
Multimed Tools Appl (2017) 76:12735–12755
DOI 10.1007/s11042-016-3691-9

Salient region detection via unit boundary distribution
and energy optimization

Hong Li1 ·Enhua Wu1,2 ·Wen Wu1

Received: 12 December 2015 / Revised: 26 April 2016 / Accepted: 14 June 2016 /
Published online: 29 June 2016
© Springer Science+Business Media New York 2016

Abstract Due to recent rapid development of computer vision applications such as object
recognition and image segmentation, it has become increasingly important to generate reli-
able saliency maps to uniformly highlight the desired salient object. In this paper, we
present a novel bottom-up salient region detection method by exploiting contrast prior
and the relationship between the salient region detection and graph based semi-supervised
learning problem. First, we compute a preliminary initial saliency map by a newly pro-
posed technique named unit boundary distribution and several refinement schemes. Second,
after obtaining the indication map generated via a double threshold operation on the initial
saliency map, we model the final saliency inference problem as a graph based semi-
supervised learning approach by solving a energy minimization problem. Both quantitative
and qualitative evaluations on three widely used datasets demonstrate the superiority of the
proposed method to other twenty-one state-of-the-art methods.
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1 Introduction

Salient region detection mainly aims to detect and uniformly emphasize the most important
objects in a scene. It has attracted mass attention and accomplished big progress during the
past two decades for its wide range of applications such as object aware image retargeting
[11, 33], image categorization [31], image and video compression [15], to name a few.

Generally, we can categorize existing works into top-down or bottom-up methods. Top-
down models are task-driven and usually need high-level knowledge. On the other hand
bottom-up methods are usually based on low-level visual features like intensity, pattern, or
orientation from pixels or regions. In this work, we only focus on bottom-up salient region
detection models.

For automatic bottom-up models, the most widely-used principles are contrast prior
and background prior. Contrast prior assumes that the appearance contrast between salient
objects and background regions are high. For a specific region, its contrast is computed
as the sum of differences between it and its local neighboring or the entire image regions
respectively. This region will be considered as salient if the computed contrast is high. This
assumption is very intuitive and easy to realize. So it has been widely applied to numerous
models [2, 5, 10, 14, 16, 17, 24, 27, 36, 42], implicitly or explicitly.

Previous contrast prior based models can be categorized as local methods [5, 14, 16,
17, 24, 36] or global [2, 10, 27, 42] methods according to the extent of context where the
contrast is evaluated. Although contrast prior has enjoyed remarkable success, they still have
various limitations. The most typical one is that they tend to detect the boundaries of the
salient object instead of highlighting the entire object uniformly. As we know, the purpose of
salient region detection is to detect uniform object regions because most applications usually
require entire object regions instead of boundaries, such as in [33]. On the other hand, it is
difficult to get the entire object regions by using the generated unclosed boundaries. So it is
insufficient to evaluate saliency only using contrast prior.

Recently, to tackle above shortcoming, background prior has been widely adopted to
evaluate saliency. It is based on an observation that most photographers usually will not crop
salient object along the view frame. That is to say, four image borders (top, right, bottom
and left) are mostly consisted of background regions. Based on this prior, a coarse map
is obtained by propagating the background information from those background regions to
other regions. Then an initial saliency map is generated by computing the complement of
the coarse map. The final saliency map can be computed by using this initial saliency map.
The first influential background prior based model is proposed by Wei et al. [37]. They
investigate saliency from a different perspective: modeling the background instead of the
object. From then on, many works built upon this prior have been proposed [22, 23, 28,
34, 43, 45, 46] and they all have a better performance than previous models which merely
consider the contrast prior. This suggests that the background prior is effective. However, all
most all these models simply treat the whole image boundary as background and then get
the background inference which can be used to further generate final foreground saliency.
This simple treatment may fail when the desired salient object touches the image border.

