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Abstract This paper presents an approach to gait recognition based on a single consumer
accelerometer, built in most present mobile devices. It does not propose a completely novel
algorithm, but rather investigates better ways to exploit the Dynamic TimeWarping (DTW),
which is still one of the most used at present in literature. To this aim, the paper presents
both a new segmentation algorithm to split the gait signal into cycles/steps, and investigates
the best way to use the possibly segmented signal for recognition. Summarizing, the first
contribution of the present work is the proposal of a new segmentation algorithm for the gait
signal, which does not require any pre-processing, either interpolation or noise reduction,
to enhance the original signal, and its comparison with two other state-of-the-art step seg-
mentation algorithms. The second contribution is related to the extensive tests performed
with the five different investigated matching methods. The tests are carried out exploiting
all compared segmentation algorithms and three different datasets, collected using differ-
ent sensors: the originally exploited BWR dataset, that includes walk templates from 30
volunteers, and two huge datasets used for this kind of testing, namely the ZJU-gaitacc
and the OU-ISIR Inertial Sensor Database. Tests have been performed in both verification
mode, either single-template or multiple-template, and identification mode, both closed and
open set. The latter is rarely found in literature though representing the most frequently
predictable applicative setting. It is worth underlining that the final goal is to allow using
low-cost, built-in sensors that nowadays equip most smartphones. The best result in closed
set identification, which is the identification mode usually reported in literature, is achieved
using the most constrained method, i.e., limiting the walks in the gallery and in the probe
to have a similar number of steps. It reaches ≈ 93 % of Recognition Rate (RR) on ZJU-
gaitacc dataset. The best result obtained with methods exploiting segmentation to overcome
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the mentioned limitation reaches ≈ 83 % of Recognition Rate (RR) on the same dataset,
using our proposed algorithm. The best results in verification is achieved using multiple
templates per user, again without segmentation, with an Equal Error Rate (EER) of 0.09,
while the best results with segmentation is achieved again with our algorithm and is and
EER of 0.10. This is a very good result for a soft biometrics as gait if often considered. As
expected, open set identification achieves lower performance.

Keywords Biometrics · Gait recognition · Accelerometer · Mobile devices

1 Introduction

Biometrics can provide identity recognition as well as authentication for many applications,
from ambient intelligence to the control of access to critical and protected zones/services.
Some biometrics, mostly physical traits like, e.g., face, iris, and fingerprints, can be used
to uniquely identify a person, though often requiring a controlled setting. They are usually
classified as ”strong”. Other traits can lack this ability because they rather identify a class
of users, e.g., gender, or can be less reliable, for example because they can be affected by
several factors, e.g., environmental or emotional conditions, like most behavioral traits. For
these reasons they are usually classified as ”soft” biometrics. Even soft biometrics can be
exploited for individual recognition, if used in combination with other soft biometrics or as
an enforcement of strong ones, according to multibiometric protocols. Gait recognition, i.e.
recognizing people from the way they walk, is often considered as belonging to the latter
category. At present, gait recognition is mostly adopted in literature in verification modality,
to just recognize the owner of a specific device, and at present no real scenario with massive
gait recognition can be identified. In other words, the really interesting applications are
usually bound to a white list modality, which usually entails a number of enrolled users
which is not significantly high.

Gait recognition techniques can be classified into three different categories based on the
technological settings investigated so far:

– machine vision-based: these methods use one or more cameras for the (video) data
acquisition and suffer from typical image processing issues, e.g., occlusions and
illumination variations;

– floor sensor-based: they require specific ambient equipment, therefore cannot be used
everywhere and require a preliminary complex set-up;

– wearable sensor-based: they generally use accelerometer as well as other kinds of
wearable sensors for data acquisition.

Given the limitations of the first two groups of techniques in terms of feasibility and
availability, our choice is to focus on the third group, and in Section 2 we discuss more in
detail this kind of systems, mentioning works that use a single accelerometer, more than one
accelerometer or the combination of accelerometer and gyroscope. The goal of the work in
this paper is to exploit the simplest possible set-up, using off-the-shelf, widespread equip-
ment, and possibly only one sensor. In other words, the aim is allowing users to undergo
this authentication/recognition modality without need of special equipment, and without
carrying out any specific action. For this reason, the proposed system captures gait features
using currently available medium profile smartphones. Such devices generally have suffi-
cient quality accelerometers on-board. The gyroscope, even if embedded, is not used, in
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order to maintain a better compatibility across different mobile devices. In fact, a possible
disadvantage of using gyroscope too, it that at present it is not a standard component for
most mobile devices, especially taking into account also the less recent models. Moreover,
the use of the gyroscope would both add further complexity to the system architecture and
increase the computational cost of the matching. The possible advantages would obviously
regard an increased recognition accuracy; however there is no general agreement on this
point: even according to the results reported in [11] it seems that the use of gyroscopes in
connection with accelerometers may even decrease performance in terms of EER.

This paper extends the work presented in [1]. As most methods in literature, the devel-
oped system uses Dynamic Time Warping (DTW) to separately match the signals over
the three accelerometer axes, and then linearly combines the results. The main goal is to
investigate how to get better performance from a basic implementation of DTW. As a first
contribution, the new step/cycle segmentation procedure proposed in [1], is better detailed
and results obtained by using it prior to matching are compared with two other ones in state-
of-the-art. Huge pre-processing aiming at enhancing the signal quality (smoothing and noise
reduction, interpolation, and time normalization) is deliberately avoided to better explore the
potentialities of DTW in itself. Given such choice, it was not possible to reliably compare
our algorithm with further ones where segmentation is more deeply dependent on prelimi-
nary operations on the signal. It is worth noticing that recognition by a single accelerometer
achieves fair performance. One of the goals of a lightweight processing is to allow the recog-
nition either locally, e.g., on the smartphone itself, or remotely on a computer receiving gait
data, to be possibly fused with vision-based data from cameras.

Based on segmentation results, [1] proposed different strategies to improve DTW flex-
ibility, represented by different matching algorithms. A comparison between them was
carried out in order to evaluate the best compromise between accuracy and acquisition con-
straints. We consider that recognition performance can be measured according to different
modalities. In verification, the user claims an identity and a 1:1 matching with such iden-
tity is carried out. Most approaches in literature use (implicit) verification, since the identity
claim is implicit in the preliminary enrollment of a single user, who is the owner of the
device. These algorithms aim at verifying if the user keeping the device is its true owner.
In closed set identification, no identity is claimed by the user, therefore a 1:N matching
must be carried out against all registered users, and the probe is always assumed to belongs
to a subject in the system gallery. In open set identification, no identity is claimed by the
user (1:N matching) and probe user may not be known to the system, therefore a threshold-
regulated reject option is added. The investigated techniques were tested in [1] in closed set
identification and verification modalities, while in the present paper the full set of modali-
ties is tested. Even if it is possible to use either a distance or a similarity metric as matching
result, is is always possible to convert one into another, and given that we use a distance,
such kind of measure will always be mentioned. It is worth pointing out some further dif-
ferences among the described modalities. In closed set identification, the only requirement
is that the right subject appears in the first position of the result list, notwithstanding the
distance between the probe and the returned template. In verification modality, a threshold
constrains the acceptance of the matching as a genuine one. In open set identification mode,
a distance threshold regulates the acceptance of a template as in verification: the degree of
similarity must be very high to obtain a correct answer. However, in addition, in open set
identification modality, the a template belonging to the right identity must also be the first
in the returned list. If a gallery template is close enough, but not the closest one to the probe,
its identity is not the one (possibly erroneously) returned as the probe identity. In a simi-
lar situation, in verification modality, if the similarity is just sufficiently good, the system
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might (possibly erroneously) accept the identity of this gallery template as the identity of
the owner of the device. Experimental results in the previous paper refer to a dataset col-
lected using the accelerometer built-in in the OnePlus One smartphone, and on ZJU-gaitacc,
while in the present work also presents results achieved on OU-ISIR dataset. It is to point
out that at present the latter two are among the largest public datasets collecting inertial
sensors data available for gait recognition. Recognition can be carried out on an external
server, and this allows combination with other biometrics to secure the access not only to
personal devices but also to critical locations or services. The paper continues as follows.
Section 2 discusses some proposals dealing with sensor-based gait recognition. Section 3
sketches the overall framework that we plan to develop, and the relevant aspects of the
already implemented recognition procedures. This section also includes a detailed descrip-
tion of the proposed segmentation algorithm. Section 4 presents the experiments setup. In
particular, it describes the two segmentation algorithms that we compared with our one and
describes in more detail the datasets used in the tests to compare the different recognition
approaches. Section 5 shows the results achieved and the comparison between the different
techniques. Finally, Section 6 draws some conclusions and outlines the main steps of our
future work.

