) I need to keep track of hidden information not represented by
the APIs to create my applications

U.4 (N) Kurento APIs are obscure and it takes a huge effort to use them,
even for creating simple applications

U.5 Kurento API objects, types, and primitives represent appropriately
the underlying media-related concepts

U.6 I understand the difference between a Media Pipeline and a Media
Element

Abstraction A.1 Kurento APIs make simple to create applications without needing
to worry about the low level media details

A.2 (N) I needed to adapt the API (e.g. inheriting, overriding, etc.) for
having it meet my needs

A.3 (N) It’s necessary to understand how codecs and protocols work
for being able to use Kurento APIs

A.4 I like writing applications with Kurento APIs. I'm familiar with
their programming model

A.5 I feel appealing and attractive the general approach of Kurento
APIs

A.6 Creating simple applications with Kurento APIs is simple. Creating
complex applications is possible

Expressiveness E.1 Developing with Kurento fully matches the expectations I had

E.2 I can translate my media application requirements into code in an
easy way

E.3 Reading an application code, I can understand what the application
is doing in a simple way

E.4 After creating an application, I can explain seamlessly to other people
what I have done in terms of media elements and their
interconnections

E.5 (N) There are missing features in Kurento APIs that make not
possible to implement interesting applications

E.6 (N) Programming with Kurento APIs is error prone. You need to take
into consideration a lot of details for having an application working

Reusability R.1 (N) Creating applications requires too long and verbose code specifying
too many things

R.2 (N) Adding a recording capability to an non-recording application
requires modifying a lot of code

R.3 My code using Kurento APIs can be maintained and evolved easily

R.4 I can re-use Kurento related code in a simple way

R.5 (N) When using Kurento APIs, there are many different ways of doing
the same thing and I need to take too many decisions in the process
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– For the question BType of application being developed^, we provided participants the
possibility of selecting multiple items among the following options (the corresponding
encoding token is provided between <> signs):

& I’m creating video applications with recording capability (<Recording>)
& I’m creating my own filters and extending Kurento APIs (<Filter>)

Table 17 (continued)

Dimension ID Assertion

R.6 Adapting my Kurento-based application to new media requirements is
quite simple

Learnability L.1 I learned how to use Kurento in an incremental way, starting with simple
concepts and progressing towards complex applications

L.2 (N) Programming with Kurento requires learning a lot of classes and
dependencies, even for applications.

L.3 When I create a complex application, I can start by simple example and
evolve it later in a seamless way

L.4 (N) I needed to read all the documentations and tutorials to be able to
create my first application

L.5 Reading simple tutorials made me possible to understand better the
complex ones and to create later applications complying with my
requirements

Table 18 This table shows the additional questions made to participants in order to characterize them. The first
column shows the type of data to be gathered through the question. The second column shows the question itself
(summarized for the sake of readability), the third column shows the value type accepted by the web form. The
mark [] indicates users are given the choice of choosing one item in a list. The mark []* indicates that multiple
items may be selected. In this table, list items are tokenized for simplicity

Question type Question Value type

Demographic data Nationality [Country select]

Age Integer

Gender [Male | Female]

Main computer language used [Java | JavaScript | Other]

Type of application being
developed

[Recording | Filter | Video surveillance |
Videoconferencing | Broadcasting |
Integration | Other]*

Development experience Years of experience as developer Integer

Hours learning or programming
with Kurento

Integer

Self-assessment of expertise as
WebRTC developer

[1 to 5]

Self-assessment of expertise in
media technologies

[1 to 5]

Self-assessment of expertise with
Kurento technologies

[1 to 5]

Learning stage on Kurento
technologies

[Tried | Installed | SimpleApp | ComplexApp |
ProductionApp]
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& I’m creating video surveillance applications (<Video surveillance>)
& I’m creating videoconferencing applications (<Videoconferencing>)
& I’m creating broadcasting applications for distributing media among large groups of

receivers (<Broadcasting>)
& I’m using Kurento for integrating with other types of technologies beyond WebRTC

(<Integration>)
& I’m creating other types of applications (<Other>)

– All questions dealing with Bself-assessment of expertise^ were expressed in the poll as
assertions in the form BI’m an expert in…^, where answers are in the above mentioned 1
(I fully disagree) to 5 (I fully agree) format.