In this paper, we simulate salient region detection according to above-mentioned priors.
Firstly, we introduce a novel contrast based background model: unit boundary distribution.
This measurement can effectively exploit the intrinsic relationship between contrast prior
and background prior to model more robust backgrounds. The saliency map is generated by
solving an energy minimization problem. The main pipeline of the proposed algorithm is
shown in Fig. 1. And the main contributions of this paper are as follows:
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Fig. 1 The framework of our proposed salient region detection method

• A novel technique named unit boundary distribution which can exploit the background
prior and contrast prior more effectively.

• A more accurate initial saliency map generation scheme which is built upon unit
boundary distribution and several techniques.

• A novel algorithm which combines contrast prior, background prior and energy
minimization to effectively detect the desired salient region.

The rest of the paper is organized as follows. First, related works are summarized in
Section 2. In Section 3, we first present the details of generation of initial saliency map
in Section 3.1 and then present our final saliency map generation scheme in Section 3.2.
Experimental results and analysis are give in Section 4. Finally, conclusions and future work
are given in Section 5.

2 Related works

During the past two decades, numerous bottom-up saliency models have been proposed to
detect the salient region in an image. A very comprehensive survey of these previous models
can be found in [6–8]. Our work is based on two priors, i.e., contrast prior and background
prior. So we only review several most influential works based on these two priors.
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One of the earliest local contrast based models is proposed by Itti et al. [17]. They
employ DoG (Difference of Gaussian) technique to model multi-scale information of fea-
tures including color, intensity and orientation. Then they generate the saliency map by
computing the center-surround differences according to the multi-scale information. Harel
et al. [16] further extend this idea by using a graph-based approach to non-linearly combine
these different feature channels. Later, Goferman et al. [14] simultaneously combine local
low-level clues and visual organization rules to highlight the salient region along with their
context. These local contrast based algorithms tend to generate higher saliency scores near
edges instead of uniformly highlighting the smooth object interior.

Viewed from another perspective, global contrast based models evaluate saliency by
exploiting the contrast relationships over whole image. Achanta et al. [2] propose a
frequency-tuned method to gain consistent results by utilizing the difference of the average
image color. Perazzi et al. [27] exploit the variance of spatial distribution of each color and
show that high-dimensional Gaussian filters can be used to measure saliency. These global
contrast based methods cannot distinguish salient regions from background regions when
they have similar colors.

Background prior is proposed to complement the contrast prior. It is based on a differ-
ent view point: exploiting the feature distribution of background. Wei et al. [37] find that
the distance of a pair of background regions is shorter than that of a region from the salient
object and a region from the background. They employ both background prior and geodesic
distance to evaluate saliency. Later, Yang et al. [43] treat all four image sides as background
and utilize graph-based manifold ranking to generate the final saliency map. Jiang et al.
[19] also treat four image sides as background and regard these pixels on image borders as
absorbing nodes. Then saliency is measured according to absorbed time in a Markov chain.
More recently, Zhu et al. [46] propose a new background measurement named boundary
connectivity and achieve the final saliency via an energy minimization technique. Sun et al.
[34] treat left and top image borders as background cues and employ Markov absorption
probability on a sparse 2-ring graph to estimate saliency. These models achieve better per-
formance than previous contrast prior based models. However, they only apply this prior in
a straightforward manner. This will make the model fail when the salient object touches the
image border.

3 Proposed model

Contrast based salient object detection usually consists of two main components: contrast
evaluation and saliency inference. Our model also consists of two main steps: initial saliency
map evaluation and final saliency map generation. In Section 3.1, we give the details of
evaluation of initial saliency map. The final saliency map generation will be presented in
Section 3.2.