2 Related work

During the last years the approaches based on wearable sensors have increased their popu-
larity over computer vision-based and floor sensors-based ones. This is due to three main
factors. The first one is the low cost of these sensors, in particular accelerometers, which are
the most suited ones for this task, and their widening spread on mobile devices. The second
factor is the acceptable computational cost of the recognition algorithms generally used. Of
course, last but not least, also the good results that can be achieved contribute to the interest
for these approaches. Just think that nowadays every mobile phone has at least one built-in
accelerometer and a lot of them have gyroscope and magnetometer too. For these reasons, it
is possible to create low cost recognition systems that can be used both directly on the smart-
phone or tablet, generally for verification (e.g., recognition of the owner), and on a remote
computer, generally for identification (e.g., access grant to a critical zone). Moreover, dif-
ferently from the other two categories of approaches, a built-in accelerometer can follow
the user everywhere without blind spots or other scene distortions (affecting computer
vision techniques) and without need to modify the environment (requested by equipped
floors).

A comprehensive survey of all the three kinds of approaches to gait recognition can be
found in [4] while [9] provides a review of machine vision-based systems, that represent
anyway the most used ones so far. This section will only mention some of the wearable
sensor-based recognition system which are closer either in algorithmic setting or in aim with
the proposal in this paper.

The first general remark is that, in the majority of papers on accelerometer-based gait
recognition, the purpose is the recognition of the owner of the phone. Therefore, these
systems work in verification modality. Performances are generally estimated using an all-
against-all matching in order to derive overall False Acceptance Rate (FAR), False Reject
Rate (FRR) and Equal Error Rate (EER), achieved by the acceptance threshold where
FAR=FRR. The work proposed here mainly carries out identification in both closed set and
open set modalities. In the first case, performance is estimated by Recognition Rate (RR)
and Cumulative Match Curve (CMC); in the second case, Detection and Identification Rate
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(DIR) and EER are used instead. However, the proposed system can be used in verification
modality too.

It is worth pointing out that most papers rely on identifying cycles in the walk sig-
nal, intended as a pair consisting of a right and the following left step or vice-versa. The
segmentation algorithm in Section 3.2 rather detects single steps.

In [3], authors present a system that uses a low sampling rate accelerometer, the one built
in Google G1 phone. The system achieves an ERR of 20 % using a dataset collected from
51 subjects. The acquisition procedure requires a straight way walk in a 37m hallway, 2s of
stop and return. The recognition procedure uses cycle detection, computes the average cycle
and then applies Dynamic Time Warping (DTW) algorithm for matching. In [2], the same
authors use a better accelerometer (the Motion Recording 100), improve the preprocessing
phase with a noise reduction algorithm, and perform an outlier steps detection and removal.
The latter allows disregarding steps that are too different from the others, possibly due to
noise or very short temporary variations. The performance of the system increases to an
EER of 5.7 %.

The works cited from now on use accelerometers with similar quality of the one used
in [2]. This is because nowadays most accelerometers that are built in smartphones have a
similar sampling rate of about 100 samples/second.

The work in [5] deals with a system that uses two different approaches to recogni-
tion. The first one uses similarity between histograms computed from the gait signals and
achieves a 5 % of EER. The second one uses cycle group comparison and achieves a 9 %
of EER. These results are obtained using a smaller dataset (21 users with walks collected
by ”AVR Butterfly Accelerometer - Motion Recording 100” in a 70m hallway) compared
to the others.

The authors of [8] present a more comprehensive framework for gait recognition. The
system gets raw data from both the accelerometer and gyroscope built in an Android
smartphone not better identified. The framework uses continuous wavelet transform time
frequency spectrogram analysis for feature extraction, and ciclostationarity analysis for
matching. The dataset collects walk signals from 36 users. The smartphone is positioned in
the right pocket with the phone facing outwards and oriented vertically. The walk is straight
down a hallway (about 25m long) and return. Results report performance at different levels
of walk speed. The tests achieve a 99.4 % of verification rate at 0.1 % of FAR for pace walk
vs. pace walk, 96.8 % for fast walk vs. fast walk, and a 61.1 % for pace walk vs. fast walk.
Achieved results are very good but this system uses the gyroscope too, differently from the
others.

In [13] the authors use the Hidden Markov Model (HMM) technique. The system pro-
posed achieves a 10.42 % of False Non Match Rate and a 10.29 % of False Match Rate
with a dataset of 48 users following the same acquisition protocol of [3]. A HMM is trained
for each user using his/her unsegmented walks (so 48 HMMs are created) and all the
registrations for all users are submitted in turn as probes.

None of the above works reports results for identification. Moreover the exploited
datasets are not shared by other works in literature.

The paper in [14] presents a high performance system, using five accelerometers attached
in various parts of the body. The authors carry out identification by a method based on
signature points. Also this method does not use the cycle division. It achieves a RR of
96.7 % with a dataset of 30 users. The work in [19] is an evolution of this system that
can be used in for identification and verification modalities. The recognition method uses
signature points as before, but applies a preliminary clustering phase to group these points,
with a relevant improvement of the performances. The authors also created a huge dataset
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(with walk templates collected from 175 different subjects) of accelerometer data, which
is publicly available for non-commercial use1. This dataset was used for our experiments,
therefore further details on its composition will be given in Section 4.1.2. The tests on this
dataset produce a RR of 95.7 % for identification and a 2.2 % of EER for verification. This
method achieves the best results among the mentioned ones, but it is worth noticing the use
of a very complex equipment for data acquisition, not so suitable in a real setting.

A further publicly available dataset is presented in [11]. The authors propose a valuable
work in this field and make available to the research community one of the largest inertial
sensor datasets for gait recognition purposes, namely OU-ISIR Inertial Sensor Dataset (from
now on OU-ISIR). Since also this dataset was used in our experiments, further details are
reported in Section 4.1.3. The authors also show the performances of their cycle detection
method and the comparison with some other techniques in the state-of-the art, namely the
ones proposed in [2, 6, 15, 18]. Actually, as also stated by the authors, it is difficult to
directly compare the performances by the original databases with those achieved on the
new database, due to the large difference in the number of subjects and to the very different
acquisition conditions, mostly the kind of sensors and their positioning that heavily affect
the acquired signal. However it is interesting to notice that the achieved EER increases from
about 6 % for almost all methods with the original datasets, to a 14-20 % EER with the
new dataset. The section reporting experimental results will further discuss aspects related
to performance decrease when using this dataset.

Another interesting work, proposed by the same authors of OU-ISIR dataset, can be
found in [12]. Its aim is to normalize acceleration data in order to address the problem of a
different orientation of the data acquisition sensor/s. The paper assesses the advantages of
using this kind of preprocessing, and the significant increase in term of performances, which
are reported for verification modality only. The proposed preprocessing can be very useful
in all the situations where the sensor/s have a wide possibility of changing their position. A
different approach to the same problem can be found in [20].

A wider review of gait recognition based on inertial sensors is out of the scope of this
paper, but interested readers can refer to [17]. However to the best of our knowledge we
can observe that no work in literature reports gait recognition results in open set identifica-
tion modality, which actually is the one that corresponds to a more realistic identification
scenario, where not all users presented to the system have been previously enrolled in the
system.

3 Proposed approach

This section shows the core recognition procedures developed in this work and the overall
design of a complete system for automatic user recognition.

The complete system will be composed by two different modules that will be able to
automatically communicate. The first module will run on a smartphone with a built-in
accelerometer for the data acquisition. The second module will run either on the phone
itself (if in verification modality), or on a desktop computer (if in identification modality),
to perform the recognition, as shown in Fig. 1.

The figure points out that, in case of remote transmission to a server, suitably positioned
beacons, e.g., close to the entrance of a restricted area, can trigger the start and the end of

1http://www.ytzhang.net/datasets/zju-gaitacc

http://www.ytzhang.net/datasets/zju-gaitacc
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Fig. 1 Schema of an automatic system for gait recognition

the data capture, via communication through low-consumption Bluetooth. Beacons can be
substituted by any kind of device that can remotely trigger actions through communication.
At present, a dedicated app for the capture module is being developed to this aim. In the
meanwhile, data collection exploits an off-the-shelf Android application, namely Physic
Toolbox Accelerometer2, free on the Google Play Store.