– The question dealing with BLearning stage on Kurento technologies^ provided the ability
of selecting one option among the following items:

& I tried to install Kurento unsuccessfully
& I installed Kurento and executed some of the provided demos
& I developed a simple application
& I developed a complex application
& I developed a complex application which is in production

4.1.2 Participants and protocol

Most API usability studies are performed by recruiting students or researchers who are trained
on the API through lectures or exercises and who are later interviewed for performing the
evaluation [57]. These types of protocols are sensitive to many different types of bias that may
affect the study reliability. In particular, their main weakness is that participants are typically
not professional developers and are not faced with real world programming tasks. Hence, their
perception of the API limitations and usability problems can be severely biased by their own
background and by the nature and contents of the training contents and of the proposed
exercises. In addition, those contents and exercises are typically created by the API designers,
which increases significantly the risk of introducing the designers’ cognitive models and
hiding API limitations that might not be known even by designers themselves. Many API
evaluation research works are aware of these limitations, but solving them is not trivial given
the difficulty of reaching a statistical significant population of professional developers being
independent of designers, having the time of learning API concepts and working on solving
real-world tasks with them.

In order to avoid these problems, we leverage the fact that the RTC Media API has
been implemented as part of the Kurento project. More specifically, the Kurento Client
API is an almost complete implementation of it. This is a significant advantage because
Kurento has been released as an Open Source Software and a community of developers
has emerged around it. The size of the community is unknown but its main commu-
nication channel, the Kurento Public mailing list, has, at the time of this writing, 432
subscribers most of which are professional developers at different stages of the API
learning process.
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In this context, the survey protocol is simple. The questionnaire is designed for
Kurento community members (i.e. in all assertions the API is referred to as the
BKurento API^). This questionnaire is published as a web form and participants are
invited to participate through an aseptic e-mail invitation sent to the Kurento Public
mailing list. This mail is written trying to avoid any kind of bias on participants so that
it just presents the survey objectives and exposes a privacy policy guaranteeing that no
personal data is to be disclosed or used for other objectives than the ones of the survey.
Participants are incentivized to participate only once by requiring logging into the web
form system through a valid e-mail. The form makes mandatory to fill answers on all
assertions for making submission possible (i.e. partially answered questionnaires are not
considered). The web form system stores in a persistent database each participant’s
answers and makes possible to edit them during the duration of the survey period,
which is limited to 2 weeks’ time.

4.2 Results and analysis

4.2.1 Analysis of participants

The survey was activated following the protocol described above. After one week from the
initial e-mail invitation a total of 17 participants had answered. Several reminders were sent to
the Kurento Public mailing and the announcement was also published through different social
channels, such as the Kurento Twitter account. In two weeks, 42 answers were received, which
represents 9.7 % of the number of Kurento Public mailing list subscribers. This is aligned with
typical answer rates in surveys.

From a demographic perspective age of participants were distributed between 20 and
50 years old, being the more numerous group the one in the thirties, which account for
50 % of the total participants, as can be seen in Fig. 10. It is worth noting that 100 % of
participants were male, and their main programming language, the language in which API
usage was involved, was JavaScript, totaling a 62 % of respondents.

In relation to nationality, and as can be seen in Fig. 11, the poll was answered by developers
from 20 nationalities on 4 different continents, being USA the country with more participants.

In Fig. 12 we show the types of applications being developed. WebRTC video broadcasting
applications (for distributing a media stream among a group of developers) and videoconfer-
encing services are the most popular with 27 % and 26 % respectively. Applications involving
recording and WebRTC integration are also quite popular (19 % and 15 %). Media processing
services, such as video surveillance applications and services requiring custom filters are less
popular accounting only for 7 % and 5 % respectively.