To reduce the computational cost, we employ superpixel as the basic processing unit to
represent the image. There are many edge-preserving models for generating these superpix-
els [3, 13, 30, 39]. Here, we employ SLIC [3] to achieve this goal for its high efficiency.
Given an input image I , we over-segment it into N (e.g., N = 300) regions {t1, t2, ..., tN }.
For each region (also known as superpixel), we use the average feature value of pixels
belonged to this region to represent it. In this work, we utilize CIE Lab color space to
evaluate saliency as this color space has been shown to be effective in saliency detection [2,
8]. Therefore, for each superpixel ti , Fi = {FL

i , F a
i , F b

i } is a feature vector, denoting L, a
and b feature of superpixel ti , respectively.
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3.1 Initial saliency map via unit boundary distribution and contrast based
refinement

3.1.1 Unit boundary distribution

Contrast prior is usually employed as either global or local perspective. We employ both
of them in our model. Firstly, the global contrast is utilized to generate the coarse initial
saliency based on our unit boundary distribution. Then, local contrast is employed to gener-
ate the fine initial saliency map. Based on above notations, the global contrast is denoted as
follows:

GCi =
N∑

j=1

‖Fi − Fj‖2 (1)

where i denotes current superpixel ti , N is the number of superpixels.
To better exploit the background information, we compute the boundary contrast accord-

ing to different image boundaries. Take top image boundary as example, , we define the top
boundary contrast as:

BCt
i =

nt∑

j=1

‖Fi − Fj‖2 (2)

here, nt represents the superpixels along top image boundary. Similarily, We define other
three boundary contrast. The proposed unit boundary distribution is defined as:

UBDt
i =

∑nt

j=1‖Fi − Fj‖2
∑N

k=1‖Fi − Fk‖2
(3)

we use different subscripts (j and k) for clearer expression. Finally, the overall unit
boundary distribution is computed via

UBDi = Normalize(UBDt
i + UBDr

i + UBDb
i + UBDl

i) (4)

here r , b and l denotes right, bottom and left image boundary, respectively.
Figure 2 is an illustration of proposed unit boundary distribution technique. To present

the computation process of (3) and (4) more clearly, we only use a small number of super-
pixels in (a) and (b). (a) shows the boundary contrast of current superpixel and green
arrows denote all the involved boundary superpixels. (b) shows the global contrast and blue
arrows denote all the involved superpixels. (c) is the corresponding top, right, bottom and
left boundary contrast map, respectively. (d) and (e) are the boundary contrast map and
global contrast map. The final unit boundary distribution map is given in (f). It can be seen
that although some background regions are highlighted, the desired foreground region is
extracted uniformly. Next, we will present the schemes used to tackle above shortcoming.

3.1.2 Refined final initial saliency map

Extensive experiments have shown that global contrast based models usually generate unde-
sired high saliency values for some non-salient regions. Figure 3b gives an illustration of
this situation. We can see that some background regions also have high saliency values.
As shown in second row of Fig. 3b, it should also be noted that foreground region may be
wrongly suppressed when it has similar color distribution to background regions.
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Fig. 2 Unit boundary distribution. a boundary contrast. b global contrast c top, right, bottom and left
boundary contrast map d Boundary contrast map e Global contrast map. f Unit boundary distribution

To overcome these two shortcomings, we propose to utilize local contrast to refine
the coarse initial saliency maps. Firstly, we tackle the problem of highlighting non-salient
regions. Then comes the problem of wrongly suppressing the foreground regions.

Background Suppression To suppress the non-salient regions, i.e., the background
regions, two techniques are proposed: contrast weights and adaptive selection. We find that

Fig. 3 Illustration of local contrast enhancement. a are input images. b are the unit boundary distribution
maps. c are the top and left image sides weighted maps (BS). d are the final background suppressed saliency
maps (B̃S). e local contrast enhanced initial saliency maps (LC). f are final saliency maps. g are ground truth
images
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salient regions rarely touch the top and left image border. Based on this observation, the
coarse background suppressed saliency map is defined as

BSi = UBDi ∗
nt+nl∑

j=1

‖Fi − Fj‖2 (5)

where nt and nl denotes superpixels located on top and left image side respectively. We can
see from Fig. 3c that most non-salient regions are eliminated by this process. For the images
with more complex backgrounds, there still remain some background regions. To remove
these redundant regions, an adaptive selection scheme is defined as

B̃Si =
{

BSi , if BSi > τ

max(0, BSi − τ) , else
(6)

where max is to choose the maximum between 0 and BSi − τ , τ is defined as τ =
0.2 ∗ (max(BS) − mean(BS)) + mean(BS), BS is a vector obtained via (5), max and
mean denotes maximum and mean value of a vector respectively. Figure 3d shows the final
background suppressed saliency map B̃S. We can see that the results are much cleaner than
that of Fig. 3c. It should be noted that the pillar in second row has been removed because it
is different from the red box. We can see from the last row that the salient region should not
include this pillar.