The recognition module, which is the true core of the application, is already implemented
for desktop processing. As for now, the two modules do not automatically exchange data
because this function is not provided by the chosen app, but will be included soon in the
dedicated app. It is worth underlining that, in general, if in verification modality, transmit-
ting data to a remote computer would create useless privacy issues, therefore it is worth
implementing a local recognition procedure, that will be soon added to the mobile dedicated
app. On the other hand, if in identification modality, e.g., to control access to a restricted
zone, it would be impractical to store and maintain the gallery of enrolled users on each
mobile device, so that the best choice is to transmit a (protected) template to an authen-
tication server. This latter option is the one already implemented, and it would also allow
enforcing the recognition accuracy by fusing results with those from different sources. As
an example, a computer vision-based recognizer taking as input the videos of cameras at
the entrance of the zone, would send additional data as input to the ”System starts recog-
nition” activity. When applicable, using the mobile devices for data acquisition only would
also significantly reduce the battery power consumption. Moreover, it is to consider that the
accelerometer is the main source of smartphone energy consumption in this system: taking
this into consideration its use is limited as much as possible. Actually, when communicating
with a remote server, the system requires using the accelerometer just for the space between
the two beacons, and, afterwards, there is only one operation of data transfer at the end

2https://play.google.com/store/apps/details?id=com.chrystianvieyra.android.physicstoolboxaccelerometer&
hl=it

https://play.google.com/store/apps/details?id=com.chrystianvieyra.android.physicstoolboxaccelerometer&hl=it
https://play.google.com/store/apps/details?id=com.chrystianvieyra.android.physicstoolboxaccelerometer&hl=it
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of data acquisition (and not a continuous streaming). A possible argument regarding veri-
fication of the identity of an approaching user is that one could simply rely on the much
simpler recognition of the mobile device, e.g., by inquiring a preset identification code.
However, this would be an extremely unsafe option since the smartphone, as any other kind
of physical token used for authentication, e.g., a magnetic card, can be stolen or cloned or
even lost. This is just one of the issues addressed by biometric recognition.

As many researches in literature, the proposed system exploits Dynamic Time Warping
(DTW) to measure the distance between either entire signals or signal segments. The reader
interested to an exhaustive discussion about this classical Dynamic Programming algorithm
can refer to the chapter about DTW in [10]. It is worth underlining once more that the aim of
this work is not to propose a completely novel recognition algorithm but rather to investigate
how to improve the performance of the most classical one. In particular, the experiments
carried out aim are used to asses a novel technique for step segmentation and to investigate
which is the best strategy to exploit a walk signal (unsegmented vs. segmented and, in the
second case, how to match segments).

3.0.1 Data acquisition

For data acquisition, in the enrollment phase, a uniform protocol is applied, as usually hap-
pens in similar applications. To standardize the movements for each recording, the protocol
entails the following sequence of actions:

1. to put the phone in the belt, either on the right hip or on the left one in vertical position;
this grants a similar location for all users; at present the phone must be positioned
with the screen facing out; the latter condition is required by the lack of an automatic
triggering of start and stop of capture, so that recording is started by launching the app
and by tapping on the screen both for start and stop;

2. to start the recording and then begin walking with the leg opposite to phone location;
3. to walk in straight line in the most natural way for ten steps; the number of steps can be

decided in advance but all walks for enrolled users must have the same number of steps;
it is to underline that this limitation only holds for enrollment, i.e., for the collection of
a white list of authorized users; the experimented matching algorithms have exactly the
aim to avoid it during normal system operation.

A folder is created on the desktop computer for each enrolled user, where user data are
transferred (manually by now) and where results of the following processing are stored.
Data for three different walks per user are acquired, after detaching the smartphone and
attaching it again to the user’s belt each time. However, the system can handle a different
number of templates per enrolled user. While other datasets are captured by positioning the
sensor always in the same place, e.g., the same side, the collected dataset is not limited by
this constraint. Figure 2 shows an example of smartphone positioning.

3.1 Preprocessing

Differently from most of the systems mentioned in the related work, that perform denoising
and time normalization operations, the one proposed in this paper uses only a very simple
preprocessing. In order to make each stored walk signal start and stop at relevant points,
a procedure identifies and discards all initial and final local maxima caused by noise. To
do this, a threshold determines the set of points to discard at the extremes of the signal.
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Fig. 2 Example of smartphone positioning

This threshold is experimentally set at 1.05 on y-axis over a range of values from about -
2 to +2. Once the first value greater than the threshold is found, the system searches for
the first relative maximum from that point on, and discards the segment of signal before
such maximum. The same procedure is carried out, starting from the end of data, to find
the end of the last step. Once these points have been identified, they are saved and will be
used as starting and ending points of the vector during the matching phase. This preliminary
operation is carried out on the principal axis (the y-axis in our case) and then the initial and
final points of the resulting portion of signal are projected onto the other two axes. Figure 3
shows an example of the discarded regions (red dashed segments) and of the resulting final
signal. The threshold value is device dependent, so it cannot be applied if data came from
different smartphone models. For this reason, this phase is carried out only with BWR
dataset (described in great detail in Section 4.1.1).This also partially explains the different
performance achieved on the database collected in-house and the public ones. To avoid
this and other problems related to the differences among accelerometers, a normalization
procedure of data w.r.t. the device accelerometer will soon be added to the data acquisition
module.

Fig. 3 Example of extraction of the relevant segment from a signal
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3.2 Step segmentation algorithm

This subsection presents a novel algorithm for step segmentation. The procedure works in
four phases that are carried out only on the y axis. The results are then projected onto the
other axes. The first and the second phases are executed only for walks that make up the
gallery, and only once, namely the first time the dataset is loaded. As for probes, these two
phases are substituted by a different operation, that will be detailed in the following. The
third phase represents the core of the step segmentation algorithm and the fourth one is
used just to improve the recognition results. These two last phases are carried out both for
the walks in the gallery (only at enrollment time) and for the probe ones (according to the
procedure defined below). Figure 4 shows the main parameters used by the algorithm. More
details follow.

1. In the first phase, the algorithm computes the value for the variable
stepEquilibrium, that is used to avoid an erroneous segmentation caused by
noise; the value assigned to the variable is the one which is lower than the aver-
age value of the entire walk and appears with the highest frequency in the signal;
stepEquilibrium will be used in the third phase.

2. In the second phase the algorithm finds the value for the variable stepThreshold;
this value is obtained by taking the k-th highest relative maximum of the signal, where
k is the number of steps of the walk (it is worth reminding that the system knows this
value for enrolled walks because of the constraint described in Section 3.0.1); similarly
to stepEquilibrium, this variable will be used in the third phase.

3. Figure 4 shows a graphic representation of the third phase of the step segmentation
algorithm; this procedure divides the signal into steps using the variables described
before and works as follows:

(a) look for the first relative maximum in the signal, which will be the starting point
of the first step;

Fig. 4 Example of Step Segmentation Algorithm
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(b) scan the following walk data searching for a value that is lower than
stepEquilibrium;

(c) look for the next relative maximum greater than stepThreshold, that will be
the ending point of the current step and the starting point for the next one;

(d) repeat from (b) till to the end of the entire walk signal.
If a local maximum is found after another without passing through a value

lower than stepEquilibrium, this maximum will be discarded, classifying it
as noise, as shown in Fig. 4.

4. Finally, the system looks for possible outlier steps (steps that are very different from
the others in the walk); to do this, the following procedure is carried out:

(a) compute the DTW distances between the steps identified for the walk;
(b) for each step, compute the average distance from all the others;
(c) compute the average of average distances, denoted as M , and the standard

deviation of average distances, denoted as σ ;
(d) discard the steps whose average distance from the other steps is greater than

M + σ .
It is important noticing that the system does not discard steps whose average

distance from the others is less than M − σ : this is because, using distances, this
kind of steps are instead very good for recognition because they are in some way
uniform to all the others.

As said before, the first two phases (computations of values for variables
stepEquilibrium and stepThreshold) are carried out only during the collection
of walks from enrolled users. In the same way, phases 3 and 4 are carried out only once for
enrolled samples using the results of phase 1 and 2. In particular, the procedure performs
the outlier removal for gallery samples, when requested by the adopted matching algorithm,
once and for all during the enrollment phase. Also other works in literature perform out-
lier removal according to the same operational schema, being the differences only related
to the way of choosing the steps to retain. During recognition, the probes undergo a dif-
ferent protocol, where phases 1 and 2 are missing. In practice, the matching operation uses
an enrolled walk-fitting procedure for step segmentation, applying in turn to the probe the
stepEquilibrium and the stepThreshold values computed for the gallery walk
to match from time to time. Then the phases 3 and 4, the latter only when required by
the adopted matching algorithm, are applied to the probe in the same way carried out for
enrolled walks, before executing the chosen matching algorithm. This allows a better seg-
mentation for data from the right user and a worst one for the others. This kind of approach,
besides improving the global performances of the system, also avoids the limitation of a
fixed number of steps for the probe.

To summarize, the computation of the correct values for step segmentation, that are
subject-dependent, is carried out only once for enrolled users, specifically in the enrolling
phase. These values are later used to compare walks from different users during testing. It
is worth underlining that exactly the same segmentation procedure was carried out on both
ZJU-gaitacc dataset (with satisfying results) and on OU-ISIR dataset. Given the significant
difference among the signal slopes (Fig. 11 in Section 4.1.4 shows two examples of each
kind of signal to better underline this point), these results are a further confirmation of the
feasibility of our algorithm. As a matter of fact, differently from the walks in our dataset,
there is no indication of the exact number of steps in the two external datasets, and it must
be approximated. Notwithstanding this, the achieved results are acceptable, especially with
ZJU-gaitacc.
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3.3 Matching methods

For the proposed matching methods, the system uses the DTW algorithm. This procedure
is often used to match two different signals that vary over time, and produces a distance
value that is quite robust to misalignments, which can happen in this kind of data. In the
proposed system, the DTW algorithm is executed three times in each matching, one for each
axis. In order to have an effective fusion of these three results, producing a final distance
score, a simple train procedure is used, when necessary, as described below in Section 3.3.7.
Axes relevance depends from the device position. With smartphone in vertical position and
attached on the hip, the training returns the y-axis as the most important for recognition,
followed by z-axis. The resulting weights, assuming the same accelerometer orientation, are
very similar to those used in other works in literature. In such position, it seems that x-axis
has very little impact on the recognition. All walks achieve a very similar value on that axis,
mainly because it assumes a specific meaning only in case of strong jerks or jumps, which
are generally absent in natural walking.

Five different algorithms are been developed, all based on DTW procedure. The first
one, WALK, is the only one that does not require the step segmentation, and as a conse-
quence does not eliminate outliers, while the last one, STEPS SLIDING WINDOW, uses
step segmentation just for alignment, but does not eliminate the outlier steps.

3.3.1 Walk

The simplest, but also most accurate recognition method is WALK (Fig. 5).
After the simple preprocessing described above to discard initial and final walk noise,

it simply uses the DTW algorithm on the probe and all enrolled walks (possibly more than
one for each user). As said before, it does not need to carry out step segmentation. The real
problem with this algorithm is a strong constraint: the probe and the enrolled walks must
have a sufficiently similar number of steps, otherwise the performances are very low. This
problem, however, is not so relevant if the system acquires data always in the same points,
for example between two beacons, as described in Section 3. As a matter of fact, if beacons
are suitably located, it is probable that the number of steps performed by users will be fairly
equal to that decided for enrolling.

3.3.2 Best step

The first attempt to avoid the constraint represented by using a fixed number of steps is to
compute the ”best step” for each walk, that we define as the centroid of the cluster composed
by its steps (Fig. 6).

Fig. 5 Graphic example of WALK matching: after discarding initial and final noise, the entire signals are
matched
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Fig. 6 Graphic example of BEST STEP matching: the centroids of the two signals are matched

After segmentation, centroids are those steps having the minimum average distance,
computed by DTW, from the others in the segmented walk. Computing this best step
requires no additional computational costs: when the system computes the outlier steps it
obtains the centroid step for free. For each gallery walk to match, the distance between the
probe and such walk is computed by applying DTW between the best steps of the two walks.

3.3.3 Best step vs all

This method uses the same concept of BEST STEP and is denoted as BEST STEP VS ALL
(Fig. 7).

For each gallery walk to match, this procedure requires computing the average DTW
distance between the best step of the gallery walk and all steps in the probe.

Fig. 7 Graphic example of BEST STEP VS All method: the centroid of the steps of the gallery walk is
matched against all each step and the average is returned
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Fig. 8 Graphic example of ALL STEPS VS ALL method: each step in the probe is matched against each
step in the gallery walk, the minimum distance is selected, and the average over all minima for probe steps is
returned

3.3.4 All steps vs all

A different kind of approach has been tried with ALL STEPS VS ALL, ALL STEPS for
short (Fig. 8).

After preprocessing and step segmentation, this method, for each gallery walk to match,
computes the DTW distance from each step in the probe to each step in the gallery walk,
and takes the minimum such distance. Then it computes the average of these minimum
distances, and returns it as the result.

3.3.5 Steps sliding window

The last proposed recognition method is STEPS SLIDINGWINDOW, SSW for short (Fig. 9).
This method is similar to the first one, namely WALK. After step segmentation, for

each gallery walk to match, and before starting matching, the system assumes the longer
sequence between the probe and the gallery walk as the main stream and uses the other one

Fig. 9 Graphic example of STEPS SLIDING WINDOW method: the shorter signal slides over the longer
ones taking the step starting points as overlap reference
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as a sliding window. The sliding window is aligned using the starting points of steps on the
main stream. Therefore, segmentation is computed but steps are not separated. Matching is
performed over the overlapping region of the two signals. The returned distance will be the
minimum of all DTW matchings performed while sliding.

This method, differently from the other ones that use steps segmentation, does not discard
the outliers, since, as described above, segmentation results are only used for alignment
purposes. We argue that a phenomenon similar to co-articulation in speech can hold for
gait signals too, so that step segmentation might cause to lack some characteristic feature
related to passing from one step to the following one. STEP SLIDING WINDOW does not
suffer for the problem of a constrained number of steps, which is the limit of WALK, while
retaining full information about step co-articulation, differently by the methods entailing
step segmentation.

3.3.6 Considerations about algorithmic complexity

Concerning the algorithmic complexity, the following discussion regards the cost of a sin-
gle match for each kind of algorithm. As for WALK, which is pure DTW, is O(n2), where n
is the number of signal points (in the signals of our dataset, ten steps sum up to about 1250
points). Matching algorithms entailing the elimination of outliers as well as the identifica-
tion of the centroid step from the probe template, require a main cycle that is O(m2p2) to
compare the steps in order to find out the outliers/centroid, wherem is the average number of
signal points in a single step (about 100 points in our non-interpolated signals) and p is the
average number of steps (about 10 in our dataset). Further required computation has a lower
complexity. However, n is about m ∗ p, therefore, up to a multiplicative constant, this pre-
liminary step has a complexity comparable to WALK. Then the comparison for each single
step is O(m2), repeated for the number of steps to compare: only one comparison for BEST
STEP, p2 comparisons on the average for ALL STEPS, taking again to O(n2). STEP SLID-
ING WINDOW complexity follows a different pattern. Given two walks to compare (probe
and gallery) of n1 and n2 points respectively (corresponding to p1 and p2 steps), and assum-
ing n2 as the shortest signal, we have an overall complexity of (p1 − p2 + 1) ∗ O(n22). The
larger the difference in signal length, the higher the number of comparisons, yet between
shorter fragments. Given a signal of length n, the opposite situations are a signal to com-
pare with a single step of length m, taking to p ∗ O(m2) comparisons, and two signal that
are equal or differ for a single step, both taking to O(n2) up to a multiplicative constant.
Notice that the role of the two signals in the comparison, i.e., main stream and sliding win-
dow, depends on their relative length. Again, being n the length of the longest signal in the
pair to compare, O(n2) up to a multiplicative constant is an upper bound for the match-
ing of a single pair of signals. In conclusion, the algorithmic complexity is quite the same
for all methods. However, what changes from WALK to STEP SLIDING WINDOW is a
progressive release of constraints, yet accompanied by a decrease in performance.

3.3.7 Algorithm to improve performances

As explained in Section 3.3, the system produces three distance values for each matching,
one for each axis. A relevant point is to find the best way to combine these three results,
since different accelerometers may acquire data with different relevance on the three axes.
To do this, a dedicate algorithm is developed. This procedure tests the system trying all the
different combinations of weights summing up to 1 on the three axes, with variations of
0.1. It should be carried out when significant variations happen in the exploited set of data
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and is very useful because it can be used to reinforce accuracy on the dataset on which the
system is currently working. Being a training procedure, is of course rather computationally
demanding, but it is seldom carried out. When the dataset is very huge, the procedure can
be executed on a smaller subset. In our experiments, we only carried it out for BWR dataset
(about 30 minutes using two templates in the gallery and one as probe for each out of 30
users, using a notebook with a 2-nd generation I7 processor), but some experimental trials
suggested to use the same values for the other datasets too.

4 Experiments setup

This section presents the tests performed with the recognition methods described in
Section 3.3, in order to identify the better compromise between acquisition constraints and
achieved accuracy. The proposed methodologies were tested on three different datasets,
one acquired by us (called BWR and described in Section 3.0.1) and two publicly avail-
able ones, collected respectively by Zhang at al. (called from now on ZJU-gaitacc and
described in Section 4.1.2) and Ngo and at. (called from now on OU-ISIR and described in
Section 4.1.3). A further goal of the experiments carried out was the evaluation of the pro-
posed step segmentation algorithm (in Section 3.2). The segmentation procedure described in
[2] and the one in [15, 16], were reproduced and then tested using the proposed recognition
methods, in order to evaluate the differences in the system performance. Detailed descrip-
tion of the compared algorithms can be found in Sections 4.2.2 and 4.2.1 respectively.

Section 4.1 describes in details all the datasets used in the experiments. Section 4.2
describes the segmentation procedures applied in the different test scenarios. Section 5
presents the experiment setup and the results obtained with all the dataset.

4.1 Datasets

This subsection presents a detailed description of the datasets used in testing experiments.

4.1.1 BWR dataset

The BWR Dataset collects templates recorded with a OnePlus One smartphone (with an
embedded LIS3DH Accelerometer,3 with a sampling rate above 100 Hz). The acquisition
procedure is the one described in Section 3.0.1. The dataset contains 3 or 4 walks of 30
subjects (22 males and 8 females) with a range of age between 16 and 65. In this dataset
subjects wear different shoes but no one wears high heels. The users are asked to walk
in a natural way for ten steps in a straight hallway. Templates are acquired detaching and
repositioning the smartphone4, possibly on a different side of the belt. The Fig. 10 describes
the BWR dataset archiving structure:

The DATA folder is created automatically by the system the first time a new dataset
is loaded. It contains useful data extracted from each template (the .csv file) that can be
computed once and for all.

4.1.2 ZJU-gaitacc dataset

The ZJU-gaitacc dataset is related to the work described in [19]. It is composed by
accelerometer signals from 5 Wii-Mote controllers (from the well-known Wii console)

3https://www.adafruit.com/datasheets/LIS3DH.pdf
4Interested researchers can ask for this dataset by sending an email to authors.

https://www.adafruit.com/datasheets/LIS3DH.pdf
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Fig. 10 Graphic representation of dataset structure

positioned at different body locations. The recordings are taken on level floor of 20m length.
The tests carried out for our work take into account only data from the sensor positioned in
the pelvis zone, that is more or less the same position used in BWR Dataset data acquisi-
tion. Moreover, these data are the ones on which the authors achieve the best performance
in single accelerometer tests. The dataset contains data acquired from 175 users in 2 ses-
sions, each one with 6 recordings. However, only 153 users out of 175 are used in our
work, because the other 22 have only data from a single session (as described in the dataset
information). It is worth underlining that gait data from this dataset has been previously
interpolated and acquisition is done using an accelerometer with a good sampling rate (about
97 Hz) but a poor sensibility. This produces, in some cases, anomalous results, yet useful to
highlight some specific behavior.

4.1.3 OU-ISIR biometric database - inertial sensor dataset

The OU-ISIR inertial sensor dataset was acquired by Ngo Thanh Trung et al. and introduced
in [11]. It collects data from 744 subjects, acquired using 3 IMUZ with KXTF9 accelerom-
eters and gyroscope, and a Motorola ME860 smartphone equipped with an accelerometer.
This gives to the researchers the access to data from 3 different positions (left and right hip
and tailbone zone for IMUZs and tailbone zone for the smartphone). The recordings contain
data from 12 seconds of walk, divided into four files, two with level floor, and one respec-
tively for slope up and slope down (9m for the floor level and 3m for the slopes one). This
means that the setting of the capture procedure is always the same, e.g., the device are never
detached and reattached to the same user. For each subject, data belongs to one session only.
The templates collect information from accelerometers and gyroscopes. Our tests only use
the accelerometer data from level walk, taking left and right IMUZ signals as they were two
different walks; therefore, the subset used for our experiments contains four segments for
each subject, actually all taken from the same walk, two from each side IMUZ accelerome-
ter; this is done in order to have a consistent comparison with the position of BWR dataset,
as done for the ZJU-gaitacc dataset, and also to maintain a acceptable number of different
signals per subject.

Two points are worth noticing. First of all, complete data from all the 744 subjects is
available only for the tailbone zone IMUZ sensor (that they called IMUZ CENTER). Data
acquired from all four sensors are only from 495 subjects. As a second point, with respect
to the walk templates from BWR Dataset and ZJU-gaitacc Dataset, the ones provided by
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OU-ISIR Dataset are significantly shorter (the number of signal points is about a third of
the other two datasets). We argue that having such reduced number of signal points, while
speeding up the matching, may, on the other hand, negatively affect recognition accuracy
due to the higher weight gained by spike variation. However, a challenging aspect of the
dataset is the variation in subject age (from 4 to 79 year old).

4.1.4 Notes and discussion on the used datasets

The choice of the two public datasets to use together with BWR is not accidental. The
first reason is their large amount of data on which it is possible to test the performances of
the various algorithms, both for step segmentation and recognition. The second concerns
their substantial differences: the ZJU-gaitacc provides a huge number of templates from
the same user (12 walks per user recorded in 2 sessions) but less subjects (even if 175
is not a so low number) while the OU-ISIR collects data from a much higher number of
subjects, but they came from only one session, the different walks are actually segments of
the same walk, and their length is very short (the 9m floor walk at 100Hz of sample rate
provides about 400 samples for this gait signals vs. more than 1200 samples in BWR and
ZJU-gaitacc). Furthermore, the alignment of the collected time series present significant
differences, and ZJU-gaitacc signals are also interpolated. Figure 11 shows two examples
per dataset, that highlight these point. Therefore, achieving satisfying results on all of them
is quite challenging.

In order to use these datasets, we exploited a dedicated procedure to convert the data
archives into a common format, namely the one described in Section 3.0.1.

4.2 Compared step segmentation procedures

This subsection presents two cycle detection and segmentation algorithms proposed respec-
tively by Rong et al. in [15, 16] (in the following, Rong algorithm for short) and Derawi
et al. in [2] (in the following, Derawi algorithm for short) .

Fig. 11 Examples of signals from the three used datasets
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4.2.1 The Rong algorithm

As for the step segmentation algorithm proposed in Section 3.2, the segmentation procedure
proposed by Rong et al. is carried out on the most significant axis and then projected on the
other two. In their work, the accelerometer in the acquisition of their data is attached on the
hip. In all the three datasets used for our experiments, data are from the accelerometer on
the hip, so that Y is to be assumed as the principal axis, and all segmentation algorithms are
applied on it and results projected on the other two ones. The phases of their procedure are
reported below:

1. normalization of the acceleration data to [-1,1];
2. noise elimination through wavelet denoising;
3. search for the local minimum points;
4. search for the first value with a different sign after the local minimum points; these

points are the beginning or the end of a step;
5. segmentation: create a gait cycle with every four consecutive points in this set.

Since our algorithm do not use noise elimination, the comparison was stressed by skip-
ping phase 2 of Rong method. In this way this method is by far the fastest one, though the
results are lower than those achieved by the other two ones (see Section 5).

4.2.2 The Derawi algorithm

A brief explanation of the cycle detection and segmentation algorithm proposed by Derawi
et al. is sketched below.

Detection:

1. choose a random sequence of 70 values in the middle of the walk signal;
2. compute a distance array, using DTW, containing distances between the chosen

sequence and all sequences of 70 elements in the entire walk;
3. look for the minima in this distance array;
4. compute an average cycle length (γ ) using the distances between all consecutive found

minima.

Segmentation:

1. start from a local minimum in the middle of the walk signal (Pstart );
2. look for local minima near Pstart + γ and Pstart − γ using Neighbor Search;
3. repeat in both directions until end and start of signal respectively .

This algorithm is the slowest of the three tested ones, yet being the most challenging
competitor for our proposal (see Section 5).

5 Results and discussion

For better readability, the experimental results are grouped in tables according to the bench-
mark datasets, and for each table a section is devoted to each recognition modality. Each
section in Table 1 shows the results divided by matching method (rows) and segmentation
algorithm (columns) for BWR dataset. Tables 2 and 3 are similarly organized to show the
results for ZJU-gaitacc and OU-ISIR datasets respectively.
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Table 1 Results by matching method (rows) and segmentation algorithm (columns) for BWR dataset

Dataset: BWR-Verification Single Template (In terms of EER)

BWR RONG 2007 DERAWI 2010 Differences

Walk 0.1836 NA

Best Step 0.3064 0.4891 0.3430

Best Step VS All 0.2825 0.3100 0.3202

All Steps VS All 0.2019 0.5117 0.3155

Step Sliding Window 0.2158 0.2754 0.1942

Dataset: BWR-Verification Multiple Template (In terms of EER)

Walk 0.1477 NA

Best Step 0.3356 0.37495 0.33

Best Step VS All 0.297 0.34685 0.369

All Steps VS All 0.19 0.35435 0.32

Step Sliding Window 0.22 0.3373 0.2

Dataset: BWR-Open Set (In terms of EER)

Walk 0.32445 NA

Best Step 0.6383 0.734 0.623

Best Step VS All 0.6702 0.7553 0.7021

All Steps VS All 0.4468 0.5426 0.6064

Step Sliding Window 0.5426 0.7128 0.4149

Dataset: BWR-Recognition Rate

Walk 0.8936 NA

Best Step 0.4149 0.3511 0.4042

Best Step VS All 0.4362 0.4255 0.3404

All Steps VS All 0.6489 0.5638 0.4574

Step Sliding Window 0.5851 0.385 0.7553

Each table section refers to a different recognition setting

In this work, we used different protocols to evaluate the performance of the system than
the one used in [1]. Details of the new protocols are described next.

Recognition was tested in four different settings: verification with a single template per
subject in the gallery (performance is measured by an all-against all matching), verifica-
tion with multiple templates per subject in the gallery (the best matching <probe-subject
gallery template>is returned), open set identification with multiple templates per sub-
ject in the gallery (each probe is considered to belong or not to the gallery in turn), and
closed set identification with multiple templates per subject, using all-against-all match-
ing (each walk is used as probe and matched against all the others walks in the dataset
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Table 2 Results by matching method (rows) and segmentation algorithm (columns) for ZJU-gaitacc dataset

Dataset: ZJU-gaitacc - Verification Single Template (In terms of EER)

BWR RONG 2007 DERAWI 2010 Differences

Walk 0.3269 NA

Best Step 0.3402 0.481 0.4783

Best Step VS All 0.3702 0.479 0.4778 0.1076

All Steps VS All 0.3476 0.481 0.4773

Step Sliding Window 0.3383 0.482 0.4812

Dataset: ZJU-gaitacc - Verification Multiple Template (In terms of EER)

Walk 0.0926 NA

Best Step 0.328 0.302 0.2847

Best Step VS All 0.4104 0.335 0.3311

All Steps VS All 0.3625 0.275 0.2704

Step Sliding Window 0.1025 0.302 0.2923

Dataset: ZJU-gaitacc - Open Set (In terms of EER)

Walk 0.3233 NA

Best Step 0.4682 0.568 0.484

Best Step VS All 0.5726 0.644 0.5394

All Steps VS All 0.5397 0.467 0.4231

Step Sliding Window 0.4162 0.579 0.5608

Dataset: ZJU-gaitacc - Recognition Rate

Walk 0.9282 NA

Best Step 0.8274 0.5673 0.6824

Best Step VS All 0.6668 0.5058 0.6487

All Steps VS All 0.714 0.7196 0.8102

Step Sliding Window 0.7671 0.5366 0.5563

Each table section refers to a different recognition setting

except itself). As said, in the first verification setting, a pure all-against-all matching is
carried out. The gallery is made up by only one template per user, so that the number of
GENUINE tests is equal to #templates and the number of IMPOST OR tests is equal
to #templates ∗ (#templates − #templates right user), where #templates right user

is the number of templates that belong to the same user as the current probe. In case of
the same number of templates per user (call it #T ), the formula can be simplified into
#templates ∗ (#templates −#T ). In the second verification setting, a gallery with multiple
templates per user is considered, and an all-against-groups approach is exploited. During
verification the best matching (lowest distance from the probe) for each group of templates
belonging to the same user is returned. Of course matching of each template against itself
is not considered. The number of GENUINE tests will be equal to #templates and the
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Table 3 Results by matching method (rows) and segmentation algorithm (columns) for OUI-ISIR dataset

Dataset: OU-ISIR - Verification Single Template (In terms of EER)

BWR RONG 2007 DERAWI 2010 Differences

Walk 0.3661 NA

Best Step 0.4405 0.4243 0.4115

Best Step VS All 0.4535 0.4333 0.4288

All Steps VS All 0.4472 0.4044 0.414

Step Sliding Window 0.3675 0.3678 0.3625

Dataset: OU-ISIR - Verification Multiple Template (In terms of EER)

Walk 0.2723 NA

Best Step 0.4116 0.379 0.3575

Best Step VS All 0.3942 0.3553 0.3382

All Steps VS All 0.396 0.3054 0.3356

Step Sliding Window 0.2722 0.2734 0.2714

Dataset: OU-ISIR - Open Set (In terms of EER)

Walk 0.7962 NA

Best Step 0.821 0.9022 0.7942

Best Step VS All 0.8372 0.9022 0.7942 0.1065 0.0683

All Steps VS All 0.798 0.7958 0.7496

Step Sliding Window 0.8003 0.8008 0.7976

Dataset: OU-ISIR - Recognition Rate

Walk 0.2381 NA

Best Step 0.2422 0.1111 0.2173

Best Step VS All 0.2386 0.1408 0.2673

All Steps VS All 0.2750 0.2407 0.2715

Step Sliding Window 0.2355 0.2320 0.2376

Each table section refers to a different recognition setting

number of IMPOST OR tests will be equals to #templates∗(#users−1). In open set iden-
tification setting, each probe is considered to belong or not to a subject in the gallery in turn,
therefore both the number of GENUINE tests and the number of IMPOST OR tests
will be equal to #templates. In closed set identification, no GENUINE/IMPOST OR

distinction is made, and there is simply a number of tests equal to #templates.
As expected, the tables show a general trend towards an increase in performances when

using more gallery templates per user. This especially holds for ZJU-gaitacc dataset, where
each subject has up to 11 templates in the gallery, since this allows a higher robustness
to intra-personal variations. As a matter of fact, this consideration is widely accepted in
literature [7].
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As for the first three recognition settings, results are in terms of EER, while for the last
one we report RR and later we show some further results using CMC curves. For sake of
space, it is not possible to report all results in terms of performance curves. Tables further
report the gain/loss of our segmentation algorithm with respect to the compared ones (col-
umn Differences with differences w.r.t. Rong and Derawi algorithms respectively). In order
to provide a first-sight impression, gains are in green (lighter) cells and losses in red (darker)
ones. It is worth reminding that Rong algorithm is reproduced without the denoising phase,
which is not present in either BWR or Derawi algorithms, and is therefore deliberately
avoided.

5.1 Results for BWR dataset

The different sections of the Table 1 refer to the different recognition settings for BWR
dataset. For each section, the results are indexed by matching method (rows) and segmenta-
tion algorithm (columns).

Starting from verification results, the respective table sections show a less significant
improvement w.r.t. the other datasets (see below) when passing from a single template to
multiple templates in the gallery, but this depends on the fact that BWR dataset only includes
two/three templates per user in the gallery. For this reason, the advantage is less evident.
On the other hand, it is possible to observe a general improvement achieved by BWR step
segmentation w.r.t. both Rong and Derawi algorithms. In particular, the gain is systematic
compared to Rong, while in some cases (three out of eight) there is a slight loss compared
to Derawi. This is a very promising result, since it suggests that if some denoising as well
as interpolation operations were carried out in advance on the signal, the results would be
even better. In the present implementation however, the best results are achieved without
any segmentation, i.e., by the WALK method. For this matching method EER is 0.18 in
single-template setting and ≈ 0.15 in multiple-template setting. As it will be shown in the
following, this is a general trend also for the other recognition settings and for the other
datasets, and testifies that step segmentation is a critical operation that can affect the fol-
lowing results. As mentioned above, it is possible to argue that this can be due to a kind of
co-articulation effect between successive steps that is not accounted for when segmenting
steps. As for single-template verification for BWR dataset, the best result using segmenta-
tion is achieved by the Derawi algorithm with STEP SLIDING WINDOW matching (EER
is 0.19) followed by BWR segmentation with ALL VS. ALL matching (EER is 0.20). How-
ever, a general trend sees a ranking with ALL VS. ALL being better than STEP SLIDING
WINDOW. It would have been reasonable to expect the inverse, due to the higher similarity
of STEP SLIDINGWINDOW with the best WALK. As a matter of fact, this happens when
using Rong and especially Derawi. These two results suggests that the STEP SLIDING
WINDOW matching method is very promising but must be further investigated.

As expected, when passing to open set identification there is a general fall of per-
formance. The matching distance from the right subject must be below the acceptance
threshold, but also be the smallest one. EER achieved by WALK is about doubled w.r.t.
to verification (EER is 0.32), and doubled again when introducing step segmentation. The
comparison between BWR segmentation and Rong and Derawi confirms the superiority
over Rong, while the comparison with Derawi produces a balanced result. Even in this case,
the best result with BWR segmentation is achieved by ALL VS. ALL matching (EER is
≈ 0.45), followed by STEP SLIDING WINDOW (EER is ≈ 0.54). However, when using
Derawi segmentation, it is possible to achieve the best result afterWALK, provided by STEP
SLIDING WINDOW (EER is 0.41).
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Closed set identification confirms the general trend for this dataset observed for the other
recognition settings. BWR segmentation overcomes Rong in all cases, and Derawi in all
cases except one (when using STEP SLIDING WINDOW). WALK achieves the best RR
(0.89), followed by ALL VS. ALL matching, and by STEP SLIDING WINDOW, except
in the case of Derawi segmentation with which STEP SLIDING WINDOW achieves the
second best result after WALK (0.75). Finally, Fig. 12 shows the CMC curves obtained for
WALK, for the second best matching in terms of RR, namely STEP SLIDING WINDOW
when using Derawi segmentation, and for the same matching method using the other step
segmentations. It is interesting to notice that BWR segmentation curve, though showing
a lower RR, presents a better slope and this suggest once more that the method can be
significantly improved.

5.2 Result for ZJU-gaitacc dataset

Table 2 shows the results of the tests for ZJU-gaitacc dataset. Each section of the table refers
to a different recognition setting, and the results are indexed by matching method (rows)
and segmentation algorithm (columns).

Fig. 12 CMC curves achieved on BWR dataset by WALK, by the second best matching, STEP SLID-
ING WINDOW when using Derawi segmentation, and for the same matching method using the other step
segmentations
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Starting again from verification settings, it is possible to notice that for this dataset the
difference between single-template and multiple-template identification is much more sig-
nificant, but especially when using the unsegmented signals, i.e. WALK matching (EER
is ≈ 0.33 for single-template verification and ≈ 0.09 for multiple-template verifica-
tion). When segmentation is entailed, the differences present a smoother trend. On one
side, this demonstrates the advantage of having more templates per subject in the sys-
tem gallery. On the other side, it further confirms the critical role of step segmentation. In
single-template verification, BWR segmentation overcomes the other two methods, with
the best results achieved by STEP SLIDING WINDOW (EER is ≈ 0.34). However, in
multiple-template setting, it always achieves slightly lower performance, except when STEP
SLIDING WINDOW is exploited. In this case, it provides the second best result after
WALK matching (EER is 0.1). Except for this case, the ranking among matching meth-
ods entailing segmentation is less sharp than with BWR dataset. ALL VS. ALL matching
is still generally the best using segmentation, but for this dataset the second place is some-
times occupied by BEST STEP, that requires to only match the centroid steps of two walk
signals.

It is interesting to notice that this time, when passing to open set identification, the results
fall again but in a less dramatic way (EER is 0.32), except for the significant difference with
the result achieved by the unsegmented signal in multiple-template verification. This may
be ascribed to the beneficial effect of having a larger number of templates per subject that
better supports open set identification too. Furthermore, results are better on the average
than those achieved with the much smaller BWR dataset. As for segmentation algorithms,
the comparisons shows an alternating trend, but is its interesting to notice that the second
best result is achieved again by STEP SLIDING WINDOW with BWR segmentation (EER
is 0.41). This is a very encouraging result.

Closed set identification achieves a RR by WALK matching (≈ 0.93) that is surprisingly
higher that achieved for the much smaller BWR dataset (0.89). The same counterintuitive
trend can be observed on average for all results in the table. BWR segmentation provides
better matching results than the other two except when using ALL VS. ALL matching. The
best result when using segmentation is achieved by BEST STEP after BWR segmentation,
entailing centroid matching (RR is≈ 0.83), followed by ALL STEPS VS. ALL after Derawi
segmentation (RR is 0.81).

The fact of achieving results that are often better than those achieved for BWR dataset,
seems to also confirm that interpolation, which is carried out on ZJU-gaitacc, can pro-
vide beneficial effects on final recognition. Furthermore, the repeated good results achieved
using BEST STEP on this dataset suggest to investigate a smarter way to exploit centroids
steps extracted from the the walk signal. Figure 13 shows the CMC curves obtained for
WALK, for the second best matching in terms of RR, namely BEST STEP when using BWR
segmentation, and for the same matching method using the other step segmentations. It is
interesting to notice that Derawi segmentation curve, though showing a lower RR, presents
a better slope.

In the work [19], that introduces the ZJU-gaitacc dataset, the results obtained from pelvis
accelerometer only are the ones that can be compared to our ones. The authors report a
RR of 73.4 % and a EER of 8.9 %, using their own method on the dataset signals (see
Section 2). Our results on the same dataset appear to be slightly better, but the different
experimental setting must be taken into account. As a matter of fact, for both identification
and verification modalities, the templates from the two sessions are used either as probe or
as gallery.
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Fig. 13 CMC curves achieved on ZJU-gaitacc dataset by WALK, by the second best matching, BEST STEP
when using BWR segmentation, and for the same matching method using the other step segmentations

5.3 Result for OU-ISIR dataset

Table 3 shows the results for OU-ISIR dataset. The table is divided into sections that refer
to the different recognition settings. Each section is indexed by matching method (rows)
and segmentation algorithm (columns). It is worth reminding that, though collecting data
from 744 subjects, those acquired from all sensors are only from 495 subjects. Therefore,
since we carry out experiments on side sensors, this is the reduced set of subjects that we
consider. Moreover, walks provided by OU-ISIR Dataset are significantly shorter, since the
number of signal points is about a third of the walks in both BWR and ZJU-gaitacc, that
on the contrary are quite similar in length. This is due to the fact that each original walk is
divided into four segments, each treated as a different walk. Of these, we only considered
level walks from both sides. It is also to point out that for 11 subjects it was not possible to
use the side accelerometer data since they were null.

It is immediate to notice the significantly worse results achieved for this dataset. In par-
ticular, an element that really stands out is the much smoother difference between WALK
and the matching methods entailing step segmentation. A reasonable explanation of this
is the very short length of walks, so that segmentation actually has no real effect, while
matching of the entire signal is more sensible to noise, and also sharp sudden yet temporary
variations have a disruptive effect on matching. It is interesting to point out that closed set
identification achieves extremely low results; verification performance too is lower than the
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one achieved with the other datasets, even if not equally dramatically (even in this case the
advantage of having more templates per subject still holds); finally open set identification
achieves results that are well below a random decision. It is also worth underlining that the
segmentation algorithm has little influence on the final recognition results. Though Derawi
algorithm seems outstanding, looking at the actual differences it is possible to notice that
they generally take lower values that with the other datasets.

Figure 14 shows the CMC curves obtained for WALK, for the best matching (for this
dataset) in terms of RR, namely ALL STEPS VS. ALL when using BWR segmentation, and
for the same matching method using the other step segmentations. It is interesting to notice
that for this dataset WALK does not achieve the best RR, but its CMC curve has the best
slope anyway. The same matching with BWR, though achieving the highest RR, has a CMC
curve lower than that obtained with the algorithm that gave the worst results in general for
the other datasets, i.e., Rong, while BWR CMC is comparable to that obtained using Derawi
algorithm.

The comparisons reported in [11] entail four state-of-the-art methods in literature, among
which Rong and Derawi ones, and no method is proposed by the authors themselves. First
of all it is worth mentioning that the results are reported only for verification modality, in
terms of EER and ROC curves. The results obtained by the complete application of Rong

Fig. 14 CMC curves achieved on OU-ISIR dataset by WALK, by the second best matching, BEST STEP
when using BWR segmentation, and for the same matching method using the other step segmentations



4740 Multimed Tools Appl (2017) 76:4713–4745

and Derawi methods (including both step segmentation and recognition) on the respective
original datasets, in terms of EER, are respectively of 5.6 % and 5.7 %. EER with OU-ISIR
dataset falls to 14 % for both methods. However, the reported comparison regards data from
OU-ISIR taken from the accelerometer at the back waist. The position was the same for the
experiments by Rong et al., but those by Derawi et al. exploited the accelerometer on the left
hip. Ngo et al. themselves further assess the impact on performance of the accelerometer
position, and the center IMUZ, namely the one at the back waist, is exactly the one with
the worst ROC curve. The second worst is the one achieved by the smartphone, but in their
setting even this device is positioned at the back waist.

In conclusion this dataset is surely very challenging, especially for the high number of
subjects of different ages. However some issues arise when examining the dataset in depth,
especially related to the low number of walks for each subject and for their very short length,
or for the very low number of points in the signals at least.

It is clear from the above notes that without a common benchmark any kind of compari-
son is quite unreliable, therefore even taking further considerations from the results reported
in Section 2 is quite useless.

Fig. 15 Best CMC curves achieved on BWR dataset by each segmentation algorithm, with the indication of
the matching strategy producing that result
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Fig. 16 Best CMC curves achieved on ZJU-gaitacc dataset by each segmentation algorithm, with the
indication of the matching strategy producing that result

5.4 Some further considerations about the compared segmentation algorithms

In order to have a better idea of the results of the comparison among the different step
segmentation algorithms, the following Figs. 15, 16, and 17 show, for each dataset, the best
CMC achieved by each segmentation algorithm with the indication of the matching used, in
comparison with the CMC achieved by WALK.

Figure 15 shows that BWR segmentation on BWR dataset achieves better results than
Derawi both for RR and CMC slope, while Rong algorithm shows a generally lower
performance.

Figure 16 shows curves for ZJU-gaitacc. BWR segmentation achieves better results in
terms of RR by using BEST STEP, but has the worst CMC slope, although the difference is
not dramatically significant. The other two segmentation algorithms achieve their best per-
formance with ALL STEPS VS ALL. This suggests to better investigate the use of centroid
steps, and that methods comparing single steps achieve better accuracy on interpolated data.

Figure 17 shows the best results achieved by each segmentation algorithm on OU-ISIR
dataset. The difference in performance is well evident, as well as the substantial equiva-
lence of the segmentation algorithms. Also in this case, for all segmentation algorithms the
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Fig. 17 Best CMC curves achieved on OU-ISIR dataset by each segmentation algorithm, with the indication
of the matching strategy producing that result

same matching method achieves the best performance, namely ALL STEPS VS ALL. As a
consequence, in this case the figure is equal to Fig. 14.

The method that was supposed to achieve the best compromise between accuracy and
acquisition constraints, namely STEP SLIDING WINDOW, does not appear in the above
figures, meaning that it did not achieve remarkable performance. This indicates that further
investigation is requested to improve it.

6 Conclusions and future work

This paper presented the schema of a complete system for gait recognition and showed
the work done so far to implement the core recognition procedures. A novel segmentation
algorithms and different matching strategies were tested, attempting to limit the number of
constraints to data capture and support recognition ”in the wild” in uncontrolled conditions.
However, our assumption is that enrolling can still entail some control on the gait features.
The achieved results are quite promising, even if, at present, the system exploits a very
basic version of DTW. Good results were also achieved on a huge public dataset, which was
captured in completely different conditions and pre-processed by interpolating signal data



Multimed Tools Appl (2017) 76:4713–4745 4743

(our dataset collects only raw data). The experimental results suggest some further closing
considerations and guidelines for future work.

Unexpected good results were achieved on ZJU-gaitacc dataset compared with our much
smaller BWR dataset. This especially holds when using 11 templates per subject in the
gallery in the multiple template verification experiment. This demonstrates that recognition
against a gallery collecting multiple templates per subject achieves better performance w.r.t.
approaches using a single template. Having more gait signals, acquired in different sessions
and in different conditions, allows to better address possible variations.

Another possible reason for the better results with ZJU-gaitacc dataset is that its data are
interpolated, while BWR collects raw data instead. We plan to continue storing raw data in
both BWR dataset and in a larger one that is being collected, in order to address different
processing strategies. However, due to the mentioned result, it will be worth investigating
the feasibility and real benefit of including an interpolation phase in the proposed walk
processing algorithms.

As a further observation, it is to consider that in both BWR and OU-ISIR datasets, signals
from right and left hip are mingled, while ZJU-gaitacc dataset, or better the subset that we
used, seem to contain data from a fixed position on the same pelvis side. It is to consider
that this may introduce more perturbations in the tests for the former two datasets, since,
like the overall static bodily structure, also the dynamics of the two body sides might be
slightly different.

The proposed segmentation algorithm processes raw data without any previous noise
reduction. The better results achieved w.r.t. to the segmentation algorithm proposed by Rong
et al. skipping this pre-processing operation has a twofold interpretation. From one side,
they suggest that our segmentation algorithm can achieve even better results if some denois-
ing is adopted. From the other side, they testify that it is possible to maintain the overall
procedure less computationally demanding yet achieving satisfying results. The algorithm
by Derawi et al. sometimes outperforms BWR segmentation, but has an higher compu-
tational time. It is worth underlining that, anyway, the best results are always obtained
by matching unsegmented signals. As hypothesized, this can be ascribed to a kind of co-
articulation influence between successive steps, which is a discriminant element that might
be lost when using walk segments.

Few works in literature present experimental results for open set identification. Actually,
this seems the most realistic identification scenario, where a limited white (or black) list just
contains the set of subjects to recognize, while all the others must be rejected. However, it
is reasonable to expect that this kind of recognition is the most challenging one, since the
right template must be close enough to the probe, as in verification, but also the closest one
to provide a correct identification. As a matter of fact, whatever the approach, using either
segmented or unsegmented signals, and whatever the matching algorithm, the accuracy suf-
fers for a significant decrease. In any case, it is to consider that gait is often classified as
a soft biometrics. In the future, the proposed improvement will be to use our system also
in a multibiometric setting. Its results will be fused with those from computer-vision based
gait recognition, as well as other biometric modalities, to enforce identification for access-
ing critical locations/services. Visual recognition of soft features could also be used to limit
the search space, by eliminating part of the gallery candidates by extracting bodily features
from the probe, such as height or skin color.

The worse results were achieved by OU-ISIR dataset notwithstanding the segmentation
algorithm or the matching strategy. A number of hypotheses can explain this. Of course,
the most evident factor is the higher number of subjects as well as the higher variability
in the age range. Even if the number is not that high for all sensors, it is higher than in
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ZJU-gaitacc anyway. However, the number of templates per subject is lower than ZJU-
gaitacc, and they are also much shorter than those in both the other datasets. This might
increase the sensitiveness to noise.

Future developments of the proposed approach and related experiments will include gait
signals acquired at different speeds on different way slopes, with different smartphones, and
possibly different kinds of shoes, e.g., with high heels. At present, a dedicated app for the
data acquisition is being developed. The next ”steps” will entail finding a way to normalize
gait data from different kinds of accelerometer models, that can present different offset and
also different data ranges; a further future research will investigate an algorithm for step
segmentation that does not need to know the number of steps even during enrollment. Last
but not least, considering the results achieved with data from ZJU-gaitacc dataset, which are
interpolated, the advantages of interpolation will be further investigated.
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