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Abstract This paper presents a system to detect multiple intents (MIs) in an input sentence
when only single-intent (SI)-labeled training data are available. To solve the problem, this
paper categorizes input sentences into three types and uses a two-stage approach in which each
stage attempts to detect MIs in different types of sentences. In the first stage, the system
generates MI hypotheses based on conjunctions in the input sentence, then evaluates the
hypotheses and then selects the best one that satisfies specified conditions. In the second stage,
the system applies sequence labeling to mark intents on the input sentence. The sequence
labeling model is trained based on SI-labeled training data. In experiments, the proposed two-
stage MI detection method reduced errors for written and spoken input by 20.54 and 17.34 %
respectively.

Keywords Spoken dialog system . Spoken language understanding .Multi-intent detection

1 Introduction

A spoken dialog system (SDS) provides a dialog interface between human and computer.
Especially, in immersive multimedia environments, the spoken dialog interface is indispens-
able for users without any keyboard or mouse like real world. In general, an SDS consists of
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five sequential processes: automatic speech recognition (ASR), spoken language understand-
ing (SLU), dialog management (DM), natural language generation (NLG), and text-to-speech
synthesis (TTS) [1, 5, 6, 10, 11, 18, 21]. SLU converts an input sentence into a meaning
representation that can be understood by a machine. Most studies design meaning represen-
tation as a combination of an intent and named entities in a given domain [2, 7, 8, 19, 24].
These studies focus on processing simple input sentences that express only one intent. We
categorize those sentences as single intent (SI)-type.

However, in the real world, users often express multiple intents (MIs) within one dialog
turn. The multiple intents should be processed in the spoken language understanding, so that
the subsequent process can process the intents to interact with human. We categorize the types
of those sentences as MI conjunctive (MI.C) and MI non-conjunctive (MI.N) types. An MI.C
sentence has multiple clauses which are concatenated with conjunctions; ie this sentence is
either a compound sentence or a complex sentence. An MI.N sentence has multiple clauses
that are concatenated without any conjunction; this sentence occurs when ASR fails at
disambiguating the boundary between individual sentences. In summary, we categorized input
sentences into three types: SI, MI.C, and MI.N (Table 1). SDS should successfully process all
three types, so SLU should be able to detect one or more intent in an input sentence. We named
this task MI detection (MID).

In this paper, we propose a two-stage approach to MID. The first stage is conjunction-based
MID (ConjMID) which attempts to detect MIs in MI.C sentences. The second stage is
sequence-labeling-based MID (SeqMID) which attempts to detect MIs in MI.N sentences.
The main advantage of our approach over previous studies is that the ConjMID and SeqMID
can be implemented when only SI-labeled training data are available; ie our approach requires
neither collection of actual MI-labeled training data nor manual annotation of extra labels onto
SI-labeled training data.

The rest of the paper is organized as follows: In the following section, we briefly introduce
related work. Section 3 shows a method for Automatic Speech Recognition (ASR) error
correction which is indispensable for SDS system. Section 4 describes the detailed method
of our two-stage approach to MID. Section 5 demonstrates the experimental design and results.
Finally, Section 6 draws conclusions.

2 Related work

In traditional natural language processing (NLP), one approach is sentence boundary disam-
biguation. One study reported an F1 score of 98.37 % for written input [20]; this study cannot
be applied to MID, because the method cannot successfully process ASR output which does

Table 1 Examples of the three types of input sentences

Type Example

SI Bshow me the list of action movies^
→ search-program

MI.C Brecord ocn news and play big bang theory^
→ record-program, play-program

MI.N Bwhat is the genre of big bang theory tell me the story about it^
→ search-genre, search-introduction
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not have punctuation marks. In the NIST Rich Transcription Fall 2004 Evaluation (RT-04 F),1

the minimum error score was 38.46 % for spoken input, and a later study reported an error
score of 35.6 % for spoken input [14]; these studies are not sufficiently accurate to be applied
to MID.

In traditional NLP research, another approach is to use clause identification. In the CoNLL-
2001 shared task, the best F1 score was 84.36 % for written input [16]. A later study reported
an F1 score of 89.04 % for written input [12]. However, these studies are neither verified for
spoken input nor sufficiently accurate to be applied to MID.

In SDS research, one study approached MID as a classification problem [23]. This study
limited the maximum number of intents per sentence to two, and therefore regarded a
combination of double intents (DIs) as a class. The study added hidden variables to identify
segments belonging to each intent. The main focus of this study was to overcome the sparsity
of training data, so it used hidden-state conditional random fields that exploit shared intents
across different intent combinations. However, the method requires collection of actual DI-
labeled training data.