Foreground highlighting Although background suppression can remove undesired back-
ground regions, it sometimes may also suppress salient regions. So we employ local contrast
to highlight the wrongly suppressed salient regions, i.e., the foreground regions. To prevent
Local contrast based models from highlighting undesired background regions, we use coarse
saliency map obtained via (6) to suppress the wrongly emphasized background regions. The
final initial saliency map based on local contrast is defined as

LCi =
∑

j∈Ni
B̃Sj ∗ Aj∑

j∈Ni
Aj

∗ (max
j∈Ni

‖Fi − Fj‖2 − min
j∈Ni

‖Fi − Fj‖2) (7)

where Ni denotes the neighboring nodes of superpixel i, Aj denotes the area of super-
pixel j , in this work we regard it as the pixel number of superpixel j . Figure 3e shows the
results of final initial saliency maps. We can see that, especially in second and third row,
the wrongly suppressed foreground regions are highlighted. This proves the effectiveness of
our proposed scheme.

3.2 Saliency detection via energy optimization

When we get the initial saliency map, the very core problem is to generate the final saliency
map according to the initial saliency map. The final initial saliency map obtained via (7)
is a good prior distribution for salient region detection. Based on this prior knowledge,
we model the final saliency detection problem as a graph based semi-supervised learning
problem. It consists of four components: formation of initial query, construction of affinity
graph, energy minimization and label querying.
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Initial queries by double threshold We model the final saliency detection as a two class
inference problem: background and foreground detection. Given initial saliency map LC,
the initial queries are defined as

qi =
⎧
⎨

⎩

1 , if LCi ≥ (�FG ∗ L̂C)

−1 , if LCi ≤ (�BG ∗ L̂C)

0 , else

(8)

where L̂C denotes the mean value of initial saliency map LC, �FG and �BG are two
parameters which are used to defined the determinate foreground and background labels,
respectively. These two parameters are empirically chosen, �FG = 2 and �BG =
1, for all the experiments. Then the problem is to classify the data points which are
labeled as 0 into either −1 (background) or 1 (foreground). Figure 4d shows that this
double threshold can effectively separate the indeterminate regions from determinate
regions.

Affinity graph Graph is usually defined as G = (V ,E,W), where V , E and W

denotes graph nodes, edge connection and edge weights respectively. It mainly consists
of two step: graph structure modeling and graph edge weights formation. Graph struc-
ture is usually modeled as k − nn and edge weights are formed using Gaussian kernel:
ωij = exp(−d2/σ 2). However, the k − nn graph only considers the feature distribution.

We over-segment each input image into homogenous regions and regard each region as
a node in the graph G. For graph structure, to take local smoothness constraint into consid-
eration, we construct the graph as a k-ring sparse graph: each node is not only connected to

Fig. 4 Illustration of saliency inference. a Input image. b Coarse initial saliency map obtained via (6). c
Final initial saliency map obtained via (7). d Indication map obtained via (8), black regions are determi-
nate background regions, white regions are determinate foreground regions, gray regions are regions to be
inferenced. e Inferenced final saliency map. f Ground truth
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its direct neighboring nodes, but also connected to its k-layer neighboring nodes. For graph
edge weights, they are defined as

ωij =
{

exp(
−‖Fi−Fj ‖2

σ
), if j ∈ Ni

0, else
(9)

where Ni denotes all the nodes have connection with node i (k-ring connection), σ = 0.1
is used to control the weight strength. This graph modeling scheme is illustrated in Fig. 5.
It shows the cases of 1-ring sparse graph and 2-ring sparse graph. (a) and (c) are the graph
edge connection illustration. We plot the graph edge weights matrix in (b) and (d). In this
work, we employ 2-ring sparse graph as our graph.

