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Abstract Local feature descriptor has been widely used in computer vision field due to
their excellent discriminative power and strong robustness. However, the forms of such
local descriptors are predefined in the hand-crafted way, which requires strong domain
knowledge to design them. In this paper, we propose a simple and efficient Spherical Hash-
ing based Binary Codes (SHBC) feature learning method to learn a discriminative and
robust binary face descriptor in the data-driven way. Firstly, we extract patch-wise pixel
difference vectors (PDVs) by computing the difference between center patch and its neigh-
boring patches. Then, inspired by the fact that hypersphere provide much stronger power
in defining a tighter closed region in the original data space than hyperplane, we learn
a hypersphere-based hashing function to map these PDVs into low-dimensional binary
codes by an efficient iterative optimization process, which achieves both balanced bits par-
titioning of data points and independence between hashing functions. In order to better
capture the semantic information of the dataset, our SHBC also can be used with super-
vised data embedding method, such as Canonical Correlation Analysis (CCA), namely
Supervised-SHBC (S-SHBC). Lastly, we cluster and pool these learned binary codes into
a histogram-based feature that describes the co-occurrence of binary codes. And we con-
sider the histogram-based feature as our final feature representation for each face image. We
investigate the performance of our SHBC and S-SHBC on FERET, CAS-PEAL-R1, LFW
and PaSC databases. Extensive experimental results demonstrate that our SHBC descriptor
outperforms other state-of-the-art face descriptors.
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1 Introduction

During the past decades, face recognition has been successfully applied in many fields,
it still attracts much attention due to its theoretical and practical challenges. Like those
traditional pattern recognition problem, there are two critical problems on face recogni-
tion system: feature representation and classifier training. Recently, most of the existing
works are focusing on these two aspects to improve the performance of face recognition
methods when they faced with a variety of intra-class variabilities. For face representation,
the purpose is to extract discriminative (global/local) features to make face images of dif-
ferent individuals more separable. For classifier training, the goal is to design an efficient
(supervised/unsupervised) classifier to distinguish different face patterns.

Feature representation significantly affects the performance of face recognition system
due to the large intra-class variations which reduce the similarity of face images from the
same individual. Up to now, a various of face representation methods have been proposed,
including holistic features [5, 6, 42] and local features [1, 23]. Though, these features
have achieved great success for some controlled scenarios through designing low-level fea-
tures elaborately, they can’t achieve excellent performance when they faced with extreme
intra-class variability and uncontrolled scenarios. Therefore, it is a challenging problem in
face recognition that how to extract robust and discriminative feature when the intra-class
variabilities are large.

Learning features from data itself instead of manually designing features is considered as
a plausible way to overcome the limitation of hand-crafted features. Inspired by the research
that binary codes are robust to local variations, we intend to encode high-dimensional origi-
nal data into low-dimensional binary codes. In generally, the intra-variations is smaller than
inter-variations of a particular individual in face recognition task. Therefore, themotivation
of our proposed method is two-folds. On the one hand, our method is expected to assign
the same binary codes for those data points which have shorter Euclidean distance on the
original PDVs space. On the other hand, it can be expected to minimize the quantization
error between binary codes and original PDVs so that the energy of real-valued PDVs is
preserved as much as possible. In other words, our method is expected to assign the same
binary code for the same individual, so that the intra-variations can be further reduced and
the inter-variations can be enlarged.

In this paper, we propose a simple and efficient Spherical Hashing based Binary Codes
(SHBC) to learn a discriminative and robust binary face descriptor in the data-driven way.
Firstly, we extract patch-wise pixel difference vectors (PDVs) by computing the difference
between center patch and its neighboring patches and grouping them as pixel difference
matrix (PDM). Then, in order to reduce the quantization error between original PDVs and
binary codes, and assign the same binary codes for those data points with shorter Euclidean
distance, we perform spherical hashing based iterative optimization method to learn opti-
mized binary face representations. Since hypersphere provides much stronger power in
defining a tighter closed region than hyperplane, we perform the iterative binary learning
method on hyperspheres instead of hyperplane. For each bit, hyperplane pi and hypersphere
si partitioning space into two parts (0 and 1), respectively. The partitioning examples are
shown in Fig. 1. We can see that hypersphere-based hashing scheme encodes a higher num-
ber of closed regions than hyperplane-based one. This example can be generalized to higher
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Fig. 1 Hypersphere-based hashing scheme encodes a higher number of closed regions than hyperplane-
based one. (i.e., for 3-bits binary codes in the 2-D space, hypersphere-based hashing scheme encodes all
23 = 8 binary codes, while hyperplane-based hashing scheme just encodes 7 binary codes). This figure is
best viewed in color version

dimensional space which can demonstrate that hypersphere-based hashing scheme provides
much stronger power in defining a closed region than hyperplane-based hashing scheme.
Lastly, we cluster these binary vectors by traditional K-Means method to learn the dictionary
and then pool them to obtain the histogram-based feature representations of input images.
In addition, our SHBC also can be used with supervised Canonical Correlation Analysis
(CCA), namely Supervised-SHBC (S-SHBC). Figure 2 illustrates the whole procedure of
our SHBC feature learning method. Extensive experiments demonstrate our SHBC descrip-
tors and S-SHBC descriptors outperform the most of state-of-the-art face representation
methods.

Contributions The contributions of our work are summarized as follows:

1. We introduce the spherical hashing scheme into face recognition tasks. As above men-
tioned, the spherical hashing scheme provides much stronger power in defining a tighter
closed region than hyperplane. Therefore, it is more likely to assign the same binary
codes to the same individual under the condition that the energy of original real-valued
PDVs is preserved as much as possible. So the intra-variations can be reduced and the
inter-variations can be enlarged.

2. In order to improve the semantic understanding ability of our proposed method, we also
propose a supervised version SHBC (S-SHBC) by using orthogonal basis projection
method CCA to learn identity-bearing face feature representations.

3. We apply SHBC and S-SHBC to learn face features from a local face region, so
that position-specific information of face image can be encoded in the learned binary
features.

4. We perform extensive experiments on four face datasets to demonstrate the efficiency
of our SHBC face descriptor. The results show that our proposed method are superior to
most of state-of-the-art methods in both constrained and unconstrained face recognition
scenarios.