Fig. 10 Figures showing the total number of participants for different demographic data including Age (left),
Gender (middle) and Main Programming Language (right)
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When coming to expertise evaluation, as shown in Table 19, participants accumulate, on
average, 9.7 years of development experience, but with a relevant diversity (i.e. 1 year as
minimum and 30 as maximum). Participants also declare to have invested, on average, more
than 61 h for learning and programming with Kurento technologies, which provides a
reasonable guarantee on their ability to evaluate the API. Regarding the self-assessment of
competences, a relevant expertise on WebRTC technologies is clearly declared (mean 2.6 and
median of 3). However, participants seem to have more uncertainty in relation to their
knowledge of general video technologies (mean 2.6 and median of 2) and Kurento technol-
ogies (mean 2.5 and median of 2). On the latter, no participants declare to feel as a full featured
expert (maximum is 4).

Regarding the stage of learning on Kurento technologies an interesting surprise emerges
given than 38 % of participants declare to have already an application in production, while

Fig. 11 Total number of
participants per nationality

Fig. 12 Types of applications
being developed with the Kurento
API. The classification is based on
the types of consumed features. In
the poll, developers were able to
select several classes of features
for their applications
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19 % and 33 % claim to have developed one complex and one simple application respectively.
Only 3 % of participants has not been able to install and test Kurento and its APIs. These
results are shown in Fig. 13.

4.2.2 Analysis of dimensions

The results of the poll are summarized in Table 20, where the main statistics for each of the
assertions and their corresponding dimensions are depicted. As specified above, all N-assertions
were inverted previous to the statistical analysis. Hence, magnitudes represent perceptions on API
usability in positive terms (i.e. the higher the magnitude the better the developer’s impression on
the APIs). As it can be seen in Fig. 14, on average, participants feel API usability properties are
adequate, being reusability the dimension with highest rank and expressiveness the one with the
lowest score. A detailed analysis for each dimension is presented in the following paragraphs.

To complete our discussion, we perform an additional analysis to assess how participant
experience might be influencing API perception. In this sense, we compute the average of all
the scores provided by participants along all assertions and calculate its correlation coefficient
with the available experience-related variables. Table 21 show the numerical results of this
analysis, which evidence that higher development experience tends to be associated with better
usability perception.

For completeness, we also evaluated the correlation of the perception of the different dimensions
with other demographic data including nationality (consolidated in a per-continent manner) and

Table 19 Summary of answers in relation to participant’s expertise as developers and in the different involved
technological areas

Expertise question Mean Median Min Max STDDEV Type of data

Years of experience as developer 9.7 5 1 30 8 Integer

Hours learning or programming with Kurento 61.6 20 2 500 127 Integer

Self-assessment on WebRTC expertise 2.7 3 1 5 0.9 1 to 5

Self- assessment on video technologies expertise 2.6 2 1 5 1.2 1 to 5

Self- assessment on Kurento expertise 2.5 2 1 4 1.1 1 to 5

Fig. 13 Pie chart showing the
level of expertise in the Kurento
technologies of the participants
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type of application being created. The corresponding results are illustrated in Figs. 16 and 17. As it
can be observed, there are no significant dependencies on the API usability with these variables.

We also evaluated the correlation between the API usability perception and the main
programming language being used. Results are summarized in Fig. 18. As it can be observed,
JavaScript developers have a better perception of API usability than Java developers

Table 20 Results of the research showing, for each assertion of the poll, the main statistics of the provided
answers. Notice that N-assertion have their results inverted for maintaining coherence. For each dimension, the
statistics are computed on the average values along all assertions on that dimension for each user