Energy minimization The energy minimization model is defined as

argmin
x

n∑

i=1

‖dixi −
∑

j∈Ni

ωij xj‖22 +
n∑

i=1

‖xi − q‖22 (10)

Fig. 5 Illustration of k-ring graph construction. a edge connection of 1-ring graph. b graph edge weights of
(a). c edge connection of 2-ring graph. d graph edge weights of (c)
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where q denotes initial queries obtained via (8), Ni denotes all the connected nodes of node
i, di = ∑n

j=1 ωij , n is the number of graph nodes, i.e., the number of superpixels. This
energy minimization problem can be easily solved as:

(Iq + L2) ∗ x = q (11)

where Iq is a diagonal matrix and is defined as

Iq(i, i) =
{
1, if i ∈ l

0, else
(12)

where l is the indexes of determinate foreground and background defined in (8),L = D−W

is graph Laplacian matrix, W is graph edge weights matrix, D is a diagonal matrix where
Dii = di . This energy minimization model is motivated by the work of [32, 40], in which
they use a similar energy optimization scheme to tackle the surface processing problem in
geometry processing.

Label inference After solving the energy minimization problem (10), the solution vector
x is the propagated saliency score. The final label of node i is defined as

Si =
⎧
⎨

⎩

−1 , if xi ≤ −1
1 , if xi ≥ 1
xi , else

(13)

The determinate foreground and background nodes are denoted as 1 and −1, respectively.
The solution vector x stands for the propagated saliency value. Equation (13) is employed
to make sure the saliency value stay in range. The label vector S is normalized to [0, 1] to
get the final saliency value. Figure 4 shows an example of saliency inference.

4 Experimental results and analysis

In this section, we make extensive quantitative and qualitative evaluations of our model
against several state-of-the-art models on four widely used datasets.

4.1 Datasets and compared models

Datasets ASD [2] is also known asMSRA-1000 and consists of 1000 images with accurate
binary human-labeled masks. Although it has various images, the foreground is actually
obvious among the simple and structured background. It is the mostly widely used dataset.

SOD [26] contains 300 images with complex objects and scenes. Some image contains
two or more objects. It is more challenging.

SED1 [4] has 100 images with one salient object. Pixel-wise groundtruth annotations for
the salient object are provided.

ECSSD [41] has 1000 images with varied patterns in both background and foreground
regions. It contains many semantically meaningful but structurally complex images. It
represents more general cases that natural images fall into.

Compared models We compare our model with twenty-one state-of-the-art salient object
detection models on above four widely used datasets. The compared models are: IT [17],
GB [16], CA [14], FT [2], SF [27], GS [37], GMR [43], MAP [34], MC [19], HS [41], BM
[38], CB [18], CHM [21], FES [35], HDCT [20], LRMR [29], MSS [1], PCA [25],SVO
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[9], SWD [12], LGH [44]. All the compared saliency maps of these twenty-one models are
generated by using the source code released by the authors of corresponding paper. The
parameters of each model are set to optimal according to the paper for a fair comparison.

4.2 Quantitative evaluation

To evaluate the saliency detection performance quantitatively, we use three commonly used
metrics including the PR (precision-recall) curve, F-measure and MAE (mean absolute
error). Precision is defined as the ratio of correctly detected salient pixels number with
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Fig. 6 First row: precision-recall curves of different methods. Second row: precision, recall and F-measure
using an adaptive threshold. Last row: MAE. All experiments are carried out on ECSSD dataset. The
proposed method performs well for all these metrics
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respect to all salient pixels number. Recall is defined as the ratio of correctly detected salient
pixel number with respect to ground truth number.

