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Abstract Nowadays, fully unsupervised video object segmentation is still a challenge in
computer vision. Furthermore, it is more difficult to segment the object from a set of clips.
In this paper, we propose an unsupervised and on-line method that efficiently segments
common objects from a set of video clips. Our approach is based on the hypothesis, that
common or similar objects in multiple video clips are salient, and they share similar features.
At first, we try to find out the regions in every clip which are salient and share similar features
by proposing a new co-saliency scheme based on superpixels. Then, the most salient
superpixels are chosen as the initial object marker superpixels. Starting from these superpixels,
we merge neighboring and similar regions, and segment out the final object parts. The
experimental results demonstrate that the proposed method can efficiently segment the com-
mon objects from a group of video clips with generally lower error rate than some state-of-the-
art video co-segmentation methods.

Keywords Co-saliency . Co-segmentation . Regionmerging . Superpixel . Unsupervised

1 Introduction

Video object segmentation is a fundamental task in multimedia, and it can benefit many
applications, e.g., surveillance and video editing. Provided with some priors to indicate what or
which the object regions are, some supervised or interactive object extraction and tracking
approaches can achieve good performance [5, 6, 33]. However, they are hard to be extended:
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first, the users need to provide human interaction or manually label the training data as a matter
of experience; second, it is hard to operate for user to mark the regions of interest on a set of
video clips. Therefore, unsupervised video object segmentation in a set of clips is a challenging
problem, and it has much applications in large scale video tagging and retrieval, generation of
training sets for supervised learning, and forensic video analysis [37]. Among them, video
object co-segmentation is one of feasible solutions and research highlights.

Video object co-segmentation is an extension of image object co-segmentation, image/
video co-saliency and video co-tracking/co-detection. The aim of video object co-
segmentation is to unsupervised or semi-supervised extract the common object regions which
share similar feature simultaneously on a set of video clips. Liu and Zhang etc. propose a
hierarchical segmentation based co-saliency model [25]. Li and Ngan present a method to
detect co-saliency from an image pair which is modeled as a linear combination of the single-
image saliency map (SISM) and the multi-image saliency map (MISM) [24]. Cao and Tao
et al. propose a saliency map fusion framework, which exploits the relationship of different
saliency cues and obtains a self-adaptive weight to generate the final co-saliency map [8]. Fu,
Cao and Tu employ clustering to represent the global correspondence relationship among a set
of images, and generate final co-saliency maps by fusing three effective bottom-up cues [14].

There are many prior trials which are successful on image co-segmentation. Among them,
an image co-segmentation model proposed by Hochbaum and Singh which enables obtaining
efficient solutions to the underlying optimization model using a maximum flow procedure on
an appropriately constructed graph [16]. Joulin, Bach and Ponce propose an image co-
segmentation which combines existing tools for underlying image segmentation, with kernel
methods commonly used in object recognition [20]. Batra, Kowdle and Parikh develop an
algorithm for interactive co-segmentation of a foreground object from a group of related
images which sharing common objects [7]. This method only needs little user interaction and
can extract the common objects from plentiful images.

Video co-tracking/co-detection is one of the most popular simplifications for video co-
segmentation. Tang and Joulin etc. present a joint image-box formulation which can be relaxed
to a convex quadratic program for solving the co-localization problem [29]. Tang and Brennan
etc. propose an on-line semi-supervised learning framework that the object is represented by
independent features and support vector machine (SVM) is built for each feature [13]. Zhang
et al. propose a novel approach to extract primary object segments in videos in the ‘object
proposal’ domain which can be applied to video co-segmentation [36].

Recently, more and more methods have also been proposed for video co-segmentation. Fu
and Xu etc. present a video object co-segmentation method based on category-independent
object proposals which is able to extract multiple foreground objects in a video set [18]. Joulin,
Bach and Ponce propose a novel energy-minimization approach to co-segmentation that can
handle multiple objects [21]. Meng and Li etc. propose a new model considering the co-
segmentation problem as the shortest path problem and use the dynamic programming method
to solve it [27]. The above two methods are proposed for image co-segmentation, but they both
can be also applied to video co-segmentation. Guo and Li etc. propose the trajectory co-
saliency measure, which captures the notion that trajectories recurring in all the videos should
have their mutual saliency boosted [19]. Chiu and Fritz propose to study video co-
segmentation where the number of objects is unknown by formulating a non-parametric
Bayesian model [10]. Zhang, Javed and Shah propose a novel approach for object co-
segmentation in arbitrary videos by sampling, tracking and matching object proposals via a
Regulated Maximum Weight Clique (RMWC) extraction scheme [37].
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The existing video co-segmentation algorithms cannot segment out the accurate enough
boundaries of the common objects from a set of video clips, and most of them are not on-line
algorithm. Therefore, the research interest of this paper is to propose a full automatic and on-
line video co-segmentation that can accurately extract the common objects from a set of
videos. The main idea of our scheme is to consider the regions where are salient (it is different
from most parts of the whole image) and share common features (color, texture etc.) with
objects in the other video clips (it may be defined as Bco-salient regions^) as the initial objet
marker regions, meanwhile consider the non-salient regions as background marker regions.
And then, merge the non-marker regions to the initial object maker regions or background
marker regions to classify all regions as object or background. Especially, the strategies to
construct a co-saliency map are different in the first frame and other frames. The overview of
the whole procedure of the proposed algorithm is shown by Fig. 1. The main contribution can
be summarized as follows:

First, we propose a fully automatic (without any user interaction) initialization stage based
on co-saliency for the first frame in each video clip. Especially, we propose a novel co-saliency
model on superpixel level to measure each region if it is co-salient or not.