In SDS research, another study approached MID as a sequence labeling [17]. The study
regarded MID as a detecting user intent indicator (UII) in an input sentence. Each UII in an
input sentence represents an individual intent. The study used conditional random fields
(CRFs) for sequence labeling of UII [4]. However, the method requires manual annotation
of UII onto SI-labeled training data.

The proposed two-stage approach to MID consists of two sequential processes. The first
stage is ConjMID. If fewer than two intents are detected in this stage, the second stage is
performed. The second stage is SeqMID. If fewer than two intents are detected in this stage,
traditional SI determination (SID) is performed.

We used an in-house Korean POS tagger that is based on Hidden Markov model and that
was trained using Korean Sejong Corpus. We used Maximum Entropy (ME) and Conditional
Random Fields (CRF) which performs either classification or sequence labeling.

One of the strength of the ME paradigm is the ability to incorporate arbitrary knowledge
sources while avoiding fragmentation. So, the ME-based language models can combine n-
gram features and other higher level linguistic knowledge in one unified framework [15, 22].
For this reason, we used ME to deal with words, part-of-speech(POS) and intents in our single
and multiple intent detection model.

To achieve accurate multi-intent detection, we adopt a linear-chain Conditional Random
Fields (CRF) classifier [4] of which classification performance has been approved. Although
the CRF classifier has good performance in the classification tasks, it is important to choose
the required features to be obtained from the given dataset.

3 ASR error correction

Because the input of SLU system has to be fed from ASR system, it is necessary to reduce the
error of ASR system. To reduce error of ASR system, our method consists of two parts: ASR
error detection and correction. First, the error detection part detects errors in the input sentence.
Next, the correction part replaces or removes words that were identified as errors by the

http://itl.nist.gov/iad/mig/tests/rt/2004-fall/
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detection part. All the models that are needed to process the method are constructed from only
the text corpus that is to train the dialog system.

3.1 ASR error detection

ASR error detection is the problem of labeling a word as an error. However, this detection
cannot be treated as a supervised classification problem because no parallel corpus that
includes ASR results and their transcripts is provided. The errors are essentially detected by
voting from each of the detection component modules that independently identify error
candidates.

POS pattern based detection An erroneous sentence may have an incorrect POS pattern,
such as a grammatical error pattern. With a correct POS pattern, we could detect the erroneous
words. POS pattern based error detection model includes several sentence-level POS label
sequences. After tagging the ASR output sentence, the system searches for the most similar
POS pattern from the model. To find the most similar POS pattern, we use the Levenshtein
distance to calculate a similarity score:

s ¼ Levenshtein Distance t; pð Þ
# of words of o

; ð1Þ

where t is a POS pattern in an ASR output, p is a POS pattern of the POS pattern model, and o
is the ASR output. The lowest scored pattern among all POS patterns in the POS pattern model
is selected for error part detection in the ASR output. Aligning the POS label sequence of the
ASR output with the selected POS label pattern, any word that does not have a matching POS
label in the POS pattern is regarded as an error candidate.

Word dictionary by POS label based detection Out of vocabulary (OOV) words in the
dialog corpus have the possibility of being incorrect words. To construct a word dictionary by
POS label, we consider valuable POS labels for the application: ie, nouns and verbs. If a word
in the input sentence is tagged with a valuable POS, the component searches for the word in
the dictionary of the tagged POS label. Aword that is not present in the dictionary is regarded
as an error candidate.

Word Co-occurrence based detection Word co-occurrence based detection model in-
cludes the target word and its sentence level co-occurring words, which are sorted by co-
occurrence frequency.

For each word in the ASR output, a set of co-occurrence words that includes the word itself
is constructed by searching the co-occurrence model. The co-occurrence score ci is calculated
by comparing the sets:

ci ¼
X
j∈N

n Si
\

S j

� �
n Sið Þ � 1

n Ið Þ ; ð2Þ

where Si is a set of co-occurrence words for word i, N is a set of ASR output words except
word i, I is a set of ASR output words, and the function n(A) is the number of elements of A.
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The numbers of elements of S are equivalent for all i and are determined by a configuration
option of the detection component. The words with comparatively low scores in relation to the
other words in the ASR output may be possible errors. Then, k words with low ci are regarded
as error candidates. The number of error candidates, k, is determined by a configuration option
of the detection component based on the ASR accuracy.