Given the saliency map, the binarized saliency map is generated using threshold value
from 0 to 255. The precision and recall at each value of the threshold are computed via
above definition. We plot the precision-recall curve using generated precision-recall pairs.
The average precision-recall curve is obtained by combining the results from all the images
of each dataset. The F-measure is defined as

Fβ2 = (1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall
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Fig. 7 First row: precision-recall curves of different methods. Second row: precision, recall and F-measure
using an adaptive threshold. Last row: MAE. All experiments are carried out on ASD dataset. The proposed
method performs very well
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It jointly considers recall and precision. To compute Fβ2 , we set β2 = 0.3 according to [2],
and apply adaptive threshold σa to the saliency map before computing Fβ2 , σa is defined as

σa = 2

W ∗ H

W∑

i=1

H∑

j=1

Sij

where W and H denote the width and height of the saliency map S, respectively. For salient
region detection evaluation, MAE (Mean Absolute Error) is better than PR curves because
the PR curves are limited in that they only consider whether the object saliency is higher than
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Fig. 8 First row: precision-recall curves of different methods. Second row: precision, recall and F-measure
using an adaptive threshold. Last row: MAE. All experiments are carried out on SOD dataset. The proposed
method performs well in all these metrics
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the background saliency. MAE is employed to evaluate the dissimilarity between saliency
map S and ground truth G. It is defined as

MAE = 1

W ∗ H

W∑

i=1

H∑

j=1

‖Sij − Gij‖2

Therefore, MAE is the average per-pixel difference between the pixel-wise annotation and
the computed saliency map. It directly measures how close a saliency map is to the ground
truth and is more meaningful and complementary to PR curves.

Quantitative comparisons of our model against other twenty-one models on four datasets
are shown in Figs. 6, 7, 8 and 9. In each figure, first, second and last rows show the PR
curve, F-measure and MAEs of all models on four datasets, respectively.
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Fig. 9 First row: precision-recall curves of different methods. Second row: precision, recall and F-measure
using an adaptive threshold. Last row: MAE. All experiments are carried out on SED1 dataset. The proposed
method performs very well
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As we can see, our model consistently outperforms others on all four data sets in terms of
these three metrics. Specifically, the PR curve of proposed method outperforms PR curves of
all other methods on dataset ECSSD, SOD and SED1. On ASD dataset, our model is among
the best models. Benefiting from our proposed background suppression and foreground
highlighting, our model can generate more clean saliency map. Therefore, our model can
achieve higher precision and recall. For F-measure, our model gets the best performance on
ECSSD, SOD and SED1. For the F-measure on ASD dataset, the difference between our
model and others is not clear. To present F-measure more clearly, we present all the values
in Table 1. Our model has best performance. Finally, for MAE, our model has the smallest
value on all these four datasets and this indicates that our saliency maps are closest to the
ground truth maps.

4.3 Qualitative evaluation

For qualitative evaluation, the results of applying the various models to representative
images are shown in Fig. 10. We note that the proposed algorithm uniformly highlights the
salient regions and preserves finer object boundaries than all other methods.

In first example, i.e., cup images in top three rows, the saliency maps of our model,
HDCT [20] and SVO [9] models can all detect whole object. However, our saliency map
is much cleaner than others. Especially in the background regions. This good performance
benefits from the background suppression step in our model. From seventh row to ninth row,
the red flowers image has textured background regions. Only our model can detect the whole
salient object with few background noise. In last two examples, i.e., images shown in last
six rows, both the salient objects have similar color distribution with background regions.
Therefore, all the saliency maps generated by other models will be greatly influenced by
these background regions. In fact, our model will be affected by these regions too. However,
with the help of background suppression and foreground highlighting of our model, the
initial saliency map will have as less background regions as possible and the difference
between background and foreground gets bigger. The final saliency map after propagating
the initial saliency to other regions will be more accurate than that of other models.