Dimension ID Mean Median Min Max STDDEV

Understandability 3.46 3.58 2 4.67 0.58

U.1 3.33 3 1 5 0.98

U.2 4.26 4 2 5 0.86

U.3 2.69 3 1 5 1.12

U.4 3.26 3 1 5 1.17

U.5 3.52 3.5 2 5 0.71

U.6 3.71 4 1 5 1.20

Abstraction 3.39 3.42 1.83 4.23 0.57

A.1 3.40 3.50 1 5 1.04

A.2 3.24 3 1 5 1.28

A.3 3.29 3 1 5 1.11

A.4 3.26 3 1 5 0.86

A.5 3.69 4 1 5 0.84

A.6 3.48 4 2 5 0.92

Expressiveness 3.17 3.17 2 4.33 0.57

E.1 3.29 3 2 5 0.71

E.2 3.17 3 1 5 0.82

E.3 3.43 4 1 5 0.97

E.4 3.45 4 1 5 1.02

E.5 2.76 3 1 5 1.19

E.6 2.9 3 1 4 1.05

Reusability 3.47 3.5 1.67 4.67 0.52

R.1 3.48 4 1 5 0.99

R.2 3.67 4 1 5 1.16

R.3 3.31 3 1 5 0.98

R.4 3.6 4 1 5 0.7

R.5 3.62 4 1 5 0.7

R.6 3.14 3 1 4 0.75

Learnability 3.43 3.4 1.4 5 0.65

L.1 3.88 4 2 5 0.77

L.2 3.07 3 1 5 1.35

L.3 3.67 4 2 5 0.95

L.4 2.86 3 1 5 1.26

L.5 3.69 4 1 5 0.95
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4.3 Validity of the analyses

Following commonly accepted techniques for evaluating assessment data [23], we discuss themain
threads to the validity of our research aswell as themeasureswe deployed tominimize their impact.

4.3.1 Construct validity

Construct validity is the degree to which a test measures what it claims, which in our case, is
the degree of usability of our RTC Media API. As introduced in sections above, evaluating
API usability is a very complex multifaceted problem where it is difficult to get objective
measures. To minimize threads, we performed a careful design of our research protocol which
included the following protection mechanisms:

– We used a well-established methodology based on the CDs framework, the most widely
accepted technique for this objective which has been already used successfully on a
number of usability studies worldwide.

– We performed a careful design of the questionnaire basing on high-level usability
dimensions more adapted to participants needs than to API designer’s needs. Each of
the high-level dimensions was measured through groups of 5 to 6 assertions facing the
problem from different perspectives which minimizes effects of assertion
misinterpretation.

Fig. 14 Radar chart showing
average rankings on the 5 target
dimensions of our questionnaire.
Scale is set between 3 and 3.5 for
evidencing the differences among
dimensions

Table 21 Correlation between the
different parameter data captured
through the questionnaire against
the scores of API usability percep-
tion averaged across all assertions

Parameter to be correlated with overall average score
along all answers

Correlation

Years of experience as developer 0.16

Hours learning or programming with Kurento −0.07
Self-assessment of expertise as WebRTC developer 0.43

Self-assessment of expertise in media technologies 0.22

Self-assessment of expertise with Kurento technologies −0.04

Multimed Tools Appl (2017) 76:14247–14304 14291



– The questionnaire contained complementary questions digging into the different compo-
nents of each of the high-level dimensions and combining positively and negatively
formulated assessments. This should enhance the consistency guarantees of the answers.

– The protocol avoided to introduce any kind of bias by enabling participants to answer
assertions basing only on their own knowledge about the API artifacts (i.e. documenta-
tion, code, etc.) and not on previous information provided by designers (e.g. training
courses) or on specific artificial exercises which could be associated to specific cognitive
models about the API.

4.3.2 Internal validity

Internal validity is a property associated to the extent to which a study minimizes systematic
errors and avoid introducing bias into measurements. For enhancing our internal validity, in our
research we tried to avoid any kind of selection bias by enabling Kurento Open Source
Community members to answer freely to the poll. This strategy was clearly successful given
the wide spectrum of participants we had, comprising developers of different ages, expertise
degrees, nationalities and cultures. This enhances significantly our internal validity in relation to
other previous similar studies [57] where API designers and participants have tight relationships
(e.g. professors and students, workers of the same company, etc.) The risk of statistical effects in
the data is also low given the fact that the poll was answered by 42 participants, which is a
population sample significantly over the ones of other similar studies [57].