RNNLM based detection The RNNLM is trained to generate the word probability distri-
bution given previous context, so the model can be used for evaluation of the appropriateness
of each word in an input sentence. The equation of RNNLM score r of the word at position i in
the input sentence is

RNNLM score ri ¼ p wi

���wi−1;…;w1

� �
; ð3Þ

where the probability p is the output of the RNNLM. In the same way as the word co-
occurrence based detection, k low scored words are regarded as error candidates.

3.2 Syllable prediction RNN-based error correction (SPREC)

Before the correction process, the words near the detected erroneous words are also labeled as
errors because the neighbor words of the detected erroneous words also have high potential to
be incorrect. The error correction method uses a syllable prediction based on RNN. Our
method continuously predicts syllables at the detected error position, and the length of the
prediction depends on the length of the detected error position. To select a correct word, each
generated word replaces detected erroneous word and each revised sentence is evaluated by a
word-level likelihood score produced by a language model based on RNN [9]. The sentence
with the highest score is selected as the correction.

The syllable prediction network in our method (Fig. 1) has input layer x, syllable context
layer h, predicted pronunciation layer p, and output syllable layer y. In syllable position t, the
input layer to the network is x(t), the syllable context layer is h(t), the predicted pronunciation
layer p(t), and the output syllable layer is y(t). Input layer x(t) is formed by concatenating layer

Fig. 1 RNN for syllable prediction
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s(t) that represents a current syllable with 1-of-N coding and the previous syllable context layer
h(t + 1). To predict a syllable in position t + 1, the layers are calculated as

x tð Þ ¼ s tð Þ þ h t−1ð Þ ð4Þ

hj tð Þ ¼ f
X

i
xi tð Þui j

� �
ð5Þ

yk t þ 1ð Þ ¼ g ∑
j
h j tð Þvk j þ ∑

l
pl t þ 1ð Þwkl

 !
; ð6Þ

where f is a sigmoid activation function and g is a softmax function. The predicted pronun-
ciation layer p is an additional layer that is included for accurate prediction and is provided in
two different ways. First, if the position of the prediction t + 1, provides the pronunciation
information, the pronunciation layer represents a confused phoneme sequence of a syllable of
the error position t + 1, and the layer is calculated from the pronunciation confusion matrix [3].
Second, if the position of the prediction t + 1 cannot provide the pronunciation information,
then the pronunciation layer is calculated by the pronunciation RNN. The network for the
pronunciation RNN has input layer xp, pronunciation context layer hpn, and predicted output
pronunciation layer po. Input layer xp(t) is formed by concatenating layer pc(t) which represents
a current syllable pronunciation with 1-of-N coding and previous pronunciation context layer
hp(t + 1). To predict syllable pronunciation in position t + 1, the layers are calculated as

xp tð Þ ¼ pc tð Þ þ hp t−1ð Þ ð7Þ

hpn tð Þ ¼ f
X

m
xpm tð Þupmn

� �
ð8Þ

po t þ 1ð Þ ¼ f
X

n
hpn tð Þvpno

� �
; ð9Þ

where f is a sigmoid activation function. The output layer po is activated by the sigmoid
function, not the softmax function, because this layer is also an input layer to the output syllable
layer y, so po should be scaled the same as the syllable context layer h. To train weights u, v and
w of the syllable prediction network, a standard back-propagation algorithm is applied with the
1-of-N coding syllable vector to ensure that the output syllable layer represents the next
syllable. The syllable pronunciation prediction RNN is trained independently. To train weights
up and vp of the pronunciation RNN, a standard backpropagation algorithm is also applied with
the 1-of-N coding pronunciation vector to ensure that the output pronunciation layer represents
the next syllable pronunciation. To train the RNNs of correction model, weights are initialized
to small values as −0.1 ~ 0.1. The networks are trained in several epochs. The weights are
trained with 0.1 of initial learning rate, and after each epoch the networks is tested on validation
data which is the training data. If improvement on the validation data is not significant, then the
learning rate is halved and start new epoch [9]. Training process is finished when no significant
improvement on the validation data is again [9].
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4 Two stage multi-intent detection method

The proposed two-stage approach to MID consists of two sequential processes (Fig. 2). The
first stage is ConjMID. If fewer than two intents are detected in this stage, the second stage is
performed. The second stage is SeqMID. If fewer than two intents are detected in this stage,
traditional SI determination (SID) is performed.

We used an in-house Korean POS tagger that is based on Hidden Markov model and that
was trained using Korean Sejong Corpus. We used fastCRF library which performs either
classification or sequence labeling.