Second, for the purpose to describe the color and texture feature of each superpixel or
region, we propose a novel region feature based on hierarchical histogram.

Third, we first present an on-line video co-segmentation based on superpixel trajectory.
Similar to the initialization stage, it includes co-saliency, marker prediction and region
merging. Differ from the initialization stage, we also consider the superpixel motion trajectory
in video co-segmentation.

The structure of this paper is as follows. In section 1, we have offered an introduction to
related works. In section 2, the proposed initialization based on superpixel co-saliency is

Initialization
1st frame in video 1 1st frame in video 2

Video co-

segmentation

Segmentation results of 1st frame

...

...

...

2nd frame to

nth frame

in video 2

...

Final segmentation results

2nd frame to

nth frame

in video 1

Fig. 1 The overview of the proposed scheme
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explained. In section 3, the image co-segmentation based on marker prediction and region
merging is presented. In section 4, the proposed video co-segmentation algorithm is explained
in detail. In section 5, the experimental results are evaluated based on visual and quantitative
comparisons. In section 6, our conclusions and future suggestions are presented.

2 Initialization based on superpixel co-saliency

Co-saliency is a soft problem to co-segmentation. The co-saliency map can provide an initial
highlight of potential objects, which can replace the user interaction in segmentation [14]. In
our paper, the main idea of the proposed scheme is to merge non-marker superpixels to the
initial object marker superpixels (which are salient and share features in each video clip) and
the initial background marker superpixels respectively. In this section, we propose an initial-
ization based on superpixel co-saliency which actually is a fully automatic image co-
segmentation to initialize the co-segmentation from the first frame, and more details are shown
in Fig. 2. In order to reduce the computation and generate the initial segmentation, we over
segment the video clips into desired number of superpixels at first. Recently there are many
proposed methods which can divide images or video frames into superpixels [3, 11, 30–32]. In
our proposed method, we have adopted the SLIC (Simple Linear Iterative Clustering) as the
over segmentation method, as the superpixels generated by SLIC are likely equal size and
adhere accurately to the boundaries of objects [3]. After superpixels are generated, both the
color and texture feature of each superpixel or region will be described by a novel region
feature based on hierarchical histogram, which is constructed by multi-layer color histograms.

Then we need to find out the superpixels from the common objects in each video clips. As
the definition of co-saliency, the basic assumptions is that a region in an image is co-salient
when and only when this region is salient in its image, and it is similar to the other regions
which are salient in other images [24]. On one hand, the most co-salient regions should be
considered as the initial marker regions if the scheme can describe the co-saliency of a set of
images accurately. On the other hand, the least co-salient regions should be considered as the
initial background marker regions. Therefore, we try to propose a reliable co-saliency model
which includes two stages – superpixel intra saliency and superpixel inter saliency. At first, the
superpixel intra saliency is extracted to describe which superpixels are most different from the
most of superpixels in a frame. And then, the superpixel inter saliency based on object proposal
is calculated to find out the superpixels which are common in a set of video clips. Final, by
combining the superpixel intra saliency map and the superpixel inter saliency, we obtain the co-
saliency map (on superpixel level). The procedure of the proposed is shown in Fig. 3.

2.1 Region feature extraction based on hierarchical histogram

After the over segmentation stage, we apply a robust region feature based on hierarchical
histogram to each superpixel, which allows us to successfully separate the object of interest
from the background and compute the similarity in inter saliency stage. Normally, color
histogram is popular to apply to region feature representation [28]. However, it is not accurate
enough to measure region feature which have texture information with different colors in a
region. Therefore, we propose a region feature based on hierarchical histogram which com-
putes different levels of color histogram, to capture not only the color information of each
superpixel but also texture information.
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In general, the texture feature is constructed by different colors in the same region. We need
to extract the color feature in sub-regions in this region. In order to obtain the sub-regions
within one region, the basic morphological image erosion operation is a feasible solution. After
over segmentation, we erode the boundary of each superpixel/region (represented by
si, i = 1, 2,… k) m times to obtain m layers of sub-regions of every region (represented by
sij, j = 1, 2,…m, where si1 = si). In this paper, we employ the basic morphological image

Image Co-segmentation

Over Segmentation 

& Feature Extraction

1st frame of video 1 1st frame of video 2

Superpixels

Co-saliency Map 

Extraction

Object Maker 

Prediction

Co-saliency maps

Co-salient superpixels (object and background marker suerpixels)

Region Merging

Segmentation results

Fig. 2 Initialization and image co-segmentation
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erosion operation with circular structure element (with radius 15). For the sub-regions of each
region, we then uniformly quantize each color channel into 16 levels, and then, we calculate
the histogram of each sub-region in the feature space, yielding 16 × 16 × 16 = 4096 bins. Let
Histsij denote the normalized histogram of the jth-layer sub-region of region si. Hence, the
proposed region feature of region si is defined as follows:

Fsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsi11

p
;…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsi14096

p
;…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsim1

p
…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsim4096

p� �

norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsi11

p
;…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsi14096

p
;…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsim1

p
…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Histsim4096

p� �� � ð1Þ

Intra Saliency Map

Generation

Superpixels

Object Proposal

Generation

Superpixels

Similarity Matching

Object proposals

... ...