To formalize our internal validity analysis, we perform an additional test based on
Cronbatch’s alpha [19, 20], which is the most commonly used estimate for assessing the
reliability of psychometric tests in social sciences. As Cronbatch’s alpha is a measure of the
internal consistency of data it needs all test items to measure the same construct. Due to this, its
computation needs to be performed for each of our high-level dimensions separately.
Cronbatch’s alpha evaluation for our data is shown in Table 22, while the thresholds for
interpreting it are depicted in Table 23.

As it can be observed, the reliability of the obtained data is inside acceptable margins,
which is reasonable for our type of questionnaire and open research search methodology where
there is no control on the who’s, how’s and why’s of participants.

4.3.3 External validity

External validity refers to the extent to which a study can be generalized to other situations or
populations. In relation to this, the main threads to external validity come from the research

Table 22 Cronbach’s alpha com-
puted for all the high-level dimen-
sions of our test

Dimension Cronbatch’s alpha

Understandability 0.77

Abstraction 0.73

Expressiveness 0.76

Reusability 0.76

Learnability 0.71
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protocol, which was designed basing on specificities of our API implementation. In particular,
the fact that we leveraged the Kurento Open Source software community for obtaining the test
population is quite a strong restriction for the generalizability of our findings given that most
newly designed APIs might not be Open Source and, even if they are, they do not need to have
an active international community of more than 400 developers. Otherwise, the rest of our
methodology as well as the analysis we performed and the conclusions we gathered from it do
not assume any kind of specific requirements. This suggests that the gist of our findings are
also applicable to different contexts and populations.

4.4 Discussion

Based on the analysis shown above, we come back to the hypothesis H1, as stated in
Section 4.1, and analyze its degree of fulfillment. For this, we use the results of our study
for answering the therein stated questions, namely:

Do developers feel that the API can be learnt in a simple, incremental and seamless
way?

The evaluation of the learning ability of developers emerges mainly from two of the
dimensions under analysis: understandability and learnability.

Understandability.
As illustrated in Table 20, and as a general perception, participants feel the API under-

standability to be fine, with an average of 3.46 over all answers on this dimension. Through
U.1 (3.33) we find a general declaration that the API is easy to understand. In particular, and as
shown in assertion U.2 answers, participants feel outstanding (4.26) how object and primitive
names are descriptive. On the other hand, and through the U.3 N-assertion (2.69), we find that
developers detect the presence of hidden dependencies that make the API more complex to
understand.

Learnability.
As also illustrated in Table 20, the learnability of the API is evaluated positively by

participants (3.43 in average). The improvement area in this topic emerges from L.2 (3.07)
and L.4 (2.86), which evidence the impressions of developers of needing to learn about a lot of
API constructs and to read a relevant amount of documentation before being able to start using
the API for useful things. On the other hand, as L.1 (3.88) evidences, the learning process
seems to be compatible with an incremental approach where complexity is introduced in
progressive steps.

Based on this, we can confirm that the API can be understood and learnt by
developers in a seamless and incremental way. The main area of improvement is in

Table 23 Commonly accepted
rule of thumb for describing internal
consistency in terms of Cronbatch’s
alpha

Cronbatch’s alpha Internal consistency

alpha > = 0.9 Excellent

0.9 > alpha > = 0.8 Good

0.8 > alpha > = 0.7 Acceptable

0.7 > alpha > = 0.6 Questionable

0.6 > = alpha > = 0.5 Poor

0.5 > = alpha Unacceptable
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the initial learning curve, which seems to be too abrupt, and in the presence of hidden
information and dependencies among the API constructs. Probably, both topics are
related and caused by the inherent complexity of RTC technologies. Our guess is that
better and more complete documentation might be helpful for minimizing both
problems.

Do developers feel that the API is helpful for the creation of clean and error-free
application code without needing to manage low-level complexities?

The process of exploratory design, understood as the creative activity of creating applica-
tion code consuming the API, is mainly related with two of our target dimensions: abstraction
and expressiveness.