4.1 Conjunction-based multi-intent detection

ConjMID attempts to detect MIs from MI.C sentences. ConjMID consists of three sequential
processes: generation of MI hypotheses, evaluation of MI hypotheses, and selection of the best
MI hypothesis. In ConjMID, we limited the maximum number of intents per sentence to two
as in the previous study [23]. In our experiments, this assumption is realistic because users
rarely express more than two intents.

4.1.1 Generation of multi-intent hypotheses

ConjMID generates a set H of MI hypothesis by analyzing the conjunctions in the input
sentence (Fig. 3). A conjunction entry is a sequence of word/POS pairs; e.g. Beven/RB though/
IN^. An MI hypothesis h ∈ H is represented as < hleft, hconj, hright>, where hleft is the left-side
clause; hconj is the conjunction; hright is the right-side clause.

Fig. 2 Overall process of multi-intent detection
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4.1.2 Evaluation of multi-intent hypotheses

ConjMID evaluates H. Given h ∈ H, traditional SID is performed on hleft and hright. The SID
score scoreSID(s) of sentence s is the confidence score of classification of s, and the score is
calculated using maximum entropy model. The score of h is

scoreMIH hð Þ ¼ min scoreSID hleft
� �

; scoreSID hright
� �� � ð10Þ

To train SID from SI-labeled training data, we used maximum entropy (MaxEnt) classifier
[13]. We used two features in SID: word-n-gram and word/pos-n-gram.

4.1.3 Selection of the best multi-intent hypothesis

ConjMID compares the top-scored MI hypothesis h*, where

h* ¼ argmaxh∈HscoreMIH hð Þ; ð11Þ
to the score scoreSID(original) of original sentence. ConjMID selects h* if

scoreMIH h*
� �

scoreSID originalð Þ > thresholdconj mid; ð12Þ

where thresholdconj_midwas set empirically to 1. The condition means if the score of hypothesis
is greater than the score of original sentence, the hypothesis would be selected. If h* is selected,
the output is the combination of the single intent of hleft

* and hright
*. If the condition is not

satisfied, ConjMID rejects all H.

4.2 Sequence-labeling-based multi-intent detection

SeqMID attempts to detect MIs from MI.N sentences. SeqMID adopts traditional begin,
inside, and outside (BIO) tagging. Our main contribution point here is that we trained sequence
labeling model when only SI-labeled training data are available.

4.2.1 Generation of multi-intent-labeled training data

MI-labeled training data can minimize the errors of MID, but we had only SI-labeled training
data. So we automatically generated MI-labeled training data by concatenating all combination

Fig. 3 Example of generation of multi-intent hypotheses
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of two SI sentences (Fig. 4a). We generated MI.N sentences up to the square of the number of
SI sentences.

4.2.2 Computation of TF-IDF values

To annotate intent-BIO tags in both original SI-labeled training data and automatically gener-
ated MI-labeled training data, we should determine whether a word is related to an intent. We
regarded a word w to be related to intent i if w satisfies all of the following conditions:

1) w is not a named entity. We do this because we assumed that named-entity words are not
related to intents.

2) At least one n-gram token t includes w, and the term frequency–inverse document
frequency (TF-IDF) value, tfidfn(t, i, I) of t exceeds a specified threshold (Fig. 4b). We do
this because we assumed that frequent and relevant words are related to intents. We computed
TF-IDF values as

f n t; ið Þ ¼ frequency of n−gram term t in intent i ð13Þ

t f n t; ið Þ ¼ 0:5þ 0:5� f n t; ið Þ
max f n w; ið Þ : w∈if g ð14Þ

Fig. 4 Example of preparing
intent-BIO-labeled training data
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id f n t; Ið Þ ¼ log
Ij j

i∈I : t∈if gj j ð15Þ

tfid f n t; i; Ið Þ ¼ t f n t; ið Þ � id f n t; Ið Þ ð16Þ
TF-IDF thresholds are different in each n-gram. Based on grid search technique, we found

the best thresholds that minimized the errors in a development set.

4.2.3 Annotation of intent-BIO tags

We assigned intent-B or intent-I tags on to the words that are related to intent. If the word is the
first word that is related to its intent, we assigned a intent-B tag to the word. Otherwise, we
assigned it an intent-I tag. We assigned an O tag to the words that are not related to the intent
(Fig. 4c, Table 2).

4.2.4 Extraction of features

To train SeqMID, we used CRF [4]. We used six features for sequence labeling of intent-BIO
tags: word-n-gram, pos-n-gram, word/pos-n-gram, distant-n-word, is-foreign-word, and is-
number.

4.2.5 Detection of Multi-intent using sequence label

The trained CRF is used in the SeqMID stage (Fig. 2). We used the same six features as
described in the feature extraction section.