Object priors

Inter Saliency Map

Generation

Inter saliency maps

Co-saliency Map

Generation

Intra saliency maps

Co-saliency maps

Fig. 3 Co-saliency on superpixel level

12946 Multimed Tools Appl (2017) 76:12941–12964



where Histsijt is the normalized histogram value for bin t of sij. In addition, norm denotes the
normalized form of a vector. If there is texture information within region si, it may be extracted
by the normal histogram of its sub-regions sij, j = 1, 2,…m.

An example of the extraction of the proposed region feature based on hierarchical histo-
gram is shown in Fig. 4.

From the Fig. 4, we can see superpixel A and B are similar measured by traditional color
histogram (Fig. 4a and d), because these two superpixels are constructed by similar colors.
However, actually they are two different textures. Obviously, they are very different in the
second and third layer histograms (Fig. 4 (b), (c) and (e), (f)). Therefore, it shows that our
hierarchical histogram based region feature can effectively describe the texture and color
information within a region.

Then, we use the inner product of the proposed features of two regions si and sj to quantify
the similarity between them [22]:

ρ si; s jð Þ ¼ Fsi⋅Fsj ð2Þ

Two regions are similar if and only if the proposed similarity is close to 1.

Superpixel A

1st Erosion 2nd Erosion

Superpixel B

1st Erosion 2nd Erosion

Histogram

Histogram

Histogram
Histogram

Histogram

Histogram

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 The proposed region feature based on hierarchical histogram: (a) – (b) are 3-layer histograms of
superpixel A respectively; and (b) – (d), are 3-layer histograms of superpixel B respectively
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2.2 Co-saliency map generation

As mentioned, we assume that the common objects are some regions which are salient and
share common region feature. In this paper, we segment out the final common objects through
merging the non-marker superpixels to the initial object marker regions. In the co-
segmentation case, the regions which share common features and are salient can be considered
as the initial object marker regions. In our scheme, we present a new co-saliency method on
superpixel level to find out the initial object marker superpixels (for region merging) in each
video clip. The proposed co-saliency model includes two stages – superpixel intra saliency and
superpixel inter saliency.

2.2.1 Intra saliency map generation

Intra saliency for a single image is a very well developed research area [1, 2, 9, 17, 35]. Among
them,Hou andZhang propose a saliencymap by extracting the spectral residual of an image, and
they regard the difference between the log amplitude spectrum and the average log amplitude
spectrumas the salient parts [17].Our intra saliency strategy is on superpixel level, and it includes
two parts.Onone hand,we extend this saliencymethod [17] to superpixel level as the first part of
our intra saliency map, because it can detect the saliency regions with high frequency:

First of all, transfer the current frame to CIELab space. Then, we suppose that sij is one of
superpixels in the input frame fi (in the ith frame). Therefore, we extend the spectral residual
([17]) from pixel level to superpixel level:

R si jð Þ ¼ L si jð Þ−A si jð Þ ð3Þ
where L(sij) is the log amplitude spectrum of sij, and A(sij) denotes the general shape of log
spectra, which is given as prior information, and it is obtained from 3*3 mean filter of L(sij).

Then, the saliency map [17] on superpixel level is defined as follows:

Sintra1 si jð Þ ¼ G*F−1 exp R si jð Þ þ P si jð Þð Þð Þ2 ð4Þ
where G(σ = 8) is a Gaussian filter. F− 1 denotes the Inverse Fourier Transform. P(sij) denotes
the phase spectrum of sij, which is preserved during the process.

On the other hand, Achanta and Hemami et al. introduce a frequency-tuned approach to
estimate center-surround contrast using color and luminance features [2]. This method both
consider the color and luminance of the whole image, and it can find out the salient regions
which are outstanding in color. Hence we extend this method to superpixel level as the second
part of our intra saliency. As same as before, we transfer the frame to CIELab space. Then, the
intra saliency map ([2]) on superpixel level is as follows:

Sintra2 Si jð Þ ¼ μ f ið Þ−ωhc Sijð Þk k ð5Þ
where μ(fi) is the mean pixel value (CIELab model) in the input frame fi, ωhc(sij) is the
corresponding Gaussian blur (using a 5 × 5 separable binomial kernel) of sij, and ‖‖ is the L2
norm (Euclidean distance).

After the two parts of superpixel intra saliency map are collected. We overall consider both
saliency maps and add these two saliency maps together by weight. Therefore, the intra
saliency map on superpixel level is finalized as below:

Sintra Si jð Þ ¼ wintra1Sintra1 Sijð Þ þ wintra2Sintra2 Si jð Þ ð6Þ
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where Sintra(sij) denotes the normalized intra saliency value of sij, and the value of Sintra(sij)
is within [0, 1]. Here, wintrai, i = 1 or 2. denotes the weight with wintra1 +wintra2 = 1 (Fig. 5).