Abstraction.
As shown in Table 20, When coming to abstraction, we also find out a general

positive evaluation (the overall average is 3.39). Answers on all questions are quite
uniform, being A.5 the top ranked one (3.69), which shows that developers feel
appealing the API approach; and A.2 the bottom ranked one (3.24) indicating that
some developers feel the need of adapting the API to their needs. It is remarkable that
A.2 has the largest standard deviation (1.28) of A assertions, which evidences some
degree of controversy. This is confirmed when looking closely to answers: in A.2
answers, there are 12 % of ones and 19 % of fives, while considering all Abstraction
answers the ratios for ones and fives are 4.3 % and 12.6 % respectively.

Expressiveness.
The Expressiveness analysis also reflects positive evaluation but shows improvement areas.

This is the less successful dimension with an overall average ranking of 3.17. Expressiveness
limitations seem to emerge on assertions E.5 and E.6 (2.76 and 2.90 respectively). In
particular, E.5 reveals that developers miss features that are relevant for their applications.
E.6, in turn, manifests that the API gives not enough protection against failures. On the other
hand, as demonstrated through E.3 and E.4, our API is easy to read (3.43) and is consistent
when dealing with explaining code logic in terms of the API constructs (3.45).

Hence, our API is suitable for being used in the process of creating application code.
However, as Fig. 14 illustrates, abstraction, and more significantly expressiveness, are the two
dimensions with lower usability score. This evidences that, although the API ideas are
appealing and intuitive (learnability and understandability get very high scores), leveraging
them for creating real-world RTC applications still presents some difficulties. These seem to be
related with the lack of further desirable features (i.e. richer extensions to the API might be
necessary) and with the lack of protection against failures. This latter topic is a pervasive
problem in most RTC media APIs due to its distributed and real-time nature and, to the best of
our knowledge, there are no simple solutions for fixing it.

Do developers feel that maintaining and evolving code consuming the API is smooth
and uncomplicated?

Corrective and evolutive maintenance of the code is related to the dimension we call
reusability:

Reusability.
As shown in Table 20, reusability is the dimension with the highest ranking (3.47 in

average). This is illustrated through results in assertions R.2, R.3 and R.6, which average to
3.67, 3.31 and 3.14 respectively. Also the API demonstrates nice properties in relation to
verbosity, as shown by the 3.48 exhibited by R.1. Our API is considered concise and it is not
too much verbose.
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Hence, we may conclude that, once the application code using the API has been created, it
can be modified, maintained and evolved without much efforts.

Do developers have the same perception of the API usability with independence on
their demographic characteristics (i.e. years of experience, nationality, etc.) and on the
types of applications they create?

In our main hypothesis H1, as stated in Section 4.1, we assume that API perception of
usability is fine for all developers, with independence on their origin, culture or experience.
For validating this assertion, we have performed several statistical analyses whose outcome is
the following:

Correlation between API usability and programming experience.
As Table 21 illustrates, there is a tendency to positive correlation between the API usability

scores and the developers’ previous experience and knowledge. This is particularly true for the
self-assessment expertise on Kurento technologies: developers having better perception on
their expertise on Kurento feel the Kurento API to be more usable for their objectives.
However, as Fig. 15 shows, the negative effect is concentrated on users with very low expertise
on Kurento technologies. In other words: as soon as a developer feels to have some initial
knowledge on the API, his perception of the usability increases to be the same as the one of
experts, which is a good symptom. Interestingly enough, this effect seems not to be correlated
with the number of hours declared in learning or programming with Kurento. This means that
the time invested by developers in learning or programming with the API does not have a
strong influence on their perception of API usability. This may be related with the fact that the
self-assessment of expertise on WebRTC technologies and on video technologies are much
correlated with the self-assessment of expertise on Kurento (the correlation coefficient is 0.55
and 0.34 respectively). This evidences that having a previous understanding on WebRTC and
video technologies, enables our API developers to improve their API usability perception in a
faster and seamless way. In addition, this effect might also be related with the excessively
abrupt initial learning curve mentioned above.