The rest of the paper is organized as follows. Section 2 briefly reviews some recent
related work of face recognition from most-related aspects. Then, we detail our proposed
unsupervised SHBC and supervised SHBC feature learning method in the Section 3 and 4,
respectively. We investigate the performance of our SHBC and S-SHBC method on face
benchmark databases in Section 5 and conclude this paper in Section 6.
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Fig. 2 The whole procedure of our proposed SHBC face representation method. For the learning stage, in the
first step, we extract PDVs from each local region for each training face image. In the second step, we learn a
discriminative feature mapping using unsupervised spherical hashing scheme, therefore, the extracted PDVs
are projected into low-dimensional binary codes. In the third step, these learned binary codes are clustered
to learn a dictionary by K-Means method. For the testing stage, we perform the same operation as the first
step of learning stage. Then, the PDVs are encoded into binary codes using learned pivot matrix P and radius
matrix R. Lastly, these binary codes are pooled as patch-wise histograms with the learned dictionary D and
these local patch-wise histograms are concatenated to form the final representation of the test face image

2 Related work

Since the topics covered in face recognition literature are numerous, we focus on three most-
related aspects about our work in this paper: feature representation, feature learning and
binary coding.

2.1 Feature representation

During the past decades, there are extensive works on feature representation. The
researchers usually classify these representations into two categories: holistic methods and
local methods. Holistic feature representation regards the whole face image as a high-
dimensional vector, and aims to map the high-dimensional vector into a low-dimensional
feature subspace. The representative examples include PCA [42] and LDA [6]. However, the
holistic feature representation is sensitive to local variability, such as occlusion, expression
and misalignment.

Compared to the holistic face representation, local representation methods describe the
pattern of each local block and concatenate these feature representations of local patch as
the final output feature. The representative examples include LBP [1] and Gabor wavelet
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[23, 44]. The Gabor wavelet can obtain the local feature representation of face image by
computing specific spatial scales and spatial orientations. The LBP descriptor can capture
the local structure of face image by computing the difference between the central pixel and
its neighbors. A lot of LBP-based variant methods have been proposed in recent years [8,
10, 46, 50]. The LDGP [8] encodes the relationships between higher order derivatives of the
neighbor pixel to reduces the computational time. The work [10] construct LBP-like vector
by computing the adjacent pixels with diverse distances from different directions. Werghi
et al. [46] proposes Mesh-LBP for computing local binary-like-patterns on a triangular-
mesh manifold, which can extend most of the 2D-LBP variants to the mesh manifold. The
work [50] extracts block-wise improved Weber local descriptor and encodes this descrip-
tor by binary codes way. The combination of Gabor and LBP is also proposed for further
improving performance in recent years, such as HGGP [54], LGXP [49] and GV-LBP
[21] are representative examples. In these LBP-Gabor methods, a bank of Gabor filters
with different scales and orientations are applied and the local pattern is encoded by LBP
method.

However, the above local feature representation methods are all defined in a hand-crafted
way, and they are usually require strong prior knowledge to be designed. In other words,
it is hard for us to design an optimal encoding method by a hand-crafted way. Therefore,
these hand-crafted features cannot be simply adopted for new test conditions and practical
applications.

2.2 Feature learning

Learning features from the data itself instead of elaborately designing is considered as a
way to avoid the problems of hand-crafted features. The feature learning methods usually
are classified into two categories: low-level feature learning and high-level feature learning.
There are lots of high-level feature learning methods proposed in recent years. Representa-
tive examples include convolutional neural network [39, 40, 51], deep auto-encoders [18]
and PCA-Network [9, 41].

A great number of low-level feature learning methods also have been proposed in recent
years [17, 22, 26, 29]. The DT-LBP method [29] is proposed by constructing a decision
tree for each local region to learn the most discriminative LBP-like features. Hussain et al.
[17] proposed a learning-based local quantized pattern (LQP) to encode the local binary
or ternary pattern by adopting vector quantization. Lei et al. [22] proposed a discriminant
face descriptor (DFD) by learning discriminative images filters and optimal soft sampling
strategy using LDA criterion. In CBFD [26], researchers learn a feature mapping to project
pixel difference vectors (PDVs) into a compact binary vector which evenly distribute at each
learned bin. Compared to the hand-crafted feature representation methods, the learning-
based feature descriptors which are learned by the data-driven way usually show better
performances. Since learning-based feature representation methods can exploit more data-
dependent discriminative information, they can achieve better performance when faced with
more complicated test conditions.

2.3 Binary code learning

Compared to real-valued descriptors, binary codes methods have several properties. First,
the binary codes are short so that enable limited memory to store large amounts of images.
Second, the binary features have faster computational speed because they just have two
values. Third, the binary coding methods are robust to local variations. In other words, we
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expect that binary code method can map images from the same person to binary strings with
low feature space distance in the same time can map images from different person to binary
strings with high feature space distance.

There are a lot of works about binary code learning in the field of computer vision.
Spectral Hashing [45] preserves the similarity of original features by allocating bits based
on separable Laplacian eigen-functions for image retrieval. Gong et al. [14] introduced a
procrustean approach that minimizes the quantization error by iteratively rotating PCA-
projected or CCA-projected data. Yu et al. [53] imposed a circulant structure on the
projection matrix to speed up projections for high-dimensional data. Xia et al. [47] incor-
porated a sparse regularizer in an objective function to solve the over-fitting and expensive
computation problem. There have been a lot of binary code methods proposed for ran-
domized data embedding [3, 19, 34]. And these methods simply learn binary mapping by
appropriately thresholding the projected data after randomized embedding.

However, most existing binary code learning methods were proposed for approximate
nearest neighbor (ANN) search task or information retrieval task in computer vision. In
fact, they are also competent for face recognition tasks. To our best knowledge, there is
few related work before except CBFD method [26]. Therefore, in this paper, we applied
spherical hashing scheme to learn discriminative and robust binary feature representation
for face recognition task.

3 Spherical hashing binary codes learning

The motivation of spherical hashing binary codes learning is to learn a discriminative binary
descriptor so that the intra-class difference is reduced and the inter-class difference is
enlarged. Therefore, in this section, we first present the SHBC descriptor learning method,
and then we introduce how to use SHBC descriptor for face representation.

3.1 Unsupervised SHBC descriptor learning

3.1.1 The extraction of PDVs

As mentioned above, there are some problems with existing binary codes methods, such as
it is hard for them to sample large size neighborhoods due to high computational cost and it
is difficult to design an optimal encoding strategy by hand-crafted way. Therefore, we pro-
pose an iterative optimization based binary learning method to solve the above limitations.
Different from the traditional LBP-like method, we first extract the PDVs from a relatively
larger pixel patch. The reason why we use PDVs instead of raw pixel patches to learn fea-
ture representation is that the PDVs can efficiently measure how pixel values change and
describe the implicit local patterns in local face patches. The effectiveness of PDVs has been
proven in the previous research work [22, 26].