2.2.2 Inter saliency map generation

As mentioned, co-saliency is proposed to highlight the superpixels which are salient in their
frame and exists in each video clip. On one hand, the saliency map of each superpixel
compared with the whole frame is described by intra saliency map. Hence, we present a
new scheme to find out the superpixels which share similar features in each clip through
determining an inter saliency map.

First of all, object proposal based method is applied to coarsely segment out an initial object
(object prior). Given that there is a common object in every video clips, the remaining task in
this stage is to find out the common objects. The hypothesis is that if common objects are
shared by two video clips, they are similar in region feature in each clip. Hence we match
every object proposal with the proposals in other clips which are measured by the proposed
hierarchical histogram based region feature. And then, the most similar pairs of object
proposals will be chosen as object priors. The research of object proposal has been very
mature, and it is very helpful in assistance of video tracking, image segmentation and so on [4,
12, 23, 26]. Therein, a set of segmentations by performing graph cuts based on a seed region
and a learned affinity function is generated by category independent object proposals, and then
the regions are ranked by various cues [12]. This method has been shown to be quite robust
and efficient. Therefore, we have employed it to generate a number of object proposals in this
stage.

We can see the object prior from Fig. 6. And then, we define the inter saliency map as
follow: given that sij is the jth superpixel in the chosen object prior (in Fig. 6) Pi in the ith
video (sij ∈ Pi, and it is a set of superpixels). Then, let Fsij be the proposed region feature based
on hierarchical histogram of sij, and let FPg be the region feature of another object prior in the
gth clip Pg.

Afterwards, we use the inner product of the features of two regions sij and Pg to quantify
the similarity between them, hence this similarity is the inter saliency map in this paper:

Sinter Si jð Þ ¼ ρ Si j;Pgð Þ ¼ Fsij⋅FPg ð7Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Intra saliency map on superpixel level: (a) & (e) are the original frames; (b) & (f) are the saliency maps
from [17] on LAB channel; (c) & (g) are the saliency maps from [2]; (c) & (g) are the final saliency map
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From Eq. (7), the inter saliency value is within (0, 1]. Two regions are similar if and only if
the inner product of their features is close to 1 (Fig. 7).

Sum up, the co-saliency value on every superpixel s is:

S sð Þ ¼ wintraSintra sð Þ þ winterSinter sð Þ ð8Þ
Especially, if s is out the range of the object priors, the value of Sinter(s) is 0.

3 Image co-segmentation based on marker prediction and region merging

According to the assumption, the most co-salient superpixels are chosen as object
marker superpixels. Some existing algorithms try to directly segment out the objects
after saliency map generation. Therein, Fu, Cao and Tu utilize the co-saliency map to
extract the salient foreground from the input image by a Markov random field function
[14]. However, this algorithm is not robust enough. Therefore, we propose a novel
segmentation scheme:

After the superpixel co-saliency maps are generated, initial highlights of a set of
objects are provided. In essence, the most salient superpixels which are considered as

Most Similar Combination (object prior)

...

...

Regional 

Similarity Matching

Fig. 6 The similarity comparison in inter saliency
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the initial object marker superpixels. In the proposed method, we select the Nobject
most salient superpixels with highest saliency values computed by our proposed Co-
saliency Map Generation algorithms (as in section 2.2) as the object marker
superpixels. The superpixels with the saliency value lower than the threshold
Tbackground will be selected as the background marker superpixels. These two param-
eters are set by experiments to have overall best performance.

And then, region merging stage is applied to extract the object regions from back-
ground. Ning and Zhang etc. propose a region merging based on maximal similarity,
which is robust and efficient to interactively segment out the object [28]. The whole
MSRM process can be divided into two stages, which are repeatedly executed until no
new merging occurs.

Starting the region merging from the object marker superpixels and background
regions, object regions and background regions will be merged respectively until there
are only two kinds of regions left – object and background. More than one object regions
may be segmented out, but they must also share the common region features. The whole
merging process will be divided into two stages, which repeat until no new merging
occurs.

Before the region merging process, a set of superpixels S = {si|si ∈ f} (f is a frame) are
segmented from over segmentation. Besides, the initial object marker superpixels
O = {oi|oi ∈ S} and background marker superpixels B = {bi|bi ∈ S} are also input. Moreover,
the other superpixels are non-marker superpixels N = {ni|ni ∈ S}. Therefore, O ∪ B ∪N = S.
Especially, S and N are always superpixel sets in every loop. However, O and B are merged
to regions from superpixels except the beginning of the first loop.

In the first stage, the task is to merge background marker regions B with their adjacent non-
marker superpixels N. The object marker regions O = {oi|oi ∈ S}, background marker regions
B = {bi|bi ∈ S}, and non-marker superpixels N = {ni|ni ∈ S} are updated by the merging process
in the second stage in the previous iteration. First, for each background region bi, form the set

of its adjacent regions or superpixels Sbi ¼ ai; i ¼ 1;…rf g. Second, for each ai and ai ∉ B,
form its set of adjacent regions Sai ¼ s jai; j ¼ 1;…kf g. There is bi∈Sai. Third, calculate the

Similarity

Computation

Fig. 7 Inter saliency map generation on superpixel level
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region similarity ρ(ai, sjai) (which is defined in Eq. (2)). If ρ(ai, bi) = max j = 1,… kρ(ai, sjai),
then bi = bi ∪ ai. Otherwise, bi and ai will not merge. Fourth, update B and N respectively.
Fifth, if the background regions B cannot find out the new merging regions, and the first stage
ends. Otherwise, go back to the first step.