5 Experiments

5.1 Data

We collected a Korean-language corpus for the TV guide domain. In our TV guide domain, the
size of the intent set is 33. The training and development sets consist of 5,180 and 561 SI
sentences respectively. In the test set, we limited the maximum number of intents per sentence

Table 2 Example of intent-BIO
tagging on Bhmm what time is [the
simpsons]TITLE playing
[today]TIME^ (intent = search-start-
time)

Word Intent-BIO tag

hmm O

what search-start-time-B

time search-start-time-I

is search-start-time-I

the O

simpsons O

playing search-start-time-I

today O
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to two as in the previous study [23]. We prepared both written and spoken test sets for three
sentence types. The written test set consists of 816 sentences and the spoken test set consists of
407 sentences. To prepare the spoken test set, we used ASR in Android 4.1 Jelly Bean on a
Samsung Galaxy S III Device. In our TV guide domain, the measured word error rates
(WERs) were 8.89, 9.14, and 17.90 % for SI, MI.C, and MI.N sentences respectively.

To realize conjunction-based MID, we manually constructed a Korean conjunction dictio-
nary which consists of 16 conjunction entries.

5.2 Experimental design

We defined three sentence types. So we computed weighted average by weighting type SI,
MI.C, and MI.N as 0.7, 0.15, and 0.15 respectively, which are the proportions of the three
sentence types in a dialog log of TV guide domain.

We compared F1 scores of following four MID methods:

1) Baseline is traditional SID which is explained in Section 4.1.
2) ConjMID is conjunction-based MID which is proposed in Section 4.1.
3) SeqMID is sequence-labeling-based MID which is proposed in Section 4.2.
4) TwoStageMID is our final method that exploits both ConjMID and SeqMID.

5.3 Experimental results

In the written test set, each method showed the following results against Baseline (Table 3):
ConjMID had no change in SI and MI.N sentences; it reduced errors in MI.C sentences by

38.99 %. These results indicate that ConjMID can process MI.C sentences without increasing
errors in the other sentences types.

SeqMID increased errors in SI sentences by 1.37 %, and reduced errors in MI.C and MI.N
sentences by 37.43 and 34.31 % respectively. These results indicate that SeqMID can process
both MI.C and MI.N sentences, and cause little error increase in SI sentences. We expected
that SeqMID could successfully process only MI.N sentences; so it achieved more than we
expected.

TwoStageMID increased errors in SI sentences by 1.37 %, but it reduced errors in MI.C and
MI.N sentences by 50.77 and 34.41 % respectively. Compared to SeqMID, TwoStageMID
reduced errors in MI.C sentences by 20.54 %.

These results indicate that ConjMID and SeqMID are complementary in MI.C sentences, so
combining the two methods can achieve the best accuracy in MID.

Table 3 MID performance (%) on written test set for each sentence type

Method SI MI.C MI.N Avg.

Baseline 83.21 60.94 60.94 76.53

ConjMID 83.21 76.17 60.94 78.82

SeqMID 82.98 75.56 74.34 80.57

TwoStageMID 82.98 80.77 74.34 81.35
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In the previous research, 83.6 % of intent detection accuracy was achieved on DI (Double
Intent) test set using trained DI training set with class model [23]. Also, they acquired 82.1 and
80.6 % of intent detection accuracy on DI test set trained on SI (Single Intent) data plus DI data,
and on SI test set trained on SI data plus DI data, respectively. However, because the experiments
were performed with their own written test set, direct comparison is not meaningful.

In the spoken test set, results obtained using Baseline, ConjMID, SeqMID, and
TwoStageMID showed F1 scores of 75.13, 77.29, 78.72, and 79.44 % respectively
(Table 4). In summary, TwoStageMID reduced errors in the spoken test set by 17.34 %.

6 Conclusion

In this paper, we focused on solving the MID task when only SI-labeled training data is
available. First we defined three sentence types: SI, MI.C, and MI.N. Then we proposed a two-
stage approach that consists of ConjMID and SeqMID. In the first stage, the system generates
MI hypotheses based on conjunctions in the input sentence, then evaluates the hypotheses and
then selects the best one that satisfies specified conditions. In the second stage, the system
applies sequence labeling to mark intents on the input sentence. The sequence labeling model
is trained based on SI-labeled training data. In experiments, the proposed two-stage MID
method reduced errors for written and spoken input by 20.54 and 17.34 % respectively.

The experimental results show the proposed method is effective in solving the MID task
when only SI-labeled training data is available. We are looking for several ways to improve the
performance of this method.
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