Given training set A = [a1, a2, · · · , an], we extract many patch-wise PDVs from an
original face image and group them as PDM X = [x1, x2, · · · , xN ], where xi ∈ R

d is
the ith PDV and N is the number of PDVs. Figure 3 illustrates how we extract PDM from
neighboring patch of original image. We can see that the dimensionality d of one PDV is
equal to [(2R + 1) × (2R + 1) − 1] and R is the sampling radius.
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Fig. 3 The illustration of extracting a PDM from the face image. We sample the neighboring pixels in
(2R + 1) × (2R + 1) space, where R = 1 is the sampling radius. Then the pixels of neighboring patches are
compared with the pixel of central patch and the difference are used as the PDV. In addition, the arrangement
order of the neighboring patches is insignificant, so we arrange the neighboring patches clockwise in this
paper

3.1.2 Spherical hashing scheme

The purpose of our SHBC is to learn K spherical hashing functions to map and quantize
each PDV xi into bi = [

bi,1, bi,2, · · · , bi,K

] ∈ {−1, 1}1×K . These functions are more likely
to assign the same binary codes to those data points with shorter Euclidean distance (i.e.,
these data points probably come from the same individual) and minimize the quantization
error between the learned binary codes and the real-valued PDVs. Therefore, for each spher-
ical hashing function hi (x), we use a pivot pi ∈ R

d and a hypersphere radius ri ∈ R
+ to

define it:

hi (x) =
{ −1 when d (pi, x) > ri

+1 when d (pi, x) ≤ ri
, (1)

where d (pi, x) denotes the Euclidean distance between pivot pi and data point x. It is clear
that the value of each spherical hashing function hi (x) indicates whether the data point x is
inside the hypersphere.

In order to define a closed region in a d-dimensional space, at least d + 1 hyperplanes
are need, and only one hypersphere is enough to form a closed region in arbitrarily high
dimensional space. For the same number of hashing functions, hyperspheres can construct
higher number of bounded regions than hyperplanes. In addition, the distances between
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data points located in the same region which are constructed by hypersphere are bounded.
For face recognition task, this property generates a merit that a region indexed by the
binary code of the query data point can contain more promising candidates which
from the same individual. In order to verify the above conclusion, we also measure the
maximum distance between any two data points that have the same binary codes, and take
the average of the maximum distance among different codes on dup2 subset of FERET
dataset. The result is shown in Fig. 4. One can see that the bound regions of hypersphere
are more tightly compared to hyperplane which are defined by Locality-Sensitive Hashing
(LSH) [2] and learning based Iterative Quantization (ITQ) [12]. Compared to LSH and ITQ,
spherical hashing functions are more likely to assign the same binary codes to two data
points which have shorter distance on the original space. In addition, for hyperplanes based
methods, the impact of learning scheme on the ability of bound region is negligible in the
case of long codes. That is the reason why we use spherical hashing method to map PDVs
instead of hyperplane-based methods.

3.1.3 The optimization goal of spherical hashing

As mentioned above, in order to make the learned binary codes discriminative and compact,
we enforce two important criterions to learn these binary codes:

1. The balanced bits partitioning of data points can lead to the learned binary codes evenly
distribute at each bin. Therefore, the histogram based features are more compact and
informative [26].

2. Since independent hashing functions can assign points in a balanced way to different
binary codes, the learned hashing functions should be independent between each pairs
of them.
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Fig. 4 This figure shows the average of the max. Euclidean distance among points having the same binary
code with different code lengths based on hyperplane and hypersphere. For face recognition task, this value
is directly related to the accuracy of method. We conduct this experiment on FERET database. Since ITQ
and SHBC are generally only applicable for the case of K ≤ d and we are unaware of how to generalize the
solution of these methods for the case of K > d , therefore, we can only show their ability of bound regions
in the case K ≤ d
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For the first criterion, we define each hashing function hi (x) to have the equal
probability for +1 and −1 as the following:

Pr [hi (x) = −1] = Pr [hi (x) = +1] = 1

2
, x ∈ X, 1 ≤ i ≤ K. (2)

For the second criterion, in order to clearly describe the property of independence between
hashing functions, we define a probabilistic event Vi to represent the case of hi (x) = +1.
Therefore, two probabilistic events Vi and Vj are independent when Pr

[
Vi ∩ Vj

] = Pr [Vi] ·
Pr

[
Vj

]
. Once we achieve the first criterion (i.e., (2)), then the second criterion can be

specified to the following equation:

Pr
[
hi (x) = +1, hj (x) = +1

] = Pr [hi (x) = +1] · Pr [hj (x) = +1
] = 1

2
· 1
2

= 1

4
(3)

In fact, the (3) just represent the pair-wise hashing functions independence, and pair-wise
independence does not guarantee the higher-order independence among more than two
hashing functions. We also formulate the higher-order independence to satisfy these criteri-
ons shown in (2) and (3), however, we found that these higher-order independence does not
provide the improvement of face recognition accuracy.

3.1.4 The iterative optimization process

To achieve the above criterions (the constraints shown in (2) and (3)), we propose an iterative
process for computing K different hyperspheres. As the first phase of our iterative opti-
mization process, we initialize pivot position of a hypersphere to be the median of randomly
chosen multiple samples, shown as following:

p0
i = 1

g

g∑

j=1

qj , 1 ≤ i ≤ K, (4)

where qj are randomly selected points from the training set X, g is the number of such
points and p0

i is the initial pivot of the ith hashing function. Of course, we also can initial-
ize the pivots p0

i (i = 1, · · · , K) with randomly chosen K data points in the training set
X, we found that the iteration process converges slightly quicker when the pivot p0

i are ini-
tialized by the median of randomly chosen multiple samples. And the experimental results
show that the manner of initialized pivot slightly affect the results of face recognition task.
The Table 1 shows the rank-one accuracy and average convergence time of each image on
FERET dataset. In practice, we determined the parameter g as 5 using the cross-validation
strategy on the FERET dataset.

Table 1 The rank-one accuracy and average convergence time of each face image comparison of different
initialized pivots way

Initialization ways fb fc dup1 dup2 Time (ms)1

Median 99.8% 100.0% 94.9% 93.6% 53.65

Random 99.8% 100.0% 93.5% 92.7% 57.12

1This experiments is conducted on a PC with 2.0 GHz i5 CPU and 64 GB RAM using matlab implementation
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Then, as the second phase of optimization process, we refine the pivots and radii of
hyperspheres by an iterative optimization process. To clearly describe the computational
process, we define the following two variables vi and vi,j :

vi = ∣
∣{sg|hi

(
sg

) = +1, 1 ≤ g ≤ n
}∣∣ ,

vi,j = ∣
∣{sg|hi

(
sg

) = +1, hj

(
sg

) = +1 ≤ g ≤ n
}∣∣ ,

(5)

where |·| is the cardinality of the given set. The vi measures how many data points in the
training set X have +1 bit for ith hashing function, and it is used to satisfy the first criterion
(2). The vi,j measures the number of data points pairs in the training set X whose hashing
functions (i.e., hi (·) and hj (·)) both are equal to+1. It is used to satisfy the second criterion
(3). Therefore, our optimization goal is defined as the following:

vi = Pr [hi (x) = +1] · n = n
2 ,

vi,j = Pr
[
hi (x) = +1, hj (x) = +1

] · n = n
4 .