In the second stage, the task is to merge the non-marker superpixels N. First of all, the
object marker regions O = {oi|oi ∈ S}, background marker regions B = {bi|bi ∈ S}, and non-

Image Co-saliency

Over Segmentation

tth frame

Superpixels

Intra Saliency

Co-saliency

Intra saliency maps

Co-saliency maps

Object marker superpixels and 

object superpixels of (t-1)th frame 

Inter Saliency

Inter saliency maps

Object Marker 

Prediction

Optical Flow

Optical flow maps

Object Probability

Object probability maps

Marker superpixels

Segmentation results

(object superpixels)

Region Merging

Fig. 8 The process of video co-segmentation
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marker superpixels N = {ni|ni ∈ S} are updated by the merging process in the first stage of this
iteration. First, for each non-marker region ni, form the set of its adjacent regions

Sni ¼ hi; i ¼ 1;…pf g. Second, for each hi (hi ∉O and hi ∉ B), form its set of adjacent

regions Shi ¼ s jhi; j ¼ 1;…k
� �

. There is ni∈Shi. Third, calculate the region similarity

ρ(hi, sjhi). If ρ(hi, ni) = max j = 1,… kρ(hi, sjhi), then ni = ni ∪ hi. Otherwise, ni and hi will not
merge. Fourth, we update N. Fifth, if the non-marker regions N cannot find out new merging
region, the second stage stops. Otherwise, go back to the first step. And then, the last iteration
ends, and the final segmentation map (finalized object superpixels O ' = {oi ' |oi ' ∈ S} and
B = {bi|bi ∈ S}, and we have O ' ∪ B ' = S) are output.

In addition, the MSRM region merging process can merge different object regions respec-
tively by considering other objects as background regions.

Table 1 The parameters for our experiments

Step Parameters

Over Segmentation superpixel size: 180 compactness: 12

Feature Extraction number of layers: m = 3

Initialization wintra1 = 0.5, wintra2 = 0.5, wintra = 0.3, winter = 0.7,
Nobject = 7, Tbackground = 0.1

Video Co-segmentation wintra1 = 0.5, wintra2 = 0.5,
wintra = 0.2, winter = 0.5, wprobability = 0.3,
Nobject = 7, Tbackground = 0.1

        (a6)

       (b6)

       (c6)

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)        (d6)

(e1) (e2) (e3) (e4) (e5)        (e6)

Fig. 9 Visual comparison with DAG, RMWC and ObMiC on BChicken^: (a1) - (a3) are original frames from
chicken_on_turtle; (a4) - (a6) are original frames from chickenNew; (b1) - (b6) are results from DAG; (c1) - (c6)
are results from RMWC; (d1) - (d6) are results from ObMiC; (e1) - (e6) are results from our method
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4 Video object co-segmentation based on superpixel trajectory

After the initialization stage, the segmentation results of the first frame are output. Based on the
results from initialization stage, we propose an on-line video co-segmentation. In our scheme,
video co-segmentation can be considered as the image co-segmentation on every frame.
Therefore, it is necessary to predict and generate the initial object and background marker
regions automatically. In this section, we will present an on-line video co-segmentation based
on superpixel trajectory. It is analogous to the initialization stage. In addition, the proposed
video co-segmentation scheme is on-line, so the results from previous frames need to guide the
segmentation of the current frame.

Actually, the co-segmentation in every frame is an interactive image segmentation
process. For the segmentation of the pending frame, we only need to provide the object
marker superpixels which are salient and similar with object superpixels in other clips.
Analogous to the initialization stage, the object marker superpixels are intra and inter
salient. The intra saliency map computation is the same as the initialization. In the inter
saliency stage, it is not necessary to generate the object proposal again. First of all, we
present a scheme of superpixel motion trajectory to generate the object prior and track
the object marker superpixels (Fig. 8).

4.1 Superpixel motion trajectory

At every frame, the segmentation result from the previous frame is chosen as the initial
segmentation in inter saliency stage. And then, following the initialization stage, the inter

        (a6)

       (b6)

       (c6)

       (d6)

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

(e1) (e2) (e3) (e4) (e5)        (e6)

Fig. 10 Visual comparison with DAG, RMWC and ObMiC on BGiraffe^: (a1) - (a3) are original frames from
elephant_giraffe_all1; (a4) - (a6) are original frames from elephant_giraffe_all2; (b1) - (b6) are results from
DAG; (c1) - (c6) are results from RMWC; (d1) - (d6) are results from ObMiC; (e1) - (e6) are results from our
method
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saliency maps of the current frames in every clips are generated. The number of object marker
superpixels is the same in every frame.