Fig. 15 Radar chart showing the average API usability for each of the analyzed dimensions particularized for the
4 levels of expertise declared for the question BSelf-assessment of Kurento expertise^ (notice that no participants
declared a value of 5). As it can be observed, users declaring very low level of expertise (i.e. 1) tend to perceive
the API as less usable in all dimensions. However, users declaring 2 or more perceive the API in quite a similar way
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Hence, we can conclude that, as long as an initial knowledge about theAPI and its foundations is
known, the API usability perception does not depend significantly on the proficiency of developers.

Relation between API usability and nationality/culture.
For analyzing this, we have consolidated developer’s nationalities in continents. The results

are illustrated in Fig. 16. Surprisingly, there is a clear tendency of USA developers to evaluate
the API usability with less score. We do not have a consistent explanation for this, but we
believe it might be caused by some specific cultural bias that may be related to the fact that the
API (and its documentation) creators are not native English speakers, which may decrease the
perception of Bquality^ from native English speakers. In any case, this tendency is not
quantitative significant and we do not consider it invalidates our independence-of-culture
hypothesis.

Relation between API usability and the type of application being created.
As shown in Fig. 17, the API usability scores do not seem to have a clear dependency on

any of the analyzed dimensions with the type of application being created. Hence, we may
conclude that the API usability perception does not depend on the specificities of the features a
given application consumes.

Do developers have the same perception of the API usability with independence on
their programming language?

This is a relevant question that deserves a separated analysis given that one of the main
novelties of our API is to be programming-language-agnostic. For addressing it, we can
observe Fig. 18, where the average API usability scores are represented as a function of the
used programming language. As it can be seen, developers using programming languages
other than Java and JavaScript (i.e. BOther^) have clearly under-scored the API usability and,
very particularly, in what refers to its understandability. This is natural as the only official
implementations of the Kurento Client API are the Java and JavaScript ones, which means that
such BOther^ developers are either using non-official API implementations or directly con-
suming the JSON-RPC over WebSocket protocol exposed by Kurento Media Server, which
enables to access the same functionalities than the Java and JavaScript SDKs, but which is
clearly more complex and cumbersome to use as developers need firstly to understand the
protocol to, secondly, create the appropriate SDKs for accessing it.

Fig. 16 Radar chart showing the
average API usability perception
as a function of developer’s
nationality, consolidated per
continent. As it can be observed,
there are not relevant differences,
being USA developers the only
ones showing a subtle tendency of
considering lower usability
perception in all dimensions
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However, which is more surprising is that JavaScript developers clearly over-score
the API usability with respect to Java ones. The difference is not quantitatively
significant and we believe it does not break our API programming-language-
agnosticism claim, but it is remarkable enough for deserving our attention. We have
several hypotheses for justifying this effect. First of all, we believe it might be caused
by the higher simplicity of the JavaScript language. This would mean that this effect
should be noticeable in all types of APIs, and not only on our RTC Media API, which
may be plausible given the increasing success of JavaScript derived technologies such
as node.js, that are stealing developers to other programming languages in a consistent
and constant way. The second is that this effect might also have a relation with the

Fig. 17 Radar chart showing the average API usability perception as a function of the type of application being
created by developers. As it can be observed, the type of application does not have a relevant impact on any of
the usability dimensions under evaluation