(6)

In order to meet our optimization goal, we use a two-stage iterative optimization method.

Fix radius ri and update pivot pi When radius ri is fixed, we first adjust the pivot
positions pc

i and pc
j of two hyperspheres in the cth iteration, so that vi,j becomes closer to

n
4 . For each pair of two hyperspheres i and j , when vi,j is greater than n

4 (i.e., the pivots of
those two hyperspheres are too closer), a repulsive “force” is applied to placing them farther
away. Otherwise, an attractive “force” is applied to pushing them closer. The repulsive or
attractive “force” from pc

j to pc
i can be defined by the following

fj→i = 1

2

vi,j − n/4

n/4

(
pc

i − pc
i

)
. (7)

For the pivot pc
i , the resulting force fi is defined as the average of all forces which computed

from other all pivots:

fi = 1

K

K∑

j=1

fj→i . (8)

Then, the pivot pc
i is updated as pc

i = pc
i + fi .

Of course, we can also use K-Means to compute the pivots of hyperspheres. The
comparison of force-based update pivots approach (i.e., SHBC+F and S-SHBC+F) and K-
Means-based update pivots approach (i.e., SHBC+K and S-SHBC+K) on FERET dataset
are shown in Fig. 5a. We can clearly see that K-Means is not suitable for updating the pivots
of hyperspheres. Since this alternative does not ensure the independence between hashing
functions, those pivots obtained by K-Means are close to the data mean in high dimensional
space. Therefore, a large part of the regions are not covered by any hypersphere because the
learned hyperspheres are highly overlapped.

Fix pivot pi and update radius ri Then, once pivots are computed, we can update the
radius ri of the ith hypersphere to make vi become closer to n

2 . Of course, we can sim-
ple set each radius ri as d

(
pc

i , xn/2
)
, where training samples X are sorted in terms of

distance from the pivot pc
i and d (·, ·) denotes the Euclidean distance between two data

points. However, when the single data point sn/2 is located in a dense region, this simple
radius-update approach could lead to undesirable partitioning. Therefore, we relax the first
criterion so that the radius ri can maximize the margin from data points to the surface of
hypersphere. For our max-margin based radii optimization method, we first sort samples X
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Fig. 5 The accuracy rate comparison of different update Pivots and Radii approach on FERET dataset. a
SHBC+F denotes the force-based update pivots approach is used in SHBC, SHBC+K denotes the K-Means-
based update pivots approach is used in SHBC. b SHBC+O denotes the max-margin based optimization
update radii approach is used in SHBC, SHBC+M denotes the median-based update radii approach is used
in SHBC

into x1, x2, · · · , xn according to d
(
pc

i , xj

)
. Then, we select a set of candidate indices near

the median n/2 for the max-margin based optimization:

J =
{
j |

(
1

2
− α

)
n ≤ j ≤

(
1

2
+ α

)
n, j ∈ Z

+
}

, (9)

where α is a parameter that controls the degree of relaxation and we set α = 0.05 in our all
experiments. The optimized index ĵ which maximizes the margin from data points to the
hypersphere is defined as following:

ĵ = argmax
j∈J

[
d

(
pc

i , xj+1
) − (

pc
i , xj

)]
(10)

Then, the radius of hypersphere ri is defined as follow:

ri = 1

2

[
d

(
pc

i , xĵ

)
+ d

(
pc

i , xĵ+1

)]
. (11)

We compare the max-margin based optimization update radius approach (SHBC+O and
S-SHBC+O) and median-based update radius approach (SHBC+M and S-SHBC+M) on
FERET dataset, and the experimental results are shown in Fig. 5a. We can observe that
max-margin based optimization update radius approach slightly improves the performance
of SHBC and it hardly increase computational cost. Therefore, we apply it to update the
radii of hyperspheres in our work.

Finally, we perform our iterative process until the learned hyperspheres do not make fur-
ther improvements in terms of satisfying two criterions. We consider the mean and standard
deviation of vi,j as a indicator of convergence of iterative process. Ideal values for the mean
and standard deviation of vi,j are n/4 and 0, respectively. In order to avoid over-fitting,
we stop our iterative process when the mean and standard deviation of vi,j are within error
tolerances δm% and δs% of the ideal values of vi,j . Algorithm 1 summarizes the whole
procedure of our proposed IQBC binary learning method.
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3.2 Clustering and pooling

Having learned the optimized pivot positions p1, p2, · · · , pK and optimized radii
r1, r2, · · · , rK for K hyperspheres by spherical hashing scheme, the PDVs can be projected
into a low-dimensional binary feature. In order to make our learned binary codes more
data-adaptive, we first apply an unsupervised clustering method to clustering learned binary
features. We found that different clustering methods do not affect the experimental result,
therefore, we choose the K-means to learn a dictionary from the training set for its sim-
plicity and efficiency. At last, each projected binary code is pooled by using the learned
dictionary, and the histogram-based features are used as the final face representation.

3.3 Unsupervised SHBC based face representation

Previous researches have shown that different face regions have different position-specific
discriminative information [17, 22, 26]. In order to extract useful co-occurrence of pattern
from face image, we propose to learn our SHBC descriptor from each local region. First,
we divide each face image into several non-overlapped local regions. Then, we use the
spherical hashing scheme to learn SHBC descriptor for each local region and concatenate
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local feature representation as a histogram-based output feature. At last, the simple Nearest
Neighbor classifier (NN) can be adopted to measure the similarity of different face images.
Another issue worth mentioning is that the dimensionality reduction method like WPCA
can be used to further improving the performance of our descriptor.

4 Supervised spherical hashing binary codes learning

When label information is available for training samples, we can incorporate the label infor-
mation into our SHBC model so that it can improve the semantic understanding of SHBC
method, named as Supervised SHBC (S-SHBC). Inspired by the work [12], we use CCA
as supervised method in our work. It is an effective method for extracting a common latent
space from data view and label view.