For each object marker superpixel, we need to roughly predict its motion. The optical flow
based method at the superpixel level is a popular choice for this task and has been extensively
researched [15, 34]. In this paper, we implement the optical flowmodel based on the strategy of
[34] because of its simplicity and rapid operation. The optical flow based method is applied to
predict the location of object marker superpixels omi − 1j and object superpixels oi − 1j
(omi − 1j ∈ oi − 1j, starting from omi − 1j, segment out oi − 1j by region merging) in frame fi − 1.

Let pixel pi ∈ s, i = 1, 2,… n, be a pixel in superpixel s, where n is the size of s. The expected
displacement of pi from the proposed optical flow is (ui, vi). Finally, we define the expected
trajectory of s as u; vð Þ ¼ median u1; v1ð Þð ; u2; v2ð Þ ;…; un; vnð ÞÞ, where median is the
median operator.

Therefore, we have

tmij ¼ omi−1 jþ u; v
� �

i j

ti j ¼ oi−1 jþ u; v
� �

i j
ð9Þ

where tmij and tij (tmij may not in tij) are predicted location in frame fi from the object marker
superpixel omi − 1j and object superpixel oi − 1j.

        (a6)

       (b6)

       (c6)

       (d6)

(a1)  (a2) (a3) (a4) (a5)

(b1)  (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

(e1) (e2) (e3) (e4) (e5)        (e6)

Fig. 11 Visual comparison with DAG, RMWC and ObMiC on BLion^: (a1) & (a2) are original frames from
lion_Zebra_all1; (a3) & (a4) are original frames from lion_Zebra_all2; (a5) & (a6) are original frames on
lion_Zebra2; (b1) - (b6) are results from DAG; (c1) - (c6) are results from RMWC; (d1) - (d6) are results from
ObMiC; (e1) - (e6) are results from our method
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4.2 Video co-saliency

Familiar with section 2.2.1, our intra saliency are the same in every frame.

Sintra Si jð Þ ¼ wintra1Sintra1 Sijð Þ þ wintra2Sintra2 Si jð Þ ð10Þ
In inter saliency stage, the object proposal is replaced with the expected location which is

from the set of the trajectories tij of the object superpixels oi − 1j. Therefore, the object prior in
the frame fi is within this area:

oprior ¼ ∪oi−1 j ð11Þ

        (a6)

       (b6)

       (c6)

       (d6)

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

(e1) (e2) (e3) (e4) (e5)        (e6)

Fig. 12 Visual comparison with VCS, RMWC and ObMiC on BTiger^: (a1) & (a2) are original frames from
tiger1_all8; (a3) & (a4) are original frames from tiger1_all9; (a5) & (a6) are original frames on tiger1_all10;
(b1) - (b6) are results from VCS; (c1) - (c6) are results from RMWC; (d1) - (d6) are results from ObMiC; (e1) -
(e6) are results from our method

Table 2 Quantitative comparisons with the state of the art methods on the MOViCS dataset

Video Set/Method DAG [14] RMWC [4] ObMiC [15] Ours

Chicken 0.68 206.49 s 0.83 269.39 s 0.87 420.02 s 0.85 87.93 s

Giraffe 0.56 334.33 s 0.64 273.03 s 0.63 427.05 s 0.71 88.04 s

Lion 0.66 293.59 s 0.64 146.34 s 0.71 295.00s 0.82 73.39 s

Tiger 0.55 244.80s 0.34 319.03 s 0.54 570.18 s 0.56 93.83 s

Overall 0.61 269.80s 0.62 251.95 s 0.68 428 s 0.74 69.30s

The first column of each method is the average intersection-over-union metric per frame; the second column of
each method is the average execution time per frame (the unit is second); the values in bold are best performance
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Then, following with

Sinter Snijð Þ ¼ ρ snij; opriormið Þ ¼ Fsnij⋅Fopriormi ð12Þ

where snij is the jth superpixel in the ith frame fni in the nth clip, and opriormi is the object
prior in ith frame fmi in the mth clip from Eq. (11). Fsnij and Fopriormi are respectively the
proposed region feature (from section 2.1) of snij and opriormi.

Normally, the superpixels between two frames do not shift too far. According to this
assumption, we propose an object superpixel probability as follows:

Sprobability Si jð Þ ¼
1; si j∈ ∪oi−1 jf g∩ ∪omi−1 jf g
0:8; si j∈∪omi−1 j; andsij∉∪oi−1 j
0:6; si j∈∪oi−1 j; andsij∉∪omi−1 j
0; si j∉∪omi−1 j; andsij∉∪oi−1 j

8>><
>>:

ð13Þ

Sum up, the co-saliency map of the superpixel sij is:

S si jð Þ ¼ wintraSintra si jð Þ þ winterSinter si jð Þ þ wprobabilitySprobability si jð Þ ð14Þ
where wintra, winter and wprobability are respectively the weight of Sintra, Sinter and
Sprobability, and wintra +winter +wprobability = 1.

After the co-saliency maps are generated, the object and background marker superpixels
will be generated the same as the initialization stage.