4.4 Efficiency

To demonstrate the efficiency of our model, we show the average running time of different
models in Table 2. In column code, M, M+C and EXE denotes MATLAB, MATLAB with

Table 1 F-measure of ASD dataset

Model F-measure Model F-measure Model F-measure

IT [17] 0.5356 MAP [34] 0.8856 LRMR [29] 0.8191

GB [16] 0.6548 HS [41] 0.8789 MC [19] 0.8994

CA [14] 0.5916 BM [38] 0.8140 MSS [1] 0.6784

FT [2] 0.5957 CB [18] 0.8533 PCA [25] 0.8177

SF [27] 0.8264 CHM [21] 0.8400 SVO [9] 0.4037

GS [37] 0.8409 FES [35] 0.7043 SWD [12] 0.6584

GMR [43] 0.9012 HDCT [20] 0.8554 LGH [44] 0.8502

Ours 0.9122
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Fig. 10 Visual comparison of proposed model and twenty-one other models. From top to bottom and left to
right are input image, ground truth, and saliency maps of BM [38], CA [14], CB [18], CHM [21], FES [35],
FT [2], GB [16], GMR [43], GS [37], HDCT [20], HS [41], IT [17], LRMR [29], MC [19], MSS [1], PCA
[25], SF [27], SVO [9], SWD [12] LGH [44], MAP [34] and Ours
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Table 2 Comparison of average running time (seconds per image)

Model Time(s) Code Model Time(s) Code Model Time(s) Code

IT 0.25 M MAP 0.08 M+C LRMR 13.9 M+C

GB 0.63 M HS 0.31 EXE MC 0.17 M+C

CA 41.4 M+C BM 2.16 M+C MSS 3.07 M

FT 0.13 M CB 1.94 M+C PCA 3.69 M+C

SF 0.30 M+C CHM 2.97 M+C SVO 23.49 M+C

GS 0.22 M+C FES 0.20 M SWD 0.28 M

GMR 1.61 M+C HDCT 8.15 M+C LGH 1.81 M

Ours 0.9 M

C/C++ and executable program, respectively. The experiments are carried out on ECSSD
dataset with a typical 400×300 image using a PC with an Intel i7 CPU of 3.2GHz and 16GB
memory. It should be noted that our model is implemented by using MATLAB without
optimization. Therefore, the computational complexity of our model is comparable to that of
other models. The main reason for this low computational cost is that we employ superpixels
as our basic processing unit, not pixels. This will greatly reduce the computational cost.
Given a 400 × 300 image, we segment it into 300 superpixels. The overall running time
of our model is 0.9s. The time used for solving energy minimization problem (10) is only
0.008s. Another reason is that the computation of contrast, background suppression and
foreground highlighting is carried out in a vector form. As we all know, MATLAB has big
advantage in vector and matrix operation. So these operations are computed very fast.

4.5 Failed cases

Though our proposed model achieves good results in most cases, it still have some lim-
itations. Firstly, the final saliency map will be greatly influenced by the unit boundary

Fig. 11 Failed cases of our model. a, d Input images. b, e Unit boundary distribution. c, f Our saliency map
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distribution. As shown in Fig. 11b and c, when the unit boundary distribution map has
many undesired regions, the final saliency map will be inaccurate. The road has different
values of unit boundary distribution. When the background suppression is employed, some
background regions will still remain. This will affect the final saliency detection. Secondly,
the saliency map will contain background regions when the object and background regions
have similar color distribution. As shown in Fig. 11e and f, although the unit boundary dis-
tribution is good enough, the final saliency map is not satisfying. This may be caused by
the feature used in our work. We only employ color feature to evaluate saliency. When the
salient object and background regions have similar color distribution, the detection result
may be not good enough.

5 Conclusions and future works

In this paper, we have presented a novel model for salient region detection. Based on the
global and local contrast prior, we propose unit boundary distribution to model background
distribution. Then, we use contrast between other regions and top, left image side to sup-
press background regions. A coarse initial saliency map is then generated by highlighting
foreground regions. By background suppression and foreground highlighting, the initial
saliency map has good estimation of location where the salient object is. Finally, we model
the final saliency evaluation as a graph based semi-supervised learning problem via solv-
ing an energy minimization problem. We evaluate our model on four widely used datasets
and demonstrate promising results with comparisons to other twenty-one state-of-the-art
models.

The failed cases presented in Section 4.5 motivate our future works. Firstly, we will
exploit more techniques to model more reliable background distribution because our model
is based on it. Secondly, more cues should be considered into our model, e.g., texture, pat-
terns. Further more, high-level knowledge may be incorporated to produce more accurate
saliency maps.
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