We assume that the SHBC binary feature representation of the ith training image fi ∈
{0, 1}K has associated with it a label vector yi ∈ {0, 1}t , where t is the total number of
labels. A given entry of yi is set to 1 if the face image is belong to the corresponding label
and other elements are set to 0. Therefore, the binary descriptor fi and label vector yi can
form the rows of feature matrix F ∈ {0, 1}N×K and label matrix Y ∈ {0, 1}N×t . The goal
that we incorporate CCA into SHBC is to find projection directions wk and vk for binary
feature vector and label vector so that the correlation between the projection data Fwk and
Yvk is maximized:

C (wk, vk) = wT
k FT Yvk

s.t. wT
k F T Fwk = 1, vT

k Y T Yvk = 1.
(12)

According to [12], the projection of CCA can be obtained by solving the following
generalized eigenvalue problem:

FT Y
(
YT Y + εI

)−1
YT Fwk = λ2k

(
FT F + εI

)
wk, (13)

where ε is a small regularization constant used to prevent the trivial solution and we set it to
be 10−4 in our experiment. Once we have wk , we also can solve the corresponding vk . But
in the task of face recognition, we assume that label information will be unavailable at test
stage, we only care about the projection directions in the data space. Inspired by the finding
that the most of discriminative information usually concentrate in the top eigenvectors for
supervised embedding methods, we scale those trailing eigenvectors by the corresponding
eigenvalues. Therefore, we can form a projection matrix W whose columns are given by the
scaled eigenvectors wk . Finally, we obtain the supervised binary feature F̂ = FW which
preserves both visual and semantic (label) similarity.

5 Experiments

We evaluate our SHBC and S-SHBC descriptors on the benchmark database, such as
FERET, CAS-PEAL-R1, LFW and PaSC. The FERET [32] and CAS-PEAL-R1 [11]
datasets are used to demonstrate the effectiveness of our proposed descriptor for face
recognition in controlled scenarios. The LFW [16] dataset is employed to show the general-
ization ability (i.e., learn SHBC or S-SHBC model from controlled scenarios and test them
on uncontrolled scenarios) of our proposed descriptor in uncontrolled scenarios. And the
PaSC [7] dataset is employed to show the excellent performance of proposed descriptor in
unconstrained scenarios.
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5.1 Evaluation on FERET

The FERET dataset consists of 13,539 face images of 1,565 subjects. The complete dataset
is partitioned into six disjoint sets: training, gallery, fb, fc, dup1, dup2. The training set
contains 1,002 face images, and the gallery set consists of 1,196 images of 1,196 subjects
and probe sets (fb, fc, dup1, dup2) include expression, illumination and aging variations,
respectively. Here, all face images in these six subsets are aligned and cropped into 128×128
pixels according to the provided eye coordinates. Figure 6 shows some aligned and cropped
example images from the FERET dataset.

We first perform SHBC (or S-SHBC) feature learning method on the training set, then we
extract feature representation from the other five subsets by using learned hashing functions.
In our experiments, we set the dictionary size to be 500 and the number of local region
to be 8 × 8. Therefore, we extract a 32,000-dimensional (8 × 8 × 500) feature from each
face images by using SHBC (or S-SHBC) descriptor. The iteration number is set to 50,
which is determined by using cross-verification strategy on the training set. At last, the
Whitening PCA (WPCA) which is conducted on the gallery set only is applied to reducing
the dimension of SHBC (or S-SHBC) feature into 1,000 and NN classifier with the cosine
distance is used for face matching.

5.1.1 Parameter analysis

In this section, we first investigate the impact of various parameters in our SHBC and S-
SHBC method, and find suitable values of various parameters.

A. Impact of the binary codes length In this part, we first study the impact of different
binary codes length K in our SHBC and S-SHBC methods on FERET dataset. We set sam-
pling radius r to be 3 and a 48-dimensional patch-wise PDV is extracted from each pixel,
the error tolerances δm and δs is empirically set as 0.10 and 0.15, respectively. We further
study the impact of sampling radius r , error tolerances δm and δs in the following parts. We
vary the binary codes length K from 10 to 40 with step size 5. Figure 7 shows the average
recognition rate of SHBC and S-SHBC versus different binary codes length K . The results
show that the value of binary codes length K have not a significant effect on the perfor-
mance of face recognition, and SHBC achieves better performance than S-SHBC on larger
codes length. In order to balance accuracy rate and training efficiency of our SHBC and
S-SHBC, we set binary codes length K to be 15 in the following experiments.

Fig. 6 Aligned and cropped face examples from the FERET dataset
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Fig. 7 The average rank-one recognition rate of SHBC and S-SHBC on different FERET subsets versus
different binary codes length

B. Impact of the sampling radius We further study the impact of sampling radius r of
SHBC and S-SHBC in this part. We set the binary codes length K to be 15 and the error
tolerances δm and δs is empirically set as 0.10 and 0.15, respectively. We vary the sampling
radius r from 3 to 9 with step size 2. Figure 8 shows the accuracy of SHBC and S-SHBC
versus different sampling radius r . We can observe that our SHBC and S-SHBC method can
achieve excellent performance when sampling radius r is set between 3 to 7, and the best
recognition rate is obtained when r is 3. Therefore, we set the sampling radius r of both
SHBC and S-SHBC methods to be 3 in subsequent experiments.

C. Impact of the error tolerances At last, we study the impact of error tolerances δm

and δs of SHBC and S-SHBC in this part. We set the binary codes length K to be 15
and the sampling radius r to be 3. Five error tolerances pairs (δm, δs) are tested, and the

Fig. 8 The rank-one recognition rate of SHBC and S-SHBC versus different sampling radius r on FERET
dataset
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results are shown in Fig. 9. The results show that the values of error tolerances δm and δs

have non-negligible affect on dup1 and dup2 subsets. We found that the smaller error toler-
ances pairs (δm, δs) can cause an over-fitting and larger error tolerances pairs (δm, δs) can
cause an under-fitting. Therefore, in order to avoid undesired over-fitting or under-fitting,
we choose an appropriate error tolerances pairs (δm = 0.10, δs = 0.15) in the following
experiments.

5.1.2 Comparison with the state-of-the-art face recognition method

In this section, we investigate the performance of SHBC and S-SHBC method when it faced
with various intra-class variation. We compare our SHBC descriptor with popular local face
descriptors like LBP [1], LDP [55], DT-LBP [29], LQP [17], DFD [22], CBFD [26] and so
on. The SHBC and S-SHBC descriptors are learned from the FERET training set, and all
methods are performed on the gallery set and four standard testing subsets. We set the binary
codes length K is set to be 15, the sampling radius r to be 3 and the error tolerances δm and
δs to be 0.10 and 0.15, respectively. Table 2 lists the face recognition rate of our proposed
SHBC (S-SHBC) and other state-of-the-art face descriptors on the FERET database. The
experimental results demonstrate that

1. The performance of hand-crafted methods generally inferior to learning-based methods.
This is because our SHBC and other learning-based methods can extract more discrim-
inative and data-adaptive feature representations from raw data than those hand-crafted
descriptors.

2. Compared with those recently proposed learning-based real-value coded feature
descriptors, such as DT-LBP, LQP and DFD, the learning-based binary coded feature
descriptors achieve higher recognition rate, such as our proposed SHBC and CBFD.
Since binary codes have stronger robustness to local intra-class variabilities, the better
performance are obtained by our SHBC method.

3. With WPCA, our proposed SHBC method achieves the best face recognition perfor-
mance on all probe sets. Especially, our SHBC improves the performance of DFD by
2.9 and 2.6 percent on dup1 and dup2 probe set, and improves the performance of
CBFD by 1.2 percent and 1.7 percent on dup1 and dup2 probe set. It demonstrates that
SHBC can extract discriminative and robust binary feature representations from face
images.

4. The performance of S-SHBC is slightly poor than SHBC, but it is still better than other
learning-based methods like DFD, LQP and POEM. It achieves the best face recogni-
tion rate on fb, fc and dup2 probe sets and the third highest recognition rate on dup1

Fig. 9 The rank-one recognition rate of (a) SHBC and (b) S-SHBC versus different error tolerances pairs
(δm, δs)
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Table 2 Recognition Rate (%) Comparison with state-of-the-art face descriptors with the standard FERET
Evaluation Protocol

Methods fb fc dup1 dup2 Year

LBP [1]* 97.0 79.0 66.0 64.0 2006

LGBP [57]* 98.0 97.0 74.0 71.0 2005

LVP [30]* 97.0 70.0 66.0 50.0 2006

LGT [20]* 97.0 90.0 71.0 67.0 2007

HGGP [54]* 97.6 98.9 77.7 76.1 2007

HOG [31]* 90.0 74.0 54.0 46.6 2008

DT-LBP [29]* 99.0 100.0 84.0 80.0 2009

LDP [55]* 94.0 83.0 62.0 53.0 2010

GV-LBP-TOP [21]* 98.4 99.0 86.0 85.0 2011

DLBP [28]* 99.0 99.0 86.0 85.0 2011

I-LQP [17]* 99.2 69.6 65.8 48.3 2012

PEOM [43]* 97.0 95.0 77.6 76.2 2012

DFD [22]* 99.2 98.5 85.0 82.9 2014

CBFD [26]* 98.2 100.0 86.1 85.5 2015

SHBC 98.2 99.5 85.0 83.3 –

S-SHBC 98.0 99.0 83.7 80.8 –

LBP+WPCA [1]* 98.5 84.0 79.4 70.0 2006

I-LQP+WPCA [17]* 99.8 94.3 85.5 78.6 2012

POEM+WPCA [43]* 99.6 99.5 88.8 85.0 2012

DFD+WPCA [22]* 99.4 100.0 91.8 92.3 2014

CBFD+WPCA [26]* 99.8 100.0 93.5 93.2 2015

SHBC+WPCA 99.8 100.0 94.7 94.9 –

S-SHBC+WPCA 99.8 100.0 93.4 94.9 –

*Note that the results are from the original papers

The bold values denote the best performance on one subset or one dataset

probe set. These experimental results demonstrate that our S-SHBC method is also able
to extract more discriminative feature than previous methods and is robust to various
intra-class variations.

5. It is worth noted that there is less than average 3 samples for each subject on the
training set of FERET dataset. The problem of Small Samples Size leads to S-SHBC
method is not able to extract more discriminative feature than SHBC. However, the per-
formance of S-SHBC will achieve as excellent as SHBC even outperform than SHBC
when the larger scale training samples with label are provided (see the Section of 5.2).

5.1.3 Comparison with other binary codes learning methods

As mentioned above, most of existing binary codes learning methods were proposed for
ANN search, though they are also competent for face recognition task. Therefore, in this
section, we employ other four binary codes learning methods which are widely used for
visual search to learn face feature representation. They are LSH method [2], Spectral Hash-
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ing (SH) [45], one-layer Anchor Graph Hashing (1-AGH) and two-layer Anchor Graph
Hashing (2-AGH) [24], Angular Quantization-based Binary Coding (AQBC) [13] and ITQ
method [12]. There are two comparable methods in [12]: PCA-RR and PCA-ITQ. PCA-
RR quantizes the PCA-projected data into binary codes with a random orthogonal rotation
matrix and PCA-ITQ quantizes the PCA-projected data with an optimized rotation matrix
found by iterative rotation. We implement all these seven methods by using original codes
provided by the authors. These seven binary codes learning methods are implemented in our
model by just replacing the objective function of our SHBC (i.e., (2) and (3)) with the objec-
tive function of other binary codes methods, and other steps are consistent with Algorithm
1 so that our SHBC and S-SHBC can be fairly compared with other binary codes learning
methods. The parameters of different binary codes learning method are the same as those
used in the above experiments. Table 3 lists the recognition rates of our methods and other
binary codes learning methods on FERET.

We can observe that our SHBC and S-SHBC outperform other state-of-the-art binary
codes learning methods in face recognition task. Since our SHBC-like method can provide
strong power in defining a tighter closed region than hyperplane based methods (such as
ITQ-like and LSH), so that our methods are more likely to assign the same binary codes
to two data points which have shorter Euclidean distance on the original space. Therefore,
the testing images can be correctly classified and the better performance is achieved by our
SHBC-like methods.

5.1.4 Computational cost

At last, we compare the computational time of different LBP-like feature extraction meth-
ods, including original LBP [1], C-LBP [15], LGBP [57], DFD [22], CBFD [26]. In our
implementation, all face images are divided into 8 × 8 = 64 non-overlapping blocks. All
the experiments are computed on a PC with 2.0 GHz CPU and 64 GB RAM using matlab
implementation. Table 4 shows the feature dimension and average extraction time of vari-
ous methods. Though the feature dimension of LGBP is higher than learning-based methods
(i.e., DFD, CBFD and our SHBC), its performance is worse than learning-based methods.
It again demonstrates the discriminative power and efficiency of learning-based methods. It
is clear that the computational efficiency of our SHBC is nearly same as CBFD, and higher
than LGBP and DFD. Compared to DFD, our SHBC extracts only one PDV for each pixel,

Table 3 The Recognition Rates (%) of Our Proposed SHBC, S-SHBC and Other Binary Codes Learning
Methods on FERET Dataset

Methods fb fc dup1 dup2 avg.

LSH 99.4 100.0 93.4 90.6 95.6

SH 99.7 100.0 91.7 90.6 95.5

1-AGH 99.0 99.0 82.0 82.5 90.6

2-AGH 98.9 98.5 83.1 82.5 90.8

AQBC 99.7 99.1 93.5 92.3 96.2

PCA-RR 99.6 100.0 93.8 91.2 96.2

PCA-ITQ 99.6 100.0 93.9 94.4 97.0

SHBC 99.8 100.0 94.7 94.9 97.4
S-SHBC 99.8 100.0 93.4 94.9 97.0

The bold values denote the best performance on one subset or one dataset
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Table 4 Computational Time (ms) Comparison of Different LBP-like Face Representation

Methods Feature dimension Extraction Time (ms)

LBP [1] 3,776 88.9

C-LBP [15] 11,328 95.1

LGBP [57] 655,360 9414.0

DFD [22] 50,176 2604.5

CBFD [26] 32,000 299.9

SHBC 32,000 305.9

and DFD extracts a set of PDVs for each pixel according to predefined neighborhood pat-
tern. Therefore, the number of learned PDVs in our SHBC is less than DFD, so the feature
extraction time of our SHBC is less than DFD.

5.2 Evaluation on CAS-PEAL-R1

There are 9,060 face images from 1,040 subjects in CAS-PEAL-R1 dataset, which provides
large scale face images with various intra-class variabilities, including pose, expression,
accessory and lighting. In this section, we evaluate the performance of our SHBC when it
faced with these intra-class variabilities. In our experiments, we follow the standard eval-
uation protocols. We use five subsets of the CAS-PEAL-R1 in our experiment, including
training, gallery, expression, accessory and lighting. The training set contains 1,200 images
of 300 subjects, and the gallery set contains 1,040 face images from 1,040 subjects. We
use expression, accessory and lighting set as the probe set. They contains 1,570, 2,285 and
2,243 images, respectively. All face images in these five subsets are aligned and cropped
into 150 × 130 pixel according to the provided eye coordinates. Figure 10 shows some
aligned and cropped examples from CAS-PEAL-R1 dataset.

We first use training set to learn our SHBC model, then perform feature extraction on
gallery and other three probe sets. Finally, theWPCA is applied to reduce the feature dimen-
sion into 1,039, followed with the NN classifier with cosine metric. The parameters of our
SHBC are the same as those used in the above experiment. Table 5 tabulates the recognition

Fig. 10 Aligned and cropped face examples from the CAS-PEAL-R1 dataset
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Table 5 Recognition Rate (%) Comparison with our SHBC and the State-of-the-art Face Descriptors on
CAS-PEAL-R1

Methods Expression Accessory Lighting Year

LGBP [57]* 95.0 87.0 51.0 2005

LVP [30]* 96.0 86.0 29.0 2006

HGGP [54]* 96.0 92.0 62.0 2007

LLGP [48]* 96.0 90.0 52.0 2009

DT-LBP [29]* 98.0 92.0 41.0 2011

DLBP [28]* 99.0 92.0 41.0 2011

DFD [22]* 99.3 94.4 59.0 2014

CBFD [26]* 99.4 94.8 59.5 2015

SHBC 99.4 95.7 80.3 –

S-SHBC 99.2 95.2 75.4 –

DFD+WPCA [22]* 99.6 96.9 63.9 2014

CBFD+WPCA [26]* 99.7 97.2 67.4 2015

IFL+WPCA [25]* 99.3 96.5 64.3 2015

JFL+WPCA [25]* 99.7 97.2 67.4 2015

SHBC+WPCA 99.7 97.7 81.1 –

S-SHBC+WPCA 99.8 97.6 76.5 –

*Note that the results are from the original papers

The bold values denote the best performance on one subset or one dataset

rate of our methods and other feature descriptors on the CAS-PEAL-R1 dataset. We can get
the following observations:

1. Compared with previously proposed methods, our proposed methods again achieve the
highest recognition performance on all probe sets.

2. The SHBC with WPCA achieves the highest recognition rate on accessory and light-
ing probe sets. Especially, SHBC improves the best previous CBFD+WPCA and
JFL+WPCA results by 13.7 percent on lighting set. To our best knowledge, no single
feature descriptor with a simple classifier can achieve such excellent performances
on lighting set. It demonstrates that our SHBC method is able to extract more discrim-
inative and robust feature representation than previous methods, especially faced with
lighting scenarios.

3. The S-SHBC method also achieves excellent performance on three probe sets when
four training samples for each subject are provided, especially on expression set (mainly
because the training set provides more expression variations than other variations).
Since S-SHBC incorporates the class label information into SHBC model in the learn-
ing process, the incorporation of visual information and label information helps to
extract more discriminative feature representation.

4. When the training samples are four for each subject, the performance of S-SHBC
is close to SHBC, even outperform than SHBC on expression set. We can expect
that the performance of S-SHBC can be further improved if larger scale (i.e., >4
samples/subject) training samples with label are provided.
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5.3 Evaluation on LFW

Labeled Faces in the Wild (LFW) dataset are collected from the web for studying the uncon-
strained face recognition problem. There are 13,233 images from 5,749 different subjects,
which consist of large pose, expression, illumination, aging and occlusion variations. There
are 3,000 matched face pairs and 3,000 mismatched pairs which are equally divided into 10
folds on the view 2 dataset. There are six evaluation setting on this dataset [16]. We consider
the unsupervised setting evaluation to be the best choice for evaluating the discriminative
ability of learned features, because it does not depend on metric learning and classifier
model training.

In order to evaluate the discriminative ability and generalization ability (i.e., learned
from constrained images and test on unconstrained images) of our methods when faced
with real unconstrained scenarios, we learn the SHBC model on the constrained FERET
face dataset and test them on the unconstrained LFW dataset. Though, strictly speaking, our
experiments do not follow the LFW protocols because of the external datasets are used for
training model, but the effectiveness and generalization ability of our SHBC method
is more convincing when it achieves the performance as well as LFW-based learning
methods. Similar to [26], we align and crop each image into (a) 150×130 with contour, (b)
150×130 without contour and (c) 128×128 without contour using different similarity trans-
formations. The aligned and cropped face image with different similarity transformations
can provide different global/local facial information. Figure 11 shows aligned and cropped
sample images. The parameters of our SHBC are the same as those used on the above exper-
iments. At last, the WPCA is applied to reducing the feature dimension of each image into
1,100 and the cosine metric is used to compute the similarity. Table 6 and Fig. 12 show the
AUC percent and ROC curve of our SHBC methods and other the state-of-the-art methods

Fig. 11 Aligned and cropped face examples from the LFW dataset. The top row is (a) 150 × 130 with
contour which can encodes both facial contour and components, and the second row is (b) 150×130 without
contour which encodes facial components, and the third row is (c) 128× 128 without contour which encodes
facial components and complementary information
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Table 6 The AUC (%)
Comparisons with the
State-of-the-art Methods on LFW
under the Unsupervised Setting

Methods AUC Year

SIFT [38]* 54.07 2002

LBP [1]* 75.47 2006

LARK [36]* 78.30 2011

LHS [37]* 81.07 2012

LQP [17]* 87.00 2012

MRF-MLBP [4]* 89.94 2013

DFD [22]* 83.70 2014

CBFD [26]* 88.89 2015

JFL [25]* 91.03 2015

SHBC (a) 88.54 –

SHBC (b) 88.68 –

SHBC (c) 88.66 –

S-SHBC (a) 87.96 –

S-SHBC (b) 88.33 –

S-SHBC (c) 88.23 –
*Note that the results are from
the original papers

under the unsupervised setting on the LFW dataset, where SHBC (a) and S-SHBC (a) indi-
cates the result obtained on dataset (a) by using the SHBC and S-SHBC model, respectively.
The rest results can be indicated in the same manner. In order to make Fig. 12 concise, we
only plot the ROC curves which are published on the LFW website.1 It is observed that
our method achieves similar performance with the state-of-the-art descriptors like CBFD,
MRF-MLBP and JFL, and obviously outperforms LARK, LHS, LQP and DFD. In addi-
tion, the performances of our proposed SHBC methods are better than other methods no
matter what face images with different similarity transformations are used. Therefore, the
SHBC method can efficiently extract the discriminative and robust feature representations
by encoding either facial contour information or facial components information. Although
the intra/inter-class variabilities of FERET are very different from those on LFW, our
SHBCmodel learned from constrained dataset can still work well in the unconstrained
dataset. It is enough to prove that our SHBC and S-SHBC have excellent generalization
ability and it can be deployed into real scenarios.

5.4 Evaluation on PaSC

The experiment in the Section 5.3 can be considered as an evaluation of our methods’ gener-
alization ability in uncontrolled scenarios. In this section, we next evaluate the effectiveness
of our SHBC method in real applications (i.e., both learned and tested on uncontrolled
images). The Point-and-Shoot Cameras (PaSC) dataset consists of 9,376 still images from

1The results of other methods in this figure are cited from http://vis-www.cs.umass.edu/lfw/results.html

http://vis-www.cs.umass.edu/lfw/results.html
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Fig. 12 The ROC curves of different methods on LFW under the unsupervised setting

293 subjects balanced with respect to distance, alternative sensors, poses and varying loca-
tion. There are 4,688 images in both query set and target set. We align and crop each image
into 128 × 128 pixels according to the eye coordinates provided by the PaSC database
website.2 Figure 13 shows some aligned and cropped face images from PaSC dataset.
There are some complicated intra-class variabilities in PaSC dataset, such as pose, lighting,
expression, motion blur and poor focus.

The parameters of our SHBC method are the same as those used on the LFW experi-
ments. We performed feature learning process on the target sets. We follow the standard
evaluation protocol where each image pairs are formed by taking one image from the query
set and the other from the target set, so that the similarity scores for all image pairs in the
test set are computed. By looking at image pairs of interest, two ROC curves can be plotted,
one for frontal image pairs only and one that combines both frontal and non-frontal images.

We compare our SHBC method with CBFD, Local Phase Quantization (LPQ), Binarized
Statistical Image Features (BSIF) and Randomized Intraclass-Distance Minimizing Binary
Codes (RIDMBC), the conventional LBP, LRPCA and CohortLDA is used as baseline
methods, where CBFD, LPQ, BSIF and RIDMBC are the state-of-the-art binary learning

2The eye coordinates of each face image can be found at http://www.cs.colostate.edu/∼vision/pasc/index.php

http://www.cs.colostate.edu/~vision/pasc/index.php
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Fig. 13 Aligned and cropped face examples from the PaSC dataset. a shows frontal or near-frontal face
images and (b) shows non-frontal face images

method. Since the structures and information for local face regions are different, for local
binary learning method (i.e., LBP, CBFD and our IQBC), each image is divided into 8 × 8
non-overlapping blocks and the size of each block is 16 × 16. Then, we extract a 59-
dimensional uniform LBP feature, 500-dimensional CBFD feature and 500-dimensional
SHBC feature for each local block. At last, the concatenated feature vectors are reduced into
500-dimensional feature by WPCA as the final representation. Table 7 tabulates the verifi-
cation rate at FAR=0.01 for all images and only frontal images. Figure 14 shows the ROC
curves of some descriptors for all images and frontal image, respectively. In order to illus-
trate results clearly, we only plot the ROC curves of some representative descriptors. As can
seen, our proposed SHBC methods significantly outperform the other state-of-the-art meth-
ods and baseline methods. Specially, our SHBC improves the CBFD by about 4.3 and 6.6
percent verification rate on all and frontal test set, respectively. The objective function in
our SHBC model is effective to extract discriminative and data-adaptive feature represen-
tations, therefore, our SHBC descriptor can achieve the best verification rate compared to
other descriptors. Our SHBC descriptor can not only learn discriminative feature representa-
tions on constrained scenarios, but also show excellent generalization ability and robustness
when faced with real unconstrained scenarios. We can expected that our SHBC model can
be deployed into real scenarios if a large enough unconstrained face database is used to train
our model.

Table 7 Verification Rate (%) at
FAR=0.01 on PaSC dataset for
all images and frontal images

Method All Frontal Year

LBP [1] 17.6 29.6 2006

LRPCA [33]* 10.0 19.0 2011

CohortLDA [27]* 8.0 22.0 2012

LPQ [35] * 13.2 23.1 2012

BSIF [52]* 14.3 24.9 2014

RIDMBC [56]* 14.9 23.5 2014

CBFD [26] 19.4 36.0 2015

SHBC 23.7 42.6 –

*Note that the results are from
the original papers

The bold values denote the best
performance on the subsets
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Fig. 14 The ROC curves of different methods on the PaSC dataset for all and frontal images scenarios
respectively

6 Conclusion and future work

This paper proposes a learning-based descriptor called spherical hashing binary code for
face representation and recognition in the data-driven way. Different from the previous
face descriptor, our SHBC method learn feature representation from raw data and our pro-
posed descriptors are binary feature descriptor. Therefore, it can extract more discriminative
and robust feature than previous read-valued learning methods from raw pixel patches.
According to whether label information is used or not, we propose unsupervised SHBC
and supervised S-SHBC in Sections 3 and 4, respectively. Extensive experiments are con-
ducted on constrained face datasets, such as FERET and CAS-PEAL-R1, and unconstrained
datasets, such as LFW and PaSC. The experiment results show that the proposed SHBC and
S-SHBC can extract discriminative feature and have good generalization under different
scenarios.

There are two possible research directions for our future work:

1. Our SHBC methods show excellent generalized power under unconstrained scenarios.
Therefore, we can train them in a large scale dataset that collects sufficiently inter-class
and intra-class variations, and apply them to solve some problems of unconstrained face
recognition scenarios in real life.

2. Since our SHBC and S-SHBC are general learning-based methods, ideally, it can learn
discriminative feature representations of various visual tasks as long as extensive train-
ing samples are provided. Therefore, we expect that they can further demonstrate its
effectiveness on other computer vision tasks, such as texture recognition and expression
recognition.
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