(a1)                       (a2)                       (a3)                       (a4)                       (a5)                       (a6)

(b1)                       (b2)                       (b3)                      (b4)                       (b5)                       (b6)

(d1)                       (d2)                       (d3)                      (d4)                       (d5)                       (d6)

(c1)                       (c2)                       (c3)                      (c4)                       (c5)                       (c6)

(e1)                       (e2)                       (e3)                      (e4)                       (e5)                       (e6)

Fig. 13 Visual comparison with DAG, RMWC and ObMiC on BBuffalo^: (a1) - (a3) are original frames from
buffalo; (a4) - (a6) are original frames from buffalo_lion; (b1) - (b6) are results from DAG; (c1) - (c6) are results
from RMWC; (d1) - (d6) are results from ObMiC; (e1) - (e6) are results from our method
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5 Experimental results

The proposed method was tested on three challenging video co-segmentation dataset
(MOViCS dataset [10], Safari dataset [37] and ObMiC dataset [15 ]) and was compared
with other several state-of-the-art methods (DAG [14], RMWC [4] and ObMiC [15]). We
test the single object co-segmentation on MOViCS dataset [10] and Safari dataset [37]
and the multi object co-segmentation on ObMiC dataset. The results show that our
method performs better both qualitatively and quantitatively. All experiments are
launched in windows 7 64 bit, Intel Core i7-3517U CPU (dual core and quad threading:
1.9 GHz and 2.4 GHz) with 4 GB RAM. Especially, our method is an on-line segmentation.

(a1)                       (a2)                       (a3)                       (a4)                       (a5)                       (a6)

(b1)                       (b2)                       (b3)                      (b4)                       (b5)                       (b6)

(c1)                       (c2)                       (c3)                      (c4)                       (c5)                       (c6)

(d1)                       (d2)                       (d3)                      (d4)                       (d5)                       (d6)

(e1)                       (e2)                       (e3)                      (e4)                       (e5)                       (e6)

Fig. 14 Visual comparison with DAG, RMWC and ObMiC on BSheep^: (a1) - (a3) are original frames from
elephant_sheep; (a4) - (a6) are original frames from sheep; (b1) - (b6) are results from DAG; (c1) - (c6) are
results from RMWC; (d1) - (d6) are results from ObMiC; (e1) - (e6) are results from our method

Table 3 Quantitative comparisons with the state of the art methods on the Safari dataset

Video Set/Method DAG [14] RMWC [4] ObMiC [15] Ours

Buffalo 0.68 436.61 s 0.87 228.04 s 0.78 412.98 s 0.74 86.48 s

Elephant 0.47 389.24 s 0.35 137.93 s 0.57 394.34 s 0.51 78.93 s

Lion 0.49 479.48 s 0.32 264.83 s 0.43 347.89 s 0.43 79.33 s

Sheep 0.38 500.20s 0.36 287.83 s 0.33 578.50s 0.75 80.98 s

Overall 0.51 451.38 s 0.48 229.66 s 0.53 433.43 s 0.61 81.43 s

The values in bold are the best results

12958 Multimed Tools Appl (2017) 76:12941–12964



Therefore, the user can handle with the video frame by frame. In the experiments, we do not
only compare with other video co-segmentations (RMWC [4] and ObMiC [15]), but also
compare with a traditional unsupervised single video segmentation which cannot segment out
the common objects from a set of video clips simultaneously (DAG [14]). The user needs to
segment clip by clip by using DAG.Moreover, the execution time of our method is shorter than
other 3 competing methods. For all experiments, the parameters are the same and shown as
Table 1. In over segmentation stage (superpixel generation), theoretically, the smaller and more
distortion each superpixel is, the more accurate the segmentation result is. We only apply three-
layer hierarchical histograms to extract the region feature, because the texture information is
relatively simple in all experiments. From the results of many experiments on different datasets,
we find that our proposed method has overall best performance with the parameters as shown in
Table 1.

5.1 Tests of MOViCS dataset

The MOViCS dataset ([10]) is a popular video co-segmentation dataset which has the
ground truth annotations for quantitative analysis. It contains 4 video sets which totally
has 11 videos, 5 frames of each video have pixel-level annotations for the object labels.
In this section, we evaluate our method and three state-of-the-art method on the MOViCS

(a1)                       (a2)                       (a3)                       (a4)                       (a5)                       (a6)

(b1)                       (b2)                       (b3)                      (b4)                       (b5)                       (b6)

(c1)                       (c2)                       (c3)                      (c4)                       (c5)                       (c6)

(d1)                       (d2)                       (d3)                      (d4)                       (d5)                       (d6)

(e1)                       (e2)                       (e3)                      (e4)                       (e5)                       (e6)

Fig. 15 Visual comparison with DAG, RMWC and ObMiC on BDog^: (a1) - (a3) are original frames from
DogDeer_2; (a4) - (a6) are original frames from DogDeer_4; (b1) - (b6) are results from DAG; (c1) - (c6) are
results from RMWC; (d1) - (d6) are results from ObMiC; (e1) - (e6) are results from our method
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dataset to test single object co-segmentation. For fair comparison, we keep all parameters
(for every method) constant in every experiment.

From the above figures, we can see that the results from our method are stably
attached with the boundaries of objects. Unlike prior methods, our method does not
have the property to break objects into a number of fragments and the proposed method
also produces better contours. For example, the only common object (chick) (Fig. 9) is
segmented out accurately by our method without any background part. Two videos clips
in which the object regions are not accurately segmented are tiger1_all8, tiger1_all10 in
video set Btigers^ and elephant_giraffe_all1, elephant_giraffe_all1 in video set Bgiraffe^.
This is due to the features of objects in these clips are similar to the background
(Figs. 10, 11 and 12).