Fig. 18 Radar chart showing the average API usability perception as a function of the main programming
language being used: Java, JavaScript or Other. The axis are re-scaled for clarity. Remark that the Kurento Client
API is only available in Java and JavaScript. Hence, users in the category BOthers^ are directly consuming the
JSON-RPC over WebSocket protocol exposed by Kurento Media Server, which is significantly more complex
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RTC Media API extensibility mechanism that becomes much more complex in strong
typed languages such as Java. This makes Java to require the use of builders, while
dynamic typed languages such as JavaScript can instantiate and manipulate the RTC
Media API objects in a more seamless way. This is illustrated in Table 24: in order to
create, for example, a PlayerEndpoint using the Java flavor of RTC Media API it
is necessary to instantiate a Builder with the mandatory constructor parameters and then
use its fluent API to configure the optional ones (like useEncodedMedia in the
example). When the builder is fully configured, the Bbuild^ method may be invoked to
create the PlayerEndpoint with the appropriate configuration. Using the JavaScript
RTC Media API is more streamlined because the builder design pattern is not neces-
sary. In JavaScript objects literals are often used as option bags when calling to
methods. This technique is simpler than builder pattern. The drawback is that JavaScript leaks
type safety, but some developers don’t miss this extra protection when programming.

To finish, and basing on the answers to these questions, we can conclude that the main
hypothesis of the paper is validated by our study and that, with the exception of some collateral
effects that are not quantitatively relevant, the API usability is confirmed to be good across all
application creation activities and high usability scores are robust with respect to developers’
profiles, cultures, experience and preferred programming languages.

5 Conclusions

In this paper we have presented the RTC Media API: a new type of application programming
interface complying with a number of stringent requirements answering to latest trends and
needs in the area of real-time multimedia. We have introduced a specification of the API
showing how it can be formally defined in a programming-language agnostic way through an
IDL. We have also demonstrated how the IDL can be compiled into different programming
languages, including Java and JavaScript, while complying with latest trends on API usability
and performance. We have presented a specific RTC Media API implementation, the Kurento
Client API, which includes a bunch of advanced processing capabilities such as Video Content
Analysis, Augmented Reality, Media Blending, etc. We have evaluated the API usability
through a research study basing on the CDs framework to demonstrate the API suitability in
terms of dimensions such as understandability, abstraction, expressiveness or learnability.
Thanks to this analysis, we have detected the main strengths and weaknesses of our RTC

Table 24 PlayerEndpoint creation using RTC Media API for Java and JavaScript

//Java
MediaPipeline pipeline = ...
PlayerEndpoint player = 

new PlayerEndpoint.Builder(pipeline,"video.webm").useEncodedMedia().build();
//use player here

//JavaScript
var pipeline = ...
pipeline.create("PlayerEndpoint",{uri:"video.webm",useEncodedMedia:true}, 
function(error, player) {
if (error) return console.error(error);

//use player here
});
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Media API and we have been able to optimize the API future roadmap to address the specific
issues that are decreasing developers’ usability perception. These include the creation of
improved documentation enabling a softer initial learning curve and the need of understanding
better real-world applications requirements for adding missing features that developers
demand.

Along the paper, we have tried to stress the importance of listening to developers’ needs and
solving developers’ problems. We defend software is eating RTC multimedia technologies.
Hence, for pushing them to a next level we need to create novel APIs and SDKs suitable for
their democratization among wider developer audiences. In current state-of-the-art, there are a
huge amount of algorithms and technologies for transporting, analyzing and enriching media,
but there are very few APIs and SDKs making possible for average WWW and smartphone
developers to use them in a seamless and effortless way. Our RTC Media API brings a whole
new concept by incorporating WWW development methodologies to the multimedia arena.

The RTC Media API in general, and the Kurento Client API implementation in particular,
are still research artifacts, which are under maturation, and miss many relevant ingredients. In
particular, the adaptation to latest trends in WebRTC technologies, including the incorporation
of ORTC (http://ortc.org/) concepts, would benefit significantly the API flexibility and its
ability to adapt to latest trends in WebRTC. The API would also benefit from having richer
support for complex media streams suitable for including multiple audio and video tracks, so
that 3D or MVCmultimedia is supported. Improvements are also possible from the perspective
of development tools beyond the API itself so that seamless mechanisms for debugging,
diagnosing and optimizing applications would be more than welcome by developers. To
conclude, further efforts should be invested in the future to perform a consistent and
complete evaluation of the API performance suitable for illustrating the main QoS metrics
of the different media elements and of the media pipeline mechanism on real-world operational
conditions following the scheme of pervious research on this area [61].
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