In order to quantify our results, we adopt the intersection-over-union metric as below:

M S;Gð Þ ¼ S∩G
S∪G

ð15Þ

where S is a set of segments and G is the ground truth.
We compare our method with 3 state-of-the-art methods (DAG [14], RMWC [4] and

ObMiC [15]) as shown in Table 2. Note that our method is an unsupervised method, and it
outperforms the other methods except for the set BChicken^ where it is a close second. The
results in Table 2 are the average per-frame intersection-over-union metric compared to the
ground truth. The definition is as Eq. (15).

(a1)                       (a2)                       (a3)                       (a4)                       (a5)                       (a6)

(b1)                       (b2)                       (b3)                      (b4)                       (b5)                       (b6)

(c1)                       (c2)                       (c3)                      (c4)                       (c5)                       (c6)

(d1)                       (d2)                       (d3)                      (d4)                       (d5)                       (d6)

(e1)                       (e2)                       (e3)                      (e4)                       (e5)                       (e6)

Fig. 16 Visual comparison with DAG, RMWC and ObMiC on BSkating^: (a1) - (a3) are original frames from
Skating_2; (a4) - (a6) are original frames from Skating_3; (b1) - (b6) are results from DAG; (c1) - (c6) are results
from RMWC; (d1) - (d6) are results from ObMiC; (e1) - (e6) are results from our method
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5.2 Tests of safari dataset

Video object co-segmentation problem is new. To our best knowledge, there are two publicly
available dataset with ground truth for testing single object co-segmentation (MOViCS dataset [10]
and Safari dataset [37]). This Safari dataset contains 5 classes of animals and a total of 9 videos. We
show the visual comparisons between our method and other three state-of-the-art methods (DAG
[14], RMWC [4] andObMiC [15]) in Figs. 13 and 14, and quantitative results are shown in Table 3.

Figure 13 show that our method yields best performance on the set BBuffalo^. We can
compare with Fig. 13 (b4), (c4), (d4) and (e4), and the background region can be eliminated
only by our method. In Fig. 14, the performance of our method is not good enough at the clip
sheep from BSheep^. On one hand, it is partly because the features of common objects (sheep)
from elephant_sheep and sheep are not similar enough (especially the color). On the other
hand, it is due to the boundaries generated by superpixel generation are not accurate enough.

5.3 Tests of ObMiC dataset

The above two datasets (MOViCS dataset [10] and Safari dataset [37])) are collected to test the
single common object co-segmentation. For evaluating the performance on multi object co-
segmentation, we test all methods on ObMiC Dataset [18]. The ObMiC dataset contains 4
pairs of video clips (total 8 clips), and there are two common objects in every clip. We show
the visual comparisons in Figs. 15 and 16, and quantitative comparisons are shown in Table 4.

In Figs. 15 and 16, our method sometimes cannot segment out both two common objects
effectively, because our method is designed for single object co-segmentation. Besides, in
Fig. 15, only the blue skirt of the stating player is segmented out, because the skirt is very
salient and shape. For this case, it also seems that our method is not robust enough to the object
with many different colors.

6 Conclusion

In this paper, we propose a robust video object co-segmentation method based on co-saliency
and region merging. We show that the proposed co-saliency scheme based on superpixel is
applied to initialize the segmentation, which include two stage – superpixel intra co-saliency
and superpixel inter co-saliency. Some most co-salient superpixels are chosen as the object
marker superpixels. And then, region merging will start from these object marker superpixels
until the object regions are segmented out. Besides, a novel region feature based on

Table 4 Quantitative comparisons with the state of the art methods on the ObMiC dataset

Video Set/Method DAG [14] RMWC [4] ObMiC [15] Ours

Dog 0.37 238.54 s 0.55 117.40s 0.69 295.03 s 0.43 29.49 s

Person 0.65 250.38 s 0.78 109.34 s 0.83 286.25 s 0.68 39.02 s

Monster 0.56 324.45 s 0.70 192.54 s 0.66 254.53 s 0.52 35.93 s

Skating 0.23 238.90s 0.64 194.89 s 0.72 343.85 s 0.33 50.45 s

Overall 0.45 263.07 s 0.67 153.54 s 0.73 294.92 s 0.49 38.72 s

The values in bold are the best results
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hierarchical histogram is proposed to represent each region and superpixel. Numerous exper-
imental results and evaluations demonstrate the proposed method performs favorably against
existing state-of-the-art algorithms in the literature in some datasets for video co-segmentation.
We demonstrated that the proposed method efficiently segments the common objects out from
a set of video clips. However, we also found the performance of our proposed method may not
be robust enough if there are multiple objects in the video clip. Besides, these segmentation
results can be further improved by establishing the more robust relevance between objects in
different clips and using more spatial-temporal information. As the most time consuming parts
of the proposed algorithm are region merging and object proposal process, we will explore to
develop some efficient and effective alternatives even propose new algorithms. Since a novel
region feature based on hierarchical histogram is applied to describe each superpixel in our
paper, better region features can be incorporated to further improve the